
~ 

IV. Isotope tracers in containers 

ICES mar. Sci. Symp., 197: 121-131. 1993 

Comparison of in-bottle measurements using 15N and 14C 

Aubert Le Bouteiller 
tt 

’-L-\gLe Bouteiller, A. 1993. Comparison of in-bottle measurements using I5N and I4C. - 
ICES mar. Sci. Symp., 197: 121-131. 

Field data reported in the literature are used for making a direct comparison between 
primary production estimated by the 14C method and nitrogen uptake measured by the 
’N method (nitrate, ammonium, and, at times, urea). C/N uptake ratio values vary 

widely, from less than 1 to more than 20 (atlat), without any evident relationship with 
environmental properties or experimental procedure. The mean uptake ratio calcu- 
lated on the whole data set is found to be equal to 6.7 (n = 99). The question arises 
whether such a C/N ratio may be considered as the assimilation ratio. For comparison 
purposes, the constituent ratio of phytoplankton assessed by the slopes of the 
regression lines relating carbon and nitrogen in particles has also been studied from the 
literature. This C/N ratio ranges between 5 and 7.5 (atlat) in the ocean, whatever the 
region, the season, or the phytoplankton present, suggesting that in the field the 
phytoplankton constituent ratio is probably never very different from the mean ratio 
found in phytoplankton by Redfield. Different possible sources of uncertainty are 
discussed to explain discrepancies between C/N uptake values and composition ratios. 
A lack of standardization in analytical procedures and calculations is evident. A better 
knowledge of the accurate value of the C/N assimilation ratio in the different oceanic 
systems is needed, especially for reaching the new production ratio “f” by using the 15N 
and 14C methods. 
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Introduction 
Since recognition of the potential effect of human activi- 
ties on the natural evolution of climate, one of the main 
objectives of most large-scale aquatic ecological re- 
search programmes has been to understand the main 
properties of the ocean and to quantify the global flux of 
carbon due to biological processes. Undoubtedly, satel- 
lites are the most appropriate tools for providing maps of 
surface chlorophyll distribution derived from ocean 
colour (Smith and Baker, 1982; Platt and Herman, 1983; 
Feldman et al., 1984). Algorithms have been proposed 
for estimating primary production from these satellite 
images (Smith et al., 1982; Eppley et al., 1985; Platt, 
1986; Platt and Sathyendranath, 1988). Furthermore, 
new production, which represents the exportable com- 
ponent of total production (Dugdale and Goering, 
1967), can also be estimated from remote sensing, at 
least in certain propitious conditions (Dugdale et al., 
1989; Sathyendranath et al., 1991). Basically, all the 
algorithms used to calculate both total and new pro- 

duction clearly require for their construction a fair 
knowledge of the main primary production processes, 
and as accurate a “sea truth” as possible. However, 
despite decades of field studies, factors controlling 
phytoplankton growth and production are not yet well 
defined in all aquatic systems, and the absolute magni- 
tude of total and new production is still often wrapped in 
uncertainty, especially in the case of oligotrophic 
waters. This is because of the difficulty, both conceptual 
aird technical, of evaluating the daily production of 
phytoplankton in the natural environment (Peterson, 
1980). 

Among the numerous methods developed for 
measuring the primary production of phytoplankton in 
terms of carbon and nitrogen, use of the tracers 14C and 
15N has largely predominated since their introduction by 
Steemann Nielsen (1952) and Dugdale and Goering 
(1967) respectively. The I4C method is the standard 
technique used for estimating primary production in 
nearly all aquatic ecology laboratories. Relatively easy, 
rapid, sensitive and precise, this method has received a 
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number of modifications, reducing many of its original 
imperfections and increasing the accuracy of the results. 
One of the recent prevailing recommendations has been 
the “clean technique” (Fitzwater et al., 1982). 

The ”N method is much more delicate, tedious, and 
time-consuming and requires accurate assessments of 
dissolved inorganic and particulate organic nitrogen. 
However, it has been extensively used in many labora- 
tories. ,Dugdale and Wilkerson (1986) have reviewed 
most of the difficulties relevant to the method, and have 
proposed some recommendations for obtaining reliable 
estimates of phytoplankton nitrogen flux in eutrophic 
areas. In spite of its difficulties, the ”N method is the 
only one allowing the distinction between new pro- 
duction based on nitrate uptake from regenerated pro- 
duction based for the most part on ammonium utiliz- 
ation (Dugdale and Goering, 1967). 

When primary production (I4C) and new production 
(”N) have been measured, the percent new production 
(Dugdale and Goering, 1967), of “f” factor such as 
defined by Eppley and Peterson (1979), can be calcu- 
lated with the relationship: 

f = p ”N-N03 x 6.6/p I4C 

pis the rate of C or N uptake, and 6.6 is the assimilation 
ratio C/N (at/at) assumed equal to the constituent ratio 
determined in phytoplankton by Redfield (1958). 

If “f” and primary production are known, “f” provides 
direct access to the rate of new production, which is the 
true fertility index of an area. Primary production is 
expressed in terms of carbon while new production is 
measured in terms of nitrogen. Hence, the relationship 
between carbon fixation and nitrogen uptake has to be 
clearly defined in the field in order to calculate “f”. 

When all the forms of N uptake are assessed simul- 
taneously, the rate of total nitrogenous production is 
obtained. Since the I4C method gives the rate of total 
carbon fixation, the absolute magnitude of primary 
production can be approached by two different ways, 
the I5N and I4C methods. A direct comparison between 
the two is then possible. 

The C/N composition ratio 
Comparison between I4C and ”N utilization requires 
knowledge of the range of values in which the C/N 
assimilation ratio is expected to vary. If the physiological 
processes leading to the synthesis of new cellular 
material were in balance during the course of experi- 
ments, then assimilation ratios would resemble those of 
cellular composition (McCarthy and Nevins, 1986a). In 
cultures of phytoplankton under nutrient or light limi- 

tation, the C/N constituent ratio may vary within brief 
periods from the Redfield ratio of 6.6 to about 20, or 
more, according to the growth rate limitation (Gold- 
man, 1984). In the field, the C/N constituent ratio of 
phytoplankton is not always directly measurable, be- 
cause of the difficulty of separating algal cells from the 
non-algal particulate material. However, the relative 
concentrations of particulate carbon (PC) and particu- 
late nitrogen (PN) in the field are considered to reflect 
the chemical composition of phytoplankton (Goldman 
et al., 1979). 

The regression lines linking (PC) and (PN) calculated 
for a great number of different oceanographic situations 
are reported in Table 1. The residual carbon for N = O 
would correspond to carbonaceous compounds that do 
not covary with nitrogen (Copin-Montegut and Copin- 
Montegut, 1983). The slopes of the regression lines 
represent the C/N ratio due to phytoplankton, but also 
in part to zooplankton and some microheterotrophs and 
detritus. However, it is assumed that these slopes give a 
good indication of the CiN constituent ratio of phyto- 
plankton, especially when phytoplankton are known to 
predominate, as for example during coastal upwelling 
blooms. From the data in Table 1 it appears that differ- 
ences between regions and systems are very small, even 
when coastal upwelling areas are compared with the 
extreme oligotrophic areas, such as the tropical Atlantic 
or the southwestern Pacific between 7”s and 15”s. The 
slopes of the regression lines C/N vary in a narrow range, 
from 5.1 to 7.6 (model II), and are generally close to the 
Redfield ratio. Interestingly, Herbland and Le Bou- 
teiller (1983) and Eppley et al. (1992) have tested the 
effect of the nutrient abundance in stratified situations 
and found that both slopes and intercepts of the relation- 
ships between PC and PN were independent of the 
presence or absence of nitrate. Within the euphotic 
layer, PC/PN does not seem to exhibit any significant 
vertical gradient with respect to light or nutrients. 

In the Guinea Dome, the size distribution of PC/PN in 
seston indicates that the <1 pm fraction shows the same 
properties as the total fraction (Table 1). Assuming that 
the non-algal matter has no particular effect on C/N, the 
chemical composition of picophytoplankton, which rep- 
resents nearly 50% of total phytoplankton in that area 
(Le Bouteiller et al., 1992), would not be different from 
large algal cells. 

All these results provide clear evidence of a striking 
consistency in the chemical structure of the organic 
matter. This suggests that in the oceanic photic layer the 
constituent ratio of phytoplankton would be close to the 
C/N ratio of algal cells growing at a maximum growth 
rate (Goldman, 1980). From an empirical approach, 
there are many indications that, at least on average, the 
assimilation ratio should not be very different from the 
C/N Redfield ratio. 
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Table 1. Linear regression analysis between carbon and nitrogen in particles (PC = Y; PN = X, both in micromoles). Slope and Y-  
intercept were calculated with the model I method. When X and Y are simply measured and are not under the control of the 
investigator, model II is more appropriate (Sokal and Rohlf, 1969). The slope of the regression line using model II is also given. 
PIRAL and PROPPAC cruises were conducted by ORSTOM, France (unpublished data). Size fractionations during PIRAL 
cruises were presented by Fukaï (1991) and Le Bouteiller et al. (1992). 

Comparison of in-bottle rneasurernents using I5N and I4C 

Model I 

Area 
Li Indian Ocean 23"s to 4 6 3  

Antarctic Ocean 
,,I, Tropical Atlantic 

Morocco upwelling 
Mauritania upwelling 
Mediterranean Sea 
All data 
Equat. Atlantic O",4"W 
N03-rich water O",4"W 
W. Pacific 15"s 173"E 
Guinea Dome 12"N 22"W 
<l,um, 12"N 22"W 
Pacific 5"N-l4"S 165"E 
Upwelling, Pacific O" 
165"E 
Pacific 7"s 165"E 
Pacific 15'"-12"S 135"W 
Pacific 15"N-15"s 150"W 

Slope Y-int 

5.45 0.59 
5.49 0.10 
5.21 0.63 
5.32 2.55 
4.93 1.66 
5.89 0.30 
5.44 0.73 
6.00 0.75 
6.08 0.64 
5.26 1.29 
6.18 1.34 
5.23 1.44 
6.12 0.85 

5.65 1.48 
5.15 1.10 
5.70 1.60 
4.98 1.21 

n r 

82 0.996 
62 0.996 
29 0.977 
60 0.971 
55 0.973 

296 0.975 
658 0.980 
100 0.92 
71 0.89 
48 0.81 

107 0.92 
97 0.77 

137 0.81 

91 0.79 
81 0.75 
67 0.82 
64 0.81 

Model II 
Slope 

5.47 
5.51 
5.33 
5.48 
5.07 
6.04 
5.55 
6.52 
6.83 
6.49 
6.72 
6.79 
7.56 

7.15 
6.87 
6.95 
6.15 

Reference 

Copin-Montegut and 
Copin-Montegut (1983) 
Copin-Montegut (1983) 
Copin-Montegut (1983) 
Copin-Montegut (1983) 
Copin-Montegut (1983) 
Copin-Montegut (1983) 
Herbland and 
Le Bouteiller (1983) 
Lemasson, Cremoux, 1985 
PIRAL cruises, 1986 
PIRAL cruises, 1986 
PROPPAC cruise, 1987 

PROPPAC cruise, 1988 
PROPPAC cruise, 1989 
Peña et al. (1991) 
Eppley et al. (1992) 

The C/N assimilation ratio 
Still today it is not easy to carry out and obtain reliable 
measurements of production with either the I4C method 
(Gieskes and Kraay, 1984; Grande et al., 1989) or the 
I5N method (Glibert et al., 1982; Harrison, 1983; Laws et 
al., 1985; Garside, 1991). The variance within a data set 
is often fairly small (Le Bouteiller and Herbland, 1984; 
Lohrenz et al., 1988b; Williams and Purdie, 1991), but 
comparisons between different data sets are still disap- 
pointing (Richardson, 1991). Moreover, in most oceanic 
systems large changes in primary production rate are apt 
to occur within the course of a few days (Herbland and 
Le Bouteiller, 1982; Lohrenz et al., 1988a; Platt et al., 
1989; Fukai, 1991), such that comparison between C and 
N uptake measured at different times may have no real 
significance. Finally, the sine qua non condition to 
achieve for a reasonable comparison between C and N 
production consists in considering only the data sets of 
p14C and P '~N which have been obtained simultaneously 
in well-controlled experimental conditions. 

Most research reported in the literature deals with 
total nitrogen production of phytoplankton in oceanic 
waters, generally %-No3 and "N-NH4 uptake, and, at 
times, I5N-urea uptake. Some research also includes 
simultaneous 14C fixation measurements. A strict com- 
parison between C and N production is then possible. 

The data summarized in Table 2 concern a great 
number of regions, different seasons, and various situ- 
ations. The range of variations in p'4C/p'5N (Table 2) 

appears clearly much larger than that of PC/PN (Table 

There are two explanations for this discrepancy: (1) 
The uptake ratio C/N may change according to the 
environmental factors, thus reflecting the physiological 
response of the natural assemblages of phytoplankton to 
the experimental conditions during incubation. (2) 
When used in the field, the I4C or I5N methods over- or 
underestimate the actual rate of C or N production, for 
many different technical reasons; the main ones will be 
detailed later. 

Some of the first values in Table 2 (for example 
MacIsaac and Dugdale, 1972; McCarthy, 1972; Mac- 
Isaac et al., 1974) reflect a large predominance of C 
fixation over N uptake, whatever the studied system. 
When pl4C/pI5N exceeds 15 or 20 (atomic), experimen- 
tal procedures are probably to be suspected rather than a 
lack of balance between uptake and composition. Para- 
doxically, several studies in nutrient-rich waters of coas- 
tal upwellings present also relatively high pC/pN: Mor- 
occo (Slawyk et al., 1978), Mauritania (Slawyk et al., 
1978), Peru in 1976 (Wilkerson et al., 1987), and Nami- 
bia (Probyn, 1988, and Estrada and Marrase, 1987). It is 
difficult to suggest that nitrogen deficiency might explain 
these observations. 

Conversely, the data summarized in Table 2 suggest 
that nutrient-depleted waters do not involve signifi- 
cantly higher C/N uptake ratios in the open ocean. This 
is to be compared to the lack of clear effect of oligotro- 
phic conditions upon the PC/PN ratio (Table 1). 

1). 
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Table 2. Assimilation ratios C/N (at/at) calculated from primary production ('"e method) measured in sea water in parallel with 
total nitrogen production ("N method): nitrate, ammonium and, at times, urea uptake. IS and SIS: in situ and "simulated" in silu 
incubations. 

C/N 

Position Reference '5N-compounds Incubation Mean Range n 

Atlantic 26'4TN 65"W 
Upwelling Peru 
Eastern Pacific 
Eastern Pacific 
Eastern Mediterranean 
Western Mediterranean 
Coast of California 
N. Pacific Central Gyre 
Upwelling NW Africa 
Upwelling Morocco 
Upwelling Mauritania 
Saanich Inlet 
Southern California Bight 
Eastern Canadian Arctic 
Middle Atlantic Bight 

Eastern Canadian Arctic 
NW Atlantic 40"N 65"W 
NW Atlantic 40"N 65%' 
Upwelling Peru, 1976 
Upwelling Peru, 1977 
NW Atlantic, coast mixed 
NW Atlantic, frontal 
NW Atlantic, stratified 
NW Atlantic, oceanic 
Upwelling Namibia 

Eastern equatorial Pacific 
Antarctic, spring 1983 
Antarctic, autumn 1986 
Eastern Pacific, VERTEX 
Pacific 8"N-WN 150"W 
Pacific 1"N-N 150"W 
Pacific o" 150"W 
Pacific 2"S-FS 150"W 
Pacific 10"S-lYS 15o"W 

Dugdale and Goering (1967) 
MacIsaac and Dugdale (1972) 
MacIsaac and Dugdale (1972) 
MacIsaac and Dugdale (1972) 
MacIsaac and Dugdale (1972) 
MacIsaac and Dugdale (1972) 
McCarthy (1972) 
Eppley et al. (1973) 
MacIsaac et al. (1974) 
Slawyk et al. (1978) 
Slawyk et al. (1978) 
Harrison (1978) 
Harrison (1978) 
Harrison et al. (1982) 
Harrison et al. (1983) 
Falkowski et al. (1983) 
Harrison ef al. (1985) 
McCarthy and Nevins (1986a) 
McCarthy and Nevins (1986b) 
Wilkerson et al. (1987) 

Harrison and Wood (1988) 

Harrison and Wood (1988) 
Harrison and Wood (1988) 
Probyn (1988), 
Estrada and Marrase (1987) 
Murray et al. (1989) 
Smith and Nelson (1990) 

Knauer et al. (1990) 
Dugdale ef al. (1992) 
Dugdale et al. (1992) 
Dugdale et al. (1992) 
Dugdale et al. (1992) 
Dugdale et al. (1992) 

24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 
6 h SIS 

24 h SIS 
3-4 h SIS 

4 h SIS 
6 h SIS 
6 h SIS 

24 h SIS 
24 h SIS 
24 h SIS 
24 h SIS 

4-6 h SIS 

24 h IS 
24 h SIS 
24 h SIS 
24 h IS 
6 h SIS 
6 h SIS 
6 h SIS 
6 h SIS 
6 h SIS 

9.5 
11.7 
75.7 
27.7 
20.8 
15.7 
11.2 

15.5 
13.7 
32.6 

5.07 

4.92 
6.88 
4.74 
4.06 

8.27 
9.36 
7.60 

7.07 
5.56 
7.65 

14.9 

11.5 
10.1 
12.1 

7.12 
4.17 
2.43 
5.25 
6.80 
7.50 
7.40 
4.10 
0.94 

1.6-34 
6.4-22 

14-178 
- 
- 

7.8-46 

3 .C-7.65 
8.8-14.6 

11.7-24 
4.1-31.2 

26.3-36.9 
- 
- 

1.8-7.4 
2.6-7.5 

3.4-26.7 
4.5-23 
5.1-9.5 

- 
- 
- 

5.83-9.48 
1.93-21 
6.60-12.8 

- 

3.7-11.2 
2.2-6.4 

1.96-10.2 
O .75-5. O 

- 
- 
- 
- 
- 

7 
6 
4 -  
1 

4 
3 
4 
5 
4 
1 
1 

14 
8 l  

7 
5 
5 

29 
14 
1 
2 
2 
4 

10 

4 
15 
6 
6 
4 
4 
4 
4 
3 

pClpN were often observed below 5 (atomic) in the 
eastern Canadian Arctic (Harrison et al., 1982, 1985) 
and also in the marginal ice zone of the Weddell Sea 
(Smith and Nelson, 1990). This leads to the hypothesis 
that the U N  uptake ratio would be specifically lower 
than the Redfield ratio in subpolar waters. This result is 
not corroborated by PC/PN analyses in the Antarctic 
Ocean (Table l ) ,  but low p'3C/p'SN uptake ratios were 
also observed at 60"s and 66"s by Collos and Slawyk 
(1986). 

When all the data from Table 2 are considered (except 
those from Dugdale and Goering, 1967; MacIsaac and 
Dugdale, 1972; Slawyk et al., 1978), a good correlation 
between pI4C and p"N (total) is obtained (r = 0.87; n = 
104). The mean assimilation ratio is 6.7 ((UN = 6.70 k 

0.97; n = 104). One may conclude that, on the average, 
the CIN assimilation ratio is not significantly different 
from the expected Redfield ratio. This is undoubtedly an 
important result. 

Sources of uncertainty in C/N uptake 
ratio 
The results in Table 2 have not all been obtained by 
ex.actly the same methodology. Some experiments were 
carried out in situ while most of them were "simulated" 
in situ incubations, which could have some conse- 
quences (Lohrenz et al., 1992), although not necessarily 
appreciable, upon the uptake ratio C/N (Slawyk et al., 
1976). The length of incubation time is probably the 

3 '  
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most important factor to consider for the present com- 
parison. Short-term and long-term experiments lead to 
an approximation of gross and net production respect- 
ively. Many studies in the field have shown that C and N 
have not the same evolution within bottles during incu- 
bations, from the uptake by photosynthetic and possibly 
heterotrophic processes, till incorporation into auto- 
trophic and, depending upon the ecosystem, into heter- 
otrophic organisms. Brief uptake experiments seem to 
lead to a predominance of carbon uptake (Slawyk et al., 
1978). Conversely, in nitrogen limited waters, the am- ’ monium incorporation by phytoplankton is potentially 
very rapid (Glibert and Goldman, 1981; Dortch et al., 
1982). Hence, low short-term C/N uptake ratios may 
occur. During daytime, photosynthesis directly depends 
on available light, whereas nitrogen uptake may occur at 
night. In the open ocean, NO3 is almost never taken up 
in darkness (Nelson and Conway, 1979), except in very 
nitrogen-poor waters (Cochlan et al., 1991), while dark 
NH4 uptake seems much more important, varying from 
10 to 100% of light uptake (Cochlan et al., 1991). 
However, a significant amount of inorganic N uptake is 
probably due to heterotrophic bacteria (Laws et al., 
1985; Harrison et al., 1992). Because of nocturnal respir- 
ation and excretion of carbon (Eppley and Sharp, 1975; 
Laws et al., 1987; Harris et al., 1989), it appears evident 
that processes occurring at night are very important to 
take into account here. As a consequence, a 24 h 
incubation seems to give a better representation of 
average daily rates of carbon and nitrogen assimilation 
(Eppley et al., 1973). 

Nevertheless, in addition to the light effect, several 
problems arise when the incubation time exceeds about 
12 h, mainly related to respiration, excretion, and regen- 
erative processes, such that the C and N uptake rates 
may become non-parallel. When long incubations are 
performed, the risk of a “bottle effect” increases 
(Gieskes et al., 1979; Chavez and Barber, 1987; Wilker- 
son and Dugdale, 1992), especially when very delicate 
picophytoplankton are present (Murphy and Haugen, 
1985). Besides, the I5N uptake rate may increase during 
incubation due to I5N addition in the sample, which 
needs to be corrected by the use of the Michaelis- 
Menten equation (Paasche and Kristiansen, 1982). Am- 
monium regenerated during incubation may also influ- 
ence N flux measurements by causing underestimation 
of the uptake rate because of isotope-dilution of the 
I5NH4 concentration (Glibert et al., 1982). Laws (1984) 
has shown that this isotope dilution was overestimated 
by Glibert et al. (1982) owing to an inappropriate 
method of calculation, and because of using Reeve 
Angel filters through which many picoplankton pass 
easily (Le Bouteiller et al., 1992). Harrison and Harris 
(1986) also found that isotope dilution was significant 
and, if ignored, could account for 1.5 to 3-fold underesti- 

’ 

mates in computed uptake rates. Kanda et al. (1987) 
described a new practical calculation procedure to cor- 
rect the underestimate caused by isotope dilution. 

Moreover, a discrepancy has been observed between 
disappearance of nitrate or ammonium such as 
measured chemically, and uptake of the same com- 
pounds by the ”N method (Price et al.,  1985; Dugdale 
and Wilkerson, 1986; Slawyk et al., 1990). Although not 
fully explained, the difference between these two ap- 
proaches leads to a limit on incubation periods of 6 h or 
less. Many investigators, however, still use 12 or 24 h. 

The consequence of relatively short experiments, 
where incubation artifacts are limited, is that an extrapo- 
lation is needed to obtain daily production. Experiments 
summarized in Table 2 comprise incubation periods 
ranging from 3 to 24 h. Many results of short incubations 
have been simply expressed as mM m-3 h-’ (Harrison et 
al., 1983; Wilkerson et al., 1987; Harrison and Wood, 
1988; Probyn, 1988), which is not fully satisfactory for 
the present purpose. McCarthy and Nevins (1986a) 
converted the hourly rates measured during a 3 or 4 h 
incubation period to a daily rate by multiplying both 
nitrate and ammonium uptake rates by 24. Dugdale et al. 
(1992) chose another procedure: after 6 h incubation, 
the hourly uptake rates of NO3 and NH4 were multiplied 
by 12 and 18 respectively to obtain a daily rate. Knauer et 
al. (1990) observed that after 6,12, and 24 h time-course 
experiments NO3 uptake did not deviate from linearity. 
However, NH4 uptake rates over 1-6 h were approxi- 
mately 2.5 times greater than those after 24 h. Based on 
these findings, Knauer et al. (1990) have not corrected 
NO3 uptake rates after 24 h incubations, but NH4 uptake 
rates have been revised upwards and multiplied by a 
factor of 2.5 to correct for the observed non-linearity. 

All these various analytical procedures and calcu- 
lations may explain part of the discrepancy between 
carbon fixation and total nitrogen uptake (Table 2). 
Great differences appear clearly in the corrections ap- 
plied to the calculation of daily rates, taking into account 
both isotope dilution and length of incubation. A lack of 
standardization in methods is evident. 

Several authors have measured urea taken up by 
phytoplankton in addition to nitrate and ammonium 
(Table 2). In the nitrate-rich coastal waters, urea rep- 
resents 10 to 30% of total N uptake (McCarthy et al., 
1977; Probyn, 1985; L‘Helguen, 1991), but may become 
negligible when nitrate concentration is high (Kokki- 
nakis and Wheeler, 1987,1988). In Arctic and Antarctic 
waters, the urea uptake rate ranges from 10 to 50% 
(Probyn and Painting, 1985; Wheeler and Kokkinakis, 
1990). Phytoplankton have probably the highest affinity 
for urea in oligotrophic regions (Eppley et al., 1977; 
Kanda et al., 1985; Price and Harrison, 1988). For 
example, the urea contribution in the Central North 
Pacific Gyre ranges from 27 to 57% of total N uptake, 
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generally more than nitrate uptake (Eppley et al., 1973; 
Sahlsten, 1987). These results provide clear evidence 
that in a number of regions, and especially in oceanic 
areas, urea utilization by phytoplankton represents at 
least 10% and usually 20 or 30% of total N uptake, which 
is far from negligible when all the forms of dissolved 
nitrogen used by phytoplankton are taken into account. 
As mentioned above for other factors, the results in 
Table 2 do not show significantly ldwer P ' ~ C / ~ ' ~ N  when 
urea uptake has been measured in addition to nitrate 
and ammonium. Too many causes of variations prob- 
ably interact in a relatively too small data set. 

Dissolved organic nitrogen also contributes to the 
nutrition of phytoplankton (Antia et al., 1991). How- 
ever, recent studies have shown that in the oligotrophic 
northeast Pacific, dissolved organic nitrogen flux rep- 
resented a relatively insignificant component of the 
nitrogen balance in the surface ocean (Harrison et al., 
1992). 

The data quality 
Actually, most sets of pC/pN ratios in Table 2 present 
wide variations around the Redfield ratio, and so any 
systematic over- or underestimation of C or N pro- 
duction rate is impossible to detect. The number of 
chemical and biological parameters to be measured for 
only one comparison is undoubtedly the source of much 
uncertainty, especially in oligotrophic systems where 
most of the methods reach their analytical limits. The 
diversity of experimental procedures used by authors 
(see above) is another evident cause of discrepancy. 

In oceanic primary productivity studies there is no 
suitable diagnostic index by which the production of 
different areas could be compared and tested. There is 
no means for deciding if, in one given time and space, 
the true rate of primary production such as measured by 
the 14C or 15N technique has actually been achieved. 
Even the amount of production data collected in a 
region is not the required criterion of quality because of 
possible systematic bias. 

However, there are two approaches often used to test 
the level of in situ production. The first consists in 
standardizing production by light (Platt, 1969), chloro- 
phyll (Platt and Subba Rao, 1973), or by both light and 
chlorophyll (Morel, 1978; Platt et al., 1988). The other 
approach requires the results of different methods run 
simultaneously to be compared (I4C, 13C, 15N, 

Production has generally been divided by chlorophyll 
in the first approach. In the tropical open ocean, and 
probably also in many other ecosystems, the vertical 
profiles of productivity index (g C g-' Chl a h-') seem 
always to present the same typical pattern, whatever the 

0.2, . . .). 

nitrate depth distribution may be (Le Bouteiller and 
Herbland, 1984): a low value at the surface due to 
inhibition of photosynthesis by light excess, a subsurface 
maximum at 10 or 20 m depth (2630% of surface light), 
and a very regular decrease downwards, down to the 
bottom of the photic zone. Tests of data quality and 
regional comparisons are possible with the productivity 
index, and especially with the maximum value in the 
profile. 

For example, Thomas (1970) observed that in 
nutrient-poor waters of the tropical Pacific Ocean, the 
productivity index was near 3 on average, and up to 5 g C 
g-' Chl a h-' in rich waters, but "the difference between 
the two was not great". More recently, much higher 
subsurface productivity indices have been measured in 
deep blue tropical seas: 7.3 to 18.9 g C g-' Chl a h-' 
(Williams et al.,  1983), 11.6 to 15.3 (Herbland and Le 
Bouteiller, 1983), up to 15 (Gieskes and Kraay, 1986), 
and around 10 g C g-' Chl a h-' (Laws et al., 1984,1987, 
1990). A mean maximum productivity index of only 59 g 
C g-' Chl a d-' was observed by Cullen et al. (1992) in 
the equatorial Pacific at 155"W. 

Comparison of primary production measurements 
using I4C and I5N methods (Table 2) has led to the 
conclusion that, on average, the assimilation ratio C/N is 
not significantly different from the composition ratio 
(Table 1). This approach, however, cannot be used to 
test the absolute magnitude of C or N production rate 
without the certainty that in the system studied the C/N 
assimilation ratio is close to the Redfield ratio. This 
statement clearly must be reinforced in the future. 

The f ratio 
Total primary production (14C) may be compared in- 
directly with nitrogen production (15N) through the "f" 
factor (Eppley and Peterson, 1979), which can be ob- 
tained in three different ways: 

f = p 15N-N03/p 15N-(N03, NH4, urea) (1) 
f = ~ ~ N - N o ~  x 6.6/p~4c (2) 
f = p l5N-N03 X 6.6/pI3C (3) 

Provided primary production is consistently estimated 
by the methods using I4C, 13C, or "N, then "f" must be 
found equivalent in a given system whatever the tracer 
used. 

Table 3 gives some recent values of "f" measured in 
the tropical and subtropical Atlantic and Pacific open 
oceans, where the seasonal signal is always expected to 
be relatively low. All results are remarkably consistent 
and independent of the methods used. Knauer et al. 
(1990) have compared "f" obtained with relationships 1 
and 2, and found 0.11 and 0.16 respectively for a large 
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Table 3. Some recent results of f-ratio measurements in the tropical and subtropical Atlantic and Pacific Oceans. New production 
estimated by the ISN method, and total production estimated by the "N, I4C, or I3C methods. 

Position Date 

13'" 22"W Oct 1976 

YS to 30"N Nov 1982 
170"E to ll0"W Feb 1983 - O"4"W Feb 1979 

Jan 1980 
28"N 155"W Aug 1985 

si T30S 84"W Jun 1987 
o"55S 87"W 
2"47N 86"W 
4"26N 85'W 
32"N to 39"N Jun Jul 
55"W to 65"W 
9"N to 10"N Mar Apr 
89OW to 94"W 
33"N 139"W 1987-1988 

150"W Feb Mar 
8"N to 15"N 1988 
1"N to 6"N 
O" 
2"s to 8"s 
10"s to 15"s 
135"W Apr 1988 
4"N to 16"N 
2"N to 6"s 
12"s to 15"s 

Reference 

Slawyk and 
Collos (1982) 
Kanda et al. (1985) 
Kanda et al. (1985) 
Le Bouteiller (1986) 
Le Bouteiller (1986) 
Sahlsten (1987) 

Murray et al. (1989) 
Murray et al. (1989) 
Murray et al. (1989) 
Murray et al. (1989) 
Harrison (1990) 

Harrison (1990) 

Knauer et al. (1990) 

Dugdale et al. (1992) 

Dugdale et al. (1992) 
Dugdale et al. (1992) 
Dugdale et al. (1992) 
Dugdale et al. (1992) 
Peria et al. (1992) 
Peña et al. (1992) 
Peña et al. (1992) 
Peña et al. (1992) 

Incubation 
~~ 

Methods f-ratio 

SIS 

SIS 

IS 

SIS 

IS 

IS 

SIS 

IS 

SIS 

SIS 

15N0315NH4 

15N0315NH4 
14c 
I4c ' s ~ ~ 3  

1 4 ~ 1 5 ~ 0 ~  

0.02- 
0.20 
0.11 

0.05- 
0.25 
O. 14 

0.29 
0.22 
0.24 
O. 17 

0.28 
0.43- 
0.84 
0.11- 
O .  16 

0.06 
0.13 
0.24 
0.13 
0.07 

0.22 
0.39 
0.09 

0.07- 

Q 

number of data from the Vertex time-series site. At 
15o"W, Dugdale et al. (1992) also found general consis- 
tent agreement between total production values com- 
puted from I5N and I4C measurements, except south of 
10"s where "f" values calculated with Equation (2) were 
about four times higher than values calculated with 
Equation (1). This observation probably results from 
very low primary production values estimated with the 
I4C method from 10"s to 15"S, as confirmed by other 
recent I4C results (Barber and Chavez, 1991) in similar 
conditions. Such an underestimation of the rate of 
primary production (14C method) evidenced by com- 
parison with the nitrogen production ("N method) 
measured simultaneously gives an example of common 
problems arising in primary productivity experiments. 
The interest in direct comparison between the results of 
two independent methods used in parallel is thus clearly 
demonstrated. Some experimental artifacts are difficult 
to put into evidence in the field studies. They are 
probably more frequent than generally thought. 

Most "f" values in Table 3 lie between 0.10 and 0.25, 
even when nitrate was present at the surface in the 
equatorial upwelling of both the Pacific and Atlantic 
Oceans. Dugdale et al. (1992) found an overall mean "f" 
factor of 0.17 at 15O"W (15"N to ISS),  which is in strong 

agreement with the median value calculated from all 
data reported in Table 3. This mean "f" = 0.17 seems to 
represent the typical magnitude of the tropical open 
ocean. Dugdale et al. (1992) observed the lowest "f" 
values in the nitrate-depleted waters (see their Fig. 3), 
but they did not find any clear relationship between "f" 
and the nitrate concentration in nutrient-rich waters. 
Similarly, neither "f" nor nitrate uptake were directly 
correlated to the nitrate concentration in the equatorial 
Atlantic, as long as ambient NO3 exceeded about 0.1pM 
(Le Bouteiller, 1986). By contrast, total primary pro- 
duction and new production were strongly correlated, 
and "f" varied as a function of the chlorophyll concen- 
tration (Fig. 1). These relationships suggest that in the 
tropical open ocean, factors controlling the chlorophyll 
concentration are more important to consider for inter- 
preting results of C and N production measurements 
than the NO3 concentration. Chlorophyll, size, and 
composition of phytoplankton are related. In the equa- 
torial Atlantic, Le Bouteiller and Herbland (1984) have 
shown that in waters containing 1 mg m-' of total 
chlorophyll a,  about 50% of chlorophyll belonged to 
organisms passing through a 3ym filter, and the percent- 
age approximated 75% in oligotrophic waters. In addi- 
tion, in stratified tropical situations, the euphotic zone 
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Figure 1. (a) Primary production ('*e) vs "N-N03 uptake. Results from four studies at the fixed position O" 4"W in the Atlantic 
Ocean; 24 days of in situ incubations (11 h) from dawn to dusk. CIPREA 4 cruise: all data (n = 41) are represented by only one 
point (mean k SD). Data from nitrate-poor waters (NO3 <1 ,UM) were excluded. Redrawn from Le Bouteiller (1986). (b) f-ratio 
(%) vs chlorophyll a. Same data set as in Figure 1 (a), including data from nitrate-depleted waters. 

was found to  be divided into two parts: an upper nitrate- 
depleted layer in which cyanobacteria were always nu- 
merically predominant, closely linked with chorophyll n 
in the <1 ,um fraction which accounted for 60% of total 
chorophyll n on  average; a lower nutrient-rich layer in 
which chlorophyll >1 ,um dominated, belonging mainly 
to eukaryotic microalgae (Le Bouteiller et al . ,  1992). 
Size fractionation experiments have suggested that pico- 
phytoplankton have a preference for ammonium and the 
larger cells a preference for nitrate (Le Bouteiller, 
1986). As a consequence, the new production ratio "f" 
would b e  directly related to  the relative abundance of 
large cells able to take up  nitrate (Fig. l b ) ,  and the 
chlorophyll concentration would reflect the size struc- 
ture of phytoplankton. 

Field data (Table 2) show than on average, pC/pN 
actually equals CIN assessed in phytoplankton (Table 
1). If we suppose that the assimilation ratio is indeed 6.6 
in most regions, then many data in Table 2 show that C 
production is up to  twice N production or,  inversely, 
four t o  five times lower than N production. Over- or 
underestimation of C o r  N production would be the 
cause of such great discrepancies. Further measure- 
ments of total C and N uptake rates are needed in the 
future in order to reduce such uncertainty and to  enable 
calculation of N uptake from C production measure- 
ments. The  number of nitrogenous sources taken up by 
phytoplankton, the necessity to  obtain reliable data of 
NH4 and urea concentrations in sea water (McCarthy, 
1980, 1981), the correction of isotope dilution in 15N- 
NH4 and 15N-urea utilization, and the conversion of 
short-term incubation measurements to daytime N 
assimilation, are some of the main difficulties t o  resolve 

in total N production estimation. Although never really 
simple, total production seems nevertheless muclí easier 
t o  obtain in terms of carbon than nitrogen. W h e n  the C/ 
N assimilation ratio of phytoplankton is known in a 
system, then the simplest way to  obtain "f" lies in 
measuring new production by the I5N method and total 
production by the 14C or  the 13C method. 
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