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An "oriented-object" computer construction of deforming 
fractal soil structures. Determination of their water properties 

E. Perrier, C. Mullon, M. Rieu and G. de Marsily 

Abstract: In order to study relationships between soil water properties and soil structural 
properties, a computer micro-model of soil is constructed. In this paper, we present fust a 
general building method of a porous structure, including both pores and grains, with 
different levels of aggregation resulting fiom a fragmentation process. A fractal structure is 
obtained when self-similarity is imposed over the successive scales of fragmentation. 
Emphasis is put upon the modeling of the retention curve. A classical capillary model and 
methods coming from the percolation theory enable us to simulate qualitatively the 
primary and secondary loops of the well-known hysteresis of this curve. In the fractal case, 
theoretical analytical expressions proposed for adjusting retention data are tested. 
The unsaturated hydraulic conductivity is also calculated on the Same simulated soil, by 
analogy with an electrical network. 
On the other hand, our structures are deformable and simulation proves to be a useful tool 
to investigate the behavior of swelling soils. 

1 .  Introduction 

The knowledge of the specific hydraulic behavior of a given soil is needed for the 
purpose of modeling water transport in the unsaturated zone. The soil water properties, 
mainly the retention and conductivity curves are usually determined under controlled flow 
experiments either in the laboratory or in the field. It is an old dream among soil scientists 
to relate directly these water properties to structural properties which could be obtained 
more easily on dry soil samples. 
Numerous attempts have been made to find either statistical relationships or deterministic 
links between structural data and water properties. We are interested in this paper in the 
deterministic approach. 
Research has been done (Arya&Paris 1981, Haverkampf&Parlange 1986, Tyler& 
Wheatcraft 1989/1992) to link water properties to the particle-size distribution of a soil, 
which is structural information that is easily and widely obtained through mechanical 
sieving.The texture models that define the soil from matrix properties such as grain 
diameter or grain shape (e.g the spheres models) view the solid phase as a set of discrete 
grains and the void phase as a continuum. The complex geometry of the remaining void 
space makes the analysis of flow too difficult unless one works at the Navier-Stockes 
scale (periodic grain patterns for analytical work or any pattern but only a few grains in 
lattice gas simulations). At the pore scale, we have to partition the pore space in a set of 
simple geomerrical parts, such as cylinders or parallepipeds, in order to use integrated 
forms of fluids properties. So a common approach consists in inventing a pore space 
model with simple geometry that could be associated to the particle distribution . For 
example, Arya & Paris'associated a tube to each panicle-size class and treated the pore 
space as a bundle of capillary tubes. But in order to obtain good agreement between 
calculated and observed retention data, they needed to add an empirical fitting parameter. 
It's clear that water flows through the voids of the soil, and transport properties are 
induced by the pore geometry. So the point there is to find how a pore distribution car) be 
related to a given particle distribution. G 
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On the other hand, many authors based their modeling approach directly upon the pore 
distribution. The solid phase is viewed as a continuum, cut through by a set of discrete 
pores and its geometry is considered to be irrelevant to flow transport. Generalizing the 
bundle of tubes associated to distinct pore-size classes to a continuous pore distribution, 
Mualem (1974,1976) predicts retention and conductivity curves by integration of the 
pore-size distribution density function while others (Thirriot 1981/1982, Billotte1986) 
deal with inter-connected tubes in a probabilistic manner. But use of computer has soon 
allowed to simulate the soil porosity by a network of tubes which represents more closely 
real porous media patt,  1956) than the oversimplified bundle and takes account of the 
topology of the pore space. Thereafter, considerable work has been done on pore or 
fracture networks (Chatzis&Dullien 1982, Lenormand 1986, Charlaix 1987, Billaux 
1990, DaiankSaliba 1991) within the general framework of the theory of percolation in 
disordered networks. 
Anyway, if we want to use a network model on a real soil, we have to know which pore 
distribution to enter in the model. We can choose the distribution resulting fi-om image 
analysis or mercury porosimemy measurements, that is mainly estimates of the pore 
distribution in a dry soil sample. But a lot of soils are more or less de5ormable: Even 
without any mechanical constraints, the grain packing changes with moisture state; the 
pore network evolves, while the particle distribu tion remains unchanged. Deformability is 
usually neglected in standard modeling. On the contrary, we believe that better 
knowledge of the structural organization of the soil can be deduced from precise 
deformability measurements. So the point here is to find how we can obtain reliable 
information about the effective pore size distribution. 

2 .  Construction of soil structures. 

Our approach is based on a new approach in computer science, where the concept of 
"simulated reality" is popular. We construct samples of soil structures in order to study 
their soil water properties."Such simulations are based on the canstruction of 
microworlds where particular hypothesis can be explored, by controlling and repeating 
experiments in the similar way as real experiments are performed in a real 
laboratory."(Ferber&al, 199 1) 

We intend to build a complete porous structure which could take into account both solid 
and void phases at the microscopic scale: our construction will be a structured set of 
individual grains and pores; two main characteristics of the structure will be a particle-size 
distribution (PSD) and a pore size-distribution (psd). 
We are particulary interested in the behavior of swelling soils where shrinking and 
swelling phenomenons occur with variations in moisture content: we will define 
deformable convex areas representing aggregates of grains to manipulate isotropic 
deformations. 
We work here in 2 dimensions; surfaces represent volumes and are extrapolated to 3 
dimension by means of calculus when numerical results are needed. 

2 . 1  Construction on one level of fragmentation.The sample of studied soil is 
represented by a polygonal area Ao, generally a square. A fragmentation process is 
simulated: a set of initial points (fragmentation seeds) is generated inside AO. Then a 
space partition is realized to split AO into polygonal zones surrounding each point (Fig 1): 
the polygonal area P associated with a point M is the set of points whose nearest seed 
point is M (Fig 2a). The algorithm is named a "voronoi tesselation" and consists in a 
rather complicated determination of successive perpendicular bissectors between 2 points 
next to each other. We obtain an irregulai grid which is the invariant skeleton of the 
structure (Fig 1 and Fig 2a). 
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A Voronoi tesselation with a specific set of initial p a d s .  

Any initial set of points is possible. The "random" case reported in this paper refers to a 
set of points generated with uniformly distributed co-ordinates. 

., " . .  

P 

(a) (b) 
Fig2: A tesselation with a random initial set of points. 

(a)Structure skeleton (b)Pores and grains. 

Then we create a porous structure and a given porosity by means of an homothetic 
reduction H(G,k) of each initiating zone P (Fig 2 b): k is a number less than 1 and G is 
the center of gravity of the convex polygon P (If P is located on the outer edge of AO, 
then G is displaced onto the outer face of P to avoid edge effects). The reduced polygon 
represents a grain; the opening between two grains represents a pore. 
One component of the model is an irregular pore network which yields the geometrical 
constraints imposed by the space partition into either solid or void objects. 
The particle and pore surfaces are calculated for each grain or particle and summed within 
any size class (Fig 3). 
An undeformable porous structure is defined by a skeleton and a homothetic ratio k.With 
a same value k for each polygon P, the PSD is proportional to the initial distribution of 
the polygonal zones and is entirely determined by the choice of the initial points. One 
single psd is associated to the particle distribution . 
We can also construct other distributions by choosing an individual homothetic ratib kj 
for each polygon Pj in a statistical number distribution . 
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Fig 3: A single homothetic ratio k on a random structure: PSD and associated psd 

2 .2  Construction on several levels of fragmentation . 
Real soils and particularly ag,qregated soils have often been described as porous media 
structured on different organization scales (Kutilek, present colloquim, 1992). For 
example, several authors (Van Genuchten, Gerke, present colloquium,1992) work on 
soils presenting only "a dual porosity" on two levels. 
The process described above can be repeated on successive levels of fragmentation. What 
we have called grains so far will represent now microporous aggregates that are divided 
into smaller aggregates. Once a set of points has been generated in the initial zone Ao 
which fragmented into N i  smaller zones Ai, a new set of points is generated within each 
zone A1 which determines a partition of A1 into N2 smaller zones A2 and so on up to the 
ultimate level n of fragmentation . A new type of structure skeleton is obtained( Fig4a) 
Each zone Ai is divided into Ni+l zones Ai+l. Embedded aggregates of grains and pores 
are created in the same way: at each level i an homothetic transformation H(Gi,ki) is 
applied on the zone Ai with a given ratio ki from the center of gravity Gi of Ai. The 
number Ni of sub-aggregates and the ki reduction ratio can have any relevant values. 

Fig 4: (a)Same' structure skeleton. n=3. Nl=NZ=N3=N=S. 
(b)Porous structure with kl=k2=l,k3=0.911 (ko= 1 )  

(c)Porous structure with kl=k2=k3=K=0.98 (kg= 1 )  

A rigid porous structure is defined by a skeleton and a set (kl,k2, ... ki ,...:kn) of 
homothetic ratios, where the subscript i refers to the fragmentation level. However, intra- 
variability of ki within any level i can be introduced. 



Different models of soil structures corresponding to different types of aggregation in soils 
can be associated to the same PSD (Fig 4a and 4b). Different clustering patterns are 
simulated with the process of packing (ki<l) or non-packing (ki=l) into aggregates of 
level i and lead to different psd (Fig 5b and 5c). 
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(a) PSD (b) PSdl (cl psd2 

Fig 5: Same PSD and 2 possible associated psdl (cf Fig 4.b) and psd2 (cf Fig 4-12) 

2 .3  Fractal structures. Fractal geometry has appeared to be a good tool for 
describing many porous media (Pfeifer&Avnir 1983, Degennes 1985, Katz&Thompson 
1985, Jullien&Botet 1986, Friesen&Mikula 1987, Delannay&al 1989) and particularly 
soil structures (Tyler&Wheatcraft, 1989,1990,1992, Toledo&al 1990, Ahl&Niemeyer 
1989/1991, Bartolikal 1991, Young&Crawford 1991, Rieu&Sposito 1991). Rieu 
andsposito described the observed similarity in the different organization levels of 
structured soils by means of a fractal model. In our construction, self-similarity can be 
produced (on average) by a constant number N of sub-aggregates "children" and the 
same homothetic ratio K for all the homothetic transformations on any aggregate at any 
level. The simulated porous structure is then a statistical realization of the theoretical 
fractal fragmented porous media proposed by these authors. According to the definition 
of the fractal dimension from self-similarity of a set of objects, the fractal dimension of 
the 3-dimensional soil corresponding to our simulated plane structure is D = 
3LogN/(LogN-2LogK). Figure 4c shows an example where D= 2.943 (N=8, K a . 9 8  )- 

,yw 

, 

2.4 Deformability This rather complex structure (see Appendix 1) has been 
imagined to enable the simulation.of dynamic deformations. 
The figures 4.b and 4.c depicted two types of aggregation in different soils. They can 
also represent two stages of aggregation in the same soil at two distinct times t l  and t2. 
For example, (b) could represent an opening state of a wet soil structure while (c) would 
represent the cracks after a drying process in a swelling soil. 
An opening state of a deformable porous structure at time t is defined by an invariant 
skeleton and a set (ki(t))i=O...n of variable homothetic ratios. 
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muIs O f g n r i l y  

Fig 6:Fragmentation hierachy and successiv ' e  homothetic transformations \ 
9 
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Let us recall that the skeleton occupies a total surface Ao and is made of zones Aij at each 
level of fragmentation i. 
For a given opening state of the structure, the grain associated to any zone Anj is a 
homothetic replicate of Anj and its surface is (ko(t)kl(t) ...ki(t)..kn(t))2 surface(Anj) (cf 
Fig 6). The only condition for realistic deformation is that the grains remained 

unchanged, that is: Iln=J-J(ki(t)>’ must be independant of t. 

Let us name Si the total surface of aggregates of level i, Sn the total surface of the 
grains. 
Sn=~lInsurface(Anj)=IlnCsurface(Anj)=IIn Ao. 

In the same manner, 

Si=n(kj(t))2 AO=Ifi AO, 

and the total suface So of the whole simulated sample is (ko(t))2*ApIIo AO. 

i=n 

i=O 

j j 

j= i 

j=O 

So (representing the measurable macrosocopic volume ) can vary: the parameter ko was 
set to 1 for rigid structures; it can now take different values in swelling or shrinking soils. 
Sn (representing the volume of the solid phase ) must be constant. 
Si can have any value so long as aggregates don’t overlap. 
Hence, for the same PSD, multiple opening states of the structure can be simulated. 

3 .  Simulation of the retention curve 

3 .1  Principle: A first component of the structure is a set of simple pores and the 
pore size distribution. The pores of our model are channels representing sections of 3-D 
fractures. We use a simple capillary model for interpreting the repartition of two non- 
miscible fluids in a porous media (the wetting fluid is here water while the non-wetting 
fluid is air), postulating Laplace’s law to be valid throughout the whole pore distribution 
range in the following simplified manner: 
for a given capillary pressure h and the corresponding equilibrium state, 
A pore p is filled with water (resp air ) 

where a is a constant which could be calculated from the liquid-solid contact angle and 
the liquid-vapor surface tension of water. 
It is then easy to calculate a moisture content related to any pressure h by means of the 
pore distribution. At any given capillary pressure h, the water content is equal to the sum 
of the volumes of all the pores of aperture lower than r. The pore volume is calculated 
from pore surface as explained in Appendix 2. The capillary retention curve so obtained 
is named “reference curve“. 
A second component of the structure is a pore spatial distribution on a pore network. 
The simulation of the invasion of a fluid in an interconnected pore network introduces a 
new idea:for the invading fluid to penetrate a pore, this pore must be reachable, that is 
connected to the supply faces. A connectivity condition is added: 
A pore p may be filled with water (resp. air) 

. 

if its aperture is less than r=al h (resp more than r=cd h). (Condition I )  

if it is connected to the supply face through a continuous path of water (resp-air) 
(Conditibn 2) 



3 . 2  Description 

Fig 7: Invasion of water in a dry soil 

For example, let us consider a square sample of entirely dry porous medium. Let us 
suppose that water is brought on the upper edge 
We simulate successive pressure equilibrium states. For high pressure, water will fust 
penetrate the narrowest pores but only those which are connected to the upper edge 
through a continuous supply path of water (Fig 7a). A capillary pressure decrease 
indicates that larger pores are filled with water, and the more pores are filled the more the 
invading fluid gains access to other pores (Fig 7b). 

Fig 8: Invasion of ait in a water-saturated soil . 

The invasion of air in a medium initially saturated with water is simulated in the same 
way. %Air flows first through the broadest pores, then through narrower pores with 
increasing pressure (Fig 8). 

3 . 3  Simulation of the hysteresis of the retention curve. 

refierce cuve 

, 0.00 0.05 0.10 0.15 0.20 0.25 030 0.35 

-Fig 9: Hysteresis of the retention curve on a random structure 

i 
‘I 
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The connectivity condition yielded by the simulation of what is known as an "invasion 
percolation process on  a network" (conditions 1 and 2) appears to be strong enough to 
result in the simulation of the well-known hysteresis of the capillary pressure versus 
water content relationShip.The drainage and imbibition simulated curves are respectively 
located above and under the calculated reference curve as shown on figure 9. 

Fig 10: Invasion of water in a half-saturated medium. 

If the simulation is applied to a variably saturated initial medium (Fig lo), the secondary 
hysteretic loops are reproduced too (Fig 1 l), in the same way. The connectivity condition 
2 remains the same but its application requires an improved algorithm (a list of nodes 
must be used because usual progression of the invasion front from neighbors to 
neighbors no longer works) 

pressure 

3000 f i drainage 

O 
i 
35% 

imbibition 

water content 

Fig 11: Simulation of the primary and secondary hysteresic loops. 

The simulation principle reported here has often been used: different simulated drainage 
and imbibition curves have already been reported, but we are not aware neither of direct 
comparison between these two cuves nor of the simulation of the secondary loops in the 
field of network modeling. Golden (1980) published a paper to show that the 
phenomenon of hysteresis (primary&secondary) can be derived mathematically from 
percolation theory applied on simple pore networks models. We check this qualitative 
theoretical result in any case. But, by actually simulating the shape of the loops, we 
obtain additional information. Later in the present paper, we will see special 
configurations where the loops join together and hysteresis disappears. 

3 . 4  Simulation of the retention curve in fractal structures. The spatial 
repartition of the pores in the fractal construction implies that there is no problem of 
accessibility during the drainage phase. The hysteresis is mainly due to the imbibition 
curve (Fig 12). 
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O 0.15 0.30 

Fig 12: Retention curves in a fractal structure 

Let us build a fractal soil structure with a given fractal dimension Dkf. 
The simulation of successive equilibrium moisture states, produces simulated capillary 
drainage pressure data that fit quite well the theoretical analytical expression (1) proposed 
for modeling the pressure/water content (h,w) relationship in fragmented fractal soils 
(Rieu&Sposito 199 1) : 

(w water content, h capillary pressure) 
On the other hand, the value of D derived from this adjustment is quite close to Ddef, 
which confirms that we succeeded in the construction of a statistical realization of the 
theoretical perfect fractal model which was illustrated by cubic particles of single size. 

(1) w(h) = D-3 +wsat -1 

Ddef =2.95. D=2.94 (R=0.999/99pts). D’=2.17(R=O.951/99pt). 

Fig 13: A fractal structure (n=3.N=lO.K=0.97) \ 

Log h / Log w plots of simulated data fitted to expressions (2) and (1) il 



264 

The classic Brooks & Corey analytical expression (2) provides rather bad adjustments 
which suggest that this model may not be accurate for such fractal soils. 

Other authors (Tyler&Wheatcraft 1990, AhBNiemeyer 199 1) propose a different fractal 
soil model and derive a fractal dimension D' from expression (2) with D'=h+3. We show 
that these two methods used for the determination of the fractal dimension from the 
retention curve are not equivalent at all (Fig 13) and lead to quite different fractal values 
on the same soil structure. 

(2) w(h)/wsat = h 

4 .  Simulation of Deformation. 

4.1 Experimental data. An experimental device was developed by Braudeau 
(1988) to carry out on-line deformation measurements on drying structured soil cores. 
The device perfonns macroscopic linear measurements and deformation is assumed to be 
isotropic. A lot of characteristic shrinkage curves (Fig 14) relating the bulk core volume 
to the water content are easily obtained. 
Volume (cm3/g) 

From C on, the macropor 
is empty of water 

linear skrinkage phase of the micro-porosity: slope Krcl 

air-entry into the micro-porosity 

water content (cm3/g) 

Fig 14: Typical experimental skrinkage curve of a ferrallitic soil and its main transition 
points interpreted by Braudeau's model 

Different assumptions have been made to simulate the shrinking behavior of a soil. They 
are being tested to find what consequences they have on the soil water properties. 

4.2  Principle.We again simulate successive equilibrium pressure states. But a 
variation in capillary pressure does not only imply a modification of the water content but 
also a possible variation in volume. 
The simulation works in alternate phases of deformation then repartition of the fluids in 
the deformed structure. Each simulation step corresponds to a given pressure and is 
divided into two parts: 
Firstphme of geometrical dejonnation of the structlve: 
If a condition for deformation have been fulfiiled, the new opening state of the structure 
is calculated. Let us recall that an opening state of the structure is defined by a list of 
ratios (kO(t),kl (t),... 7ki(t),..7kn(t>>. 
In this paragraph, the total surface Si of aggregates of level i (cf 2.4) will be'called 
volume Vi for reasons of better understanding but experimental data are linear 

\ 
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deformations that can be entered in 2-D simulations, assuming isotropy. If variations 
(AVO ,...,AVi,...,AVn) are imposed on the open structure, the new state vector after 
deformation (ko(t+l) ,... ,ki(t+l> ..., k'n(t+l)) is easily calulated from the state vector 
(kg(t), ..., ki(t),..,kn(t)) before deformation. The calculation is done from top level O to 
bottom level n in a recunent manner. 
The main assumption is that the filling state of the pores remains unchanged during the 
deformation phase. 

Second simulation phase of re-equibibration of the filling state of the structure: 
Then the filling or emptying of those pores which fulfill both conditions 1 and 2 is 
simulated as previously. 
After each simulation step, graphics are redisplayed, and slainking (or swelling) soils can 
be seen respiring while filling or emptying with water. 

4 . 3  Simulations: The different scenarii of deformation consist i n  choosing 
(AVO, ..., Avi, ..., AVn) according to various assumptions and conditions. A variation 
AVO of Vo expresses a measurable macrosocopic volume change. If the last stage of 
fragmentation n represents the grain scale as assumed until now AVn=O (simulation 1). Lf 
n does not represent the actual last stage of fragmentation, but the last simulated stage, the 
aggregates of last level n represent microporous black boxes whose volume can vary 
(simulation 2). The following examples were simulated on the same skeleton (n=3, 
N=10) of the particular fractal structure shown on figure 13. 

Sidat ion  I :  
According to experimental data, a given law of macroscopic volume change related to 
total water content (Fig 14) is imposed. So AVO is known at each simulation step. And 
AVn must be zero. On the other levels of aggregation any variation of volume can be 
chosen, so long as the particles do not overlap. In the case of figure 15, we assumed that 
Avi=( 1 -i/n)AVo. 

Volme % 
100 

0.1 s watercontent 0.00 0.05 0.1 o 

' Fig 15: Simulation1:skrinkage curve imposed and compared retention curves 
~ 

P 
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Simulation 2: 
Braudeau( 1988) proposed a model for interpreting shrinkage curves. He defines a dual 
porosity i n  soils, the intra-aggregates microporosity and the inter-aggregates 
macroporosity. From the point C to the end of the drying (Fig 14), the deformation 
would be entirely due to the microporosity of clayey aggregates whose elementary 
shrinking behavior follows that of pure clay (Fig 16): they sEaink and remain saturated 
with water until the point B where air begins to enter them. To simulate this 
phenomenon, we achieve an incomplete hgmentation and the aggegates obtained on the 
last simulated level of fragmentation represent the clayey aggregates. 

Fig 16: Shrinkage curve of a pure clay (Sposito, 1976) 

We introduce their elementary behaviors in the simulation of the drainage of the macro- 
porosity. Let us name w,i, the water content in the microporosity (into the black boxes) 
and add it to the simulated water content in the macroporosity. The drainage of the 
microporosity follows a theoretical law h(wdao). On the last level n, AVn=f(AWmicro) is 
according to figure 16. For the local deformations to be transmitted through the different 
scales of aggregation, one assumption may be: AVi=Kr("-yn)AVn, where Kr is the main 
parameter of the experimental curve (Fig 14). Thus AVO=KrAVn and Kr expresses the 
proportion of microscopic changes which are felt at the macroscopic level. 
For the simulation to reproduce the part E-C of the shrinkage curve, where at the same 
time, the drainage of the macroporosity is simulated and the drainage of the microporosity 
is calculated, we assumed a quasi-linear h(WmiCr0) law . 

Volume 90 

1C 

/retention m e  related to h e  
macroporosity. withour shrinkage 

5 

retention curve 
during skhkage 

0.00 0.05 0.10 0.15 0.20 OZ 0.30 0.35 0.40 0.45 0.50 water content 

Fig 17: Simulation 2. Skrinkage curve and retention curve compared to the retgention 
curv,e of the macroporosity without deformation 
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Boivin (1990) performed simultaneously retention measurements and shrinkage 
measurements. He showed that the data (obtained only during the first part of the drying 
process) did not fit the classical Van Genuchten model (1980) except if the pressure is 
plotted against the water content in the only macroporosity. The deformation simulated 
here modifies the retention curve in a similar way. 
Whatever the assumptions are, the main result is a different psd between the wet and dry 
states. Simulation 1 leads to pores of reduced sizes in the dry soil, but the shape of those 
two psds are similar(Fig 19), because the deformation is uniformly distributed across the 
different levels of the structure. 

. 

28 962 1 263 1 210 

(c) psd in the dry stak. @) psd in the wet sate 
(4 B D  

Fig 19: Simulation 1. Invariant PSD (a); psd before (b) and after (c) shrinkage 

Simulation 2 exhibits only the modifications of the macro-pore system (Fig 20) whose 
volume increased because the micropores shrank more internally than the whole soil did. 
The PSDs of the figures 19a, 20a and 20b refer to the same skeleton: thus they have 
exactly the same shape. 

I 

n 

10 10 

O o 

(a)  PSD in the wet state (c) psi in the w a  state 

I89 
(b) PSD in the dry state 

2 
(d) psd in the dry state 

566 

Fig 20: Simulation 2. Aggregate size distribution before (a) and after (b) shrinkage; 
psd before (a) and after (b) shrinkage 

If experimental measurements were available, comparisons between dry and wet psds 
would allow to discriminate among the different possible assumptions made in the 
interpretation of the shrinkage process. 
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5 Simulation of the Conductivity curve 

5 . 1  Principle: The unsaturated hydraulic conductivity of the soil model is calculated 
by analogy with electrical transport. Each pore has an elementary hydraulic "resistance" 
varying as a power law of its aperture (In a fracture of aperture r and length 1, the flow is 
proportionna1 to r3/l, according to the analog of Poiseuille law). At a given moisture 
content, if a pressure gradient is imposed between two opposite sides (Fig 21), water 
flows through the subnetwork of pores filled with water and connected both to the inlet 
and the outlet of the sample. The sum of the local flows at each internal node 'must be 
zero. This condition leads to a linear system to solve, imposing a precise potential at each 
point. The macroscopic equivalent resistance or hydraulic conductance is then derived. 

pressure gradient 
between top and 
bonon sides 

sum of entering 
and Leaving flows 
null ai Bach node 

No-flow condition on 
left and right 
boundaries 

Fig 21: Method: Kirchoff network 

5.2. First results: The results match a correct exponential shape above the 
"breakthrough" of water as shown on Figure 22. 

'L O0 0.10 0.20 
water ConIfnt  

Fig 22: Simulated conductivity curve in imbibition on the soil structure of Figure 4.b 

But,without any calculus, it is clear that this capillary conductivity is zero so long as no 
continous path of water links the two opposite sides . Hence, on the random network, it 
is so under the percolation threshold for entering water, that is for low and medium water 
content. On the fractal structure, it is worse, because the belts of large pores surrounding 
the thin intra-aggregates pores prevent water from flowing except in saturated soils! 
Moreover, deformation emphasizes this problem with the formation of cracks in drying 
seih as shown on Figure 23. 
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Fig 23: The surface of a vertic soil, drying (Photograph from N o h h  Senegal) 

The problem is: How do micropores embedded into aggregates exchange water when the 
larger pores are empty? 
5.3 Multiple plane realizations: Going on with a simple capillary model and 
neglecting diffusion in the vapor phase and thin films of water on the surface of the 
grains, we tried to improve the topological structure of our constructions.We supposed 
that some transversal connections and brigdes between aggregates could exist in 3-D 
structures and performed several independant plane realizations linked by channels of 
variable aperture (Fig 24). A bijection is established from one node to its closer one in the 
following plane. Each node is connected to 3 neighbors in its own plane and to an other 
one in the next plane. In a two-planes realization, if two associated nodes are linked by an 
additional pore, 4 pores intersect in the same point ("coordinance" 4). If a virtual direct 
association is performed between two associated nodes, 6 pores intersect in the same 
place ("coordinance" 6). Multiple variants have been tested, which lead to analogs of 
square, or hexa-triangular networks while we delt with analogs to hexagonal networks in 
a single plane. 

I Xnodes -= Bijection !i, ., Xnodes 

Fig 24: Bijection from node to node between 2 independant plane realizations. 
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A better connectivity is established and the shape of the conductivity curve is plausible 
(Fig 25). 

-0.f 

hysnarsir of tbc 
omductivity c u m  

coordinrnœ 6 

i t y m i n  
tion pbrrc. 
a 4  

0.- 0.0s 0.10 8.00 0.00 0.10 

Min mntcnt @) anin conlcnt (1) 

Fig 25: 2 planes. Result on a "fractal networkn 
(a)Simulated hydraulic conductivity versus water content: a slight hysteresis 

(b)Almost no more hysteresis for the retention curve 

But the more the coordinance of the pore network increases, the more the percolat,m 
threshold decreases, and when conductivity predictions are improved, the hysteresis of 
the pressure curve disappears. In the literature about classical random networks, we have 
not seen up to now conductivity curves and retention curves simulated on the same model 
both in drainage and imhibition and we do not yet know if our results can be generalized. 

6 .  Conclusions 

We show that the knowledge of the pore-size distribution is not enough to determine the 
water properties which are strongly dependent on the connectivity of the pore network. 
The spatial repartition of the pores which is linked to the particle aggregation state is the 
clue for both a good prediction of the hysteresis of the retention curve and an accurate 
prediction of conductivity. The fractal size distribution of the pore space may have been 
validated by the retention data in experimental studies, but the spatial repartition of this 
distribution remains an open question that must be clarified in order to predict realistic 
conductivity data.We are working at the moment on anisotropic fractal structures, where 
a modified aggregation process should allow for preferential flows of water at any water 
content while preserving the properties of the retention curve. 

In this paper only construction algorithms and simulation principles are presented. On our 
simulated soil micro-model, we can easily "measure" at the same moment the main 
parameters of the structure and theoretical water properties. The results must be coherent 
or the model must be improved. 
The choice of various initial distributions of particles, and the multiple ways to aggregate 
them can represent a large range of real soils. It is now possible to take into account the 
deformability that can bring new informations on the soil structure. These numerous 
possibilities have not yet been fully explored. 
We aimed at developing an 'interactive and comprehensive computer tool for manipulating 
concepts on a simulated soil, and for testing previous theoretical models as well as new 
ideas. 
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APPENDIX 1: An insight into the computational "oriented-object" construction: 
First of all, let us mention that the programs are written in C t t  (oriented-objet version of the C programming 
language), use an Xwindow environment (oriented-object windowing system), and are implemented on a Sun 
Workstation. The program manipulates numerous computational entities (instancied from some generic classes) 
which record in the same location of computer memory their own def~ t ion ,  the knowledge of their spatial or 
relational environment and their own behavior when local or global variations occur in the system. The 
maximum of information is encapsulated into the objects' themselves to make the main program manage more 
easily complex situations. 
The "onented-object" modeling doesn't treat globally the reality but parts it into elementary functional 
components and is made easier by the use of appropriate programming languages. 
class definitions 

Fig 1: a) structure skeleton (n=2 levels. N=3 sub-aggregates at each level) 
b) objects manipulated by the program 

The main objects of the consmction are aggregata, pores, and nodes. Classes of objects are computational 
declarations where definitions as well as properties of these objects are recorded. 
An aggregate is defined as: - a polygonal zone defined by the partitioning process at any level of fragmentation. 
- an integer recording the level of fragmentation 
- pointers indicating which the parent aggregate is in the fragmentation hierarchy. 
- pointers refering to the neighboring aggregates within the parent - an homothetic ratio 
- deformation methods 
A node is defined as: 
- a point at the cross-section of lines in the structure skeleton 
- pointers refering to the neighboring nodes 
A pore is defined as: 
- the segment defmed by two neighboring nodes. 
- pointers towards all the aggregates zones whose reduction creates part of the total opening of the pore 
- method for calculating aperture and volume for each structure opening state 
- methods for modifying its water content \ 

e. 



Structure creation 
All these objects are created with dynamic allocation of the computer memory (16 M in o u  case) to allow for 
various configurations 
The structure skeleton is the main part of the construction 
The aggregates are created with the tesselation algorithm already mentioned and their neighbors within 
aggregates' parent are recorded at the same moment 
The nodes are the polygon vertices 'and a rather complicated algorithm looks for node neighbors across the 
successive levels (3 neighbors in the general case). 
The porous medium is the result of the simulation of a given "opening state" of the structure skeleton ;It is 
defined by a list of homothetic ratios (k0,kl. ... h). Its geometry is represented on the following figure. The 
surface of a pore is the sum of the surfaces of the trapeziums resulting from the different homothetic 
transformations and from the exact space partition. Each pore has a constant aperture over the main part of its 
length. 

three pores of constant 
apertures intersecting 
at a node 

Fig 2: Pore geometry 
Once the underlying program structure has been forgotten , the figures will only show an opening state of the 
structure as follows. 

Fig 3: An opening state of the structure skeleton of figure I 

APPENDIX 2 
How do we calculate the water content of any pore? We know the surface S%(p) of a pore p (expressed in 
percentage of the total simulated surface of soil); the corresponding volumetric water content V%(p) of this pore 
is equal to S%(p) if the fractures have an infinite extension in the third dimension, which isht simulated. But if 
we suppose that the fragmentation process is isotropic, the volumetric porosity is higher than the surfacic 
porosity. We have chosen the formula 

where 1/2S%(p) represents the percentage of porosity in each space direction and 1/2 S%(p)*S%@) represents 
the intersections that must not be taken into account twice. 
We work on representative sections of the porous soil . On random sections of a 3-D objet, another formula 
would have been V%@)=S%(p)2eThe results obtained with these two expressions are close to each other. 

V%@)=312 S%(p) - 1/2 (S%(p))2 
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