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SUMMARY

Altimetric measurements of sea-surface heights have long been used to locate
uncharted marine features. Newly available data sets (Geosat-GM, ERS-1 and
Topex/Poséidon), now allow the topography of submarine volcanoes to be
accurately restored and a method based upon inverse modelling is presented in this
paper. This method allows a joint assimilation of altimetric data and shipborne
profiles of bathymetry and/or gravity anomalies when available. Furthermore,
uncertainties can be computed together with the topography, which constitutes a
noticeable improvement since these parameters are still missing in the usual
bathymetric data bases. Tests are performed using simulated data, in order to
characterize the errors which may or must occur with the modelled topography of a
previously unknown volcano, in particular the errors due to data uncertainties and
the lack of precise knowledge of sensitive parameters that are used in the modelling.
These errors can be maintained under the 100 m level (yms) for altimetric data with
a measurement noise of 5 cm (rms) or less, which is achieved for Geosat, ERS-1 and
Topex/Poséidon altimeters. An example of inversion of Seasat data is presented in
the case of a seamount in French Polynesia.
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1 INTRODUCTION

Bathymetry represents a basic data set for a great variety of geophysical studies in the oceans of the World. It also plays an
important part in the economy, mainly in the evaluation and development of living and mineral resources as well as for marine
communication cables, submarine navigation and even for ships, since uncharted shallow edifices are still encountered.
However, in spite of the effort of many oceanographical institutions during the past decades, sea-floor topography is still very
poorly known in many oceanic areas. Moreover, the ship-track distribution is very unequal: most of them are located in the
Northern Hemisphere whereas in the Southern Hemisphere, most of the tracks run along the continental coastlines and
around the main islands. As a consequence, large portions of the Indian, South Pacific and South Altantic oceans remain
devoid of direct measurements. Recently, Vogt & Jung (1991) advocated an international effort to improve the current
bathymetry databases. When bathymetry is performed by oceanographic vessels, it is a very expensive and time-consuming
proposition. Even if the most recent techniques (Sea Mark and enlarged Seabeams) were used, it would take decades to cover
the entire sea-floor. Vogt & Jung thus proposed to incorporate all the geophysical data (hat can be converted into bathymetric
ones, such as shipborne gravity anomalies and geoid heights from satellite altimetry.

Gravity (in a large sense) has long been used for bathymetric purposes such as the detection and positioning of uncharted
structures (Lambeck & Coleman 1982; Lazarewicz & Schwank 1982; Sandwell 1984; Baudry 1988) or modelling of submarine
topographies (Dixon er al. 1983; Baudry, Diament & Albouy 1987; Baudry & Calmant 1991; Jung & Vogt 1992; Goodwillie &
Watts 1993). Most of these works were conducted in the Fourier Domain to convert geoid height profiles into bathymetric
profiles. This was mostly directed by the mathematical simplicity and by the way by the speed of the computations. The
drawbacks are: the profiles of data need to be regularly resampled; the spectra of the these data profiles have to be lowpass
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to be interpolated if 3-D maps are wished; the data set cannot be made with data of a different kind; and, last, that these
resulting bathymetric grids cannot be directly accompanied by any quality information. Baudry & Calmant (1991) went to step
further using a pair of Seasat tracks to precisely map the topography of a submarine volcano in French Polynesia, South Pacific.
They used the collocation method to get a grid of regularly spaced geoid heights from the Seasat tracks and Fourier
Transforms to convert these geoid heights into bathymetry. Their results show that the restitution of such a feature can be
achieved up to 90 per cent in depths and with less than 10 km of mispositioning. Besides, this was the first attempt to deal with
the question of the accuracy of interpolated values, an element that is dramatically lacking in the usual bathymetric data bases
such as DBDBS or SYNBAPS (Van Wickhouse 1973). Indeed, Vogt & Jung (1991) do not address this aspect of the
production of bathymetric data. In fact, the problem with errors in DBDBS that they report must not be construed as a
requirement to separate the right values from the wrong ones but as providing values with an associated uncertainty which may
take on continuous and variable values over the mapped area.

In the present paper, it is intended to test the representation of the topography of seamounts using a forward modelling
based on the discrete inverse theory (Menke 1984; Tarantola 1987). When using such a method, the data set may be comprised
of data of different types. These are basically altimetric measurements, to which shipborne profiles of bathymetry and/or
gravily anomalies may be incorporated when avajlable. With the inverse method, uncertainties linked to the modelled values of
seamount topography may also be produced. Unlike the previous works using Fourier Transforms, the spatial distribution of
the data is accounted for without the need for interpolation. The error budget of the data set, which moreover may differ from
one subset to another within data of the same type (for geoid heights from different satellites, for example), is also entered in
the modelling.

The relationship between seamount topography and bathymetric profiles is straightforward. As far as the gravity and geoid
data are concerned, there is no linear relationship between the seamount topography and the data. In this instance, the
solution is reached by using iteratively improved linearized forms of the exact relationship (quasi-Newton method). Moreover,
seamount topography is not the only density contrast represented in the data. The underlying upper lithosphere also presents
density contrasts, the gravity signature of which is superimposed upon that of the bathymetric feature. These lithospheric
density contrasts are due to the compensation of the bathymetric feature. Two models of compensation are used in the present
study: the regional compensation and the local compensation. In a context of regional compensation, the shape of the density
interfaces is modelled as the response to loading of a thin elastic plate. This model of shape is currently applied to intraplate
volcanoes that are emplaced on an old oceanic lithosphere (assumption of elastic behaviour of the upper lithosphere related to
the cooling whilst aging; McNutt & Menard 1978; Watts 1979; Cazenave et al. 1980; Watts & Ribe 1984; Calmant, Cazenave &
Francheteau 1990) or to volcanoes which emplaced recently (assumption of visocelastic behaviour of the upper lithosphere,
Lambeck & Nakiboglu 1980; Lambeck 1981a,b). The Airy model is used for the local compensation. It applies for either on
ridge volcanoes in the assumption of elastic behaviour or volcanoes that emplaced long ago with respect to the characteristic
time of relaxation in the assumption of visoelastic behaviour. The local compensation can also be used for modelling wide
structures such as marine plateaus (Black & McAdoo 1988) or elongated ridges of presumed continental core.

To test the capability of each type of data and of combinations of various types in resolving a scamount topography,
modellings are performed with synthetic data over a volcano of pre-defined topography and geophysical setting. The
uncertainties associated to the modelled values are also compared to the actual errors in order to see how relevant they are.

A case study is then presented in the modelling of the topography of a seamount in French Polynesia.

2 METHOD

The topographic heights of the sea-floor are computed as the least-squares solution for model parameters of a discrete inverse
problem. These model parameters consist in fact of different geophysical quantities according to the data type. For bathymetric
data, the topographic heights correspond to weighted averaged heights over a reference depth upon surface clements. When
gravity or geoid data are used, the modelled topographic heights correspond to the height of volumes based upon the surface
elements and forming a predefined density contrast with the surrounding seawater. The solution is constructed by a linear
combination of the data with optimal coefficients. These optimal coefficients are determined by the physical relationship
between each datum and each model parameter, including an iteratively adjusted model, a priori information on the model
parameters and are the description of the errors which affect the data (Tarantola 1987). b,(r), the modelled seamount
topography at location r and a posteriori value of the model parameters for the nth ileration, is given by:

b”(l‘) = bl)(r) + Crr'G:[Gucrr‘G?l"{_ Ess‘]—_l{dr(s) - g‘r[b()(r)] + Gn[bn-—l(r) - bu(r)]} (l)

where by(r) is the vector that contains the a priori values of the model parameters (seamount topography at location r) and
where b,_,(r) is the vector that contains the a posteriori values of the model parameters for the n~1th iteration. C,,. is the
covariance matrix of the a priori model-parameter errors. E,,. is the data-error covariance matrix. G,,, and its transpose G/ is
the matrix the elements of which are piven by a linear approximation of the data functionals g.(s). 7 refers to the data type,
7= ST stands for seamount topography, 7= GH for geoid heights undulations and 7= GA for gravity anomalics. d.(s) is the
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Table 1. List of symbols for the geophysical parameters.

NAME SYMBOL VALUE (SI units)
Gravity Constant : G 6.67 10-11
Earth parameters:

Earth radius a 6 378 103
Mean gravity ¥ 9.81
Lithospheric parametcrs:

Seafloor depth Rsf

depth of layer 2 / 3 Interface Ra/3

Moho depth Rm

volcano (load) density Py

density of infilling sediments Ps

density of crustal layer 2 P2

density of crustal layer 3 p3

mantle density Pm

Plate stiffness D

Flexural length o3

vector that contains the data values at locations s. The uncertainties associated with the model values are given by (Tarantola
1987):

o(r) =VC, (r=x") )
with C.,., the a posteriori covariance matrix of the model parameters given by:
CI"I" = Crr’ - Cl'r'GE[GNCrr’GZ\-/ + EA‘_\"]_IG}\'CW” (3)

where N is the last iteration, when convergence is achieved.

2.1 Data functionals and associated linear operators

The symbols standing for the geophysical parameters entering in the ongoing formulae throughout the paper are listed in Table
1. In this part, only the final form of algebraic expressions are given. Detailed developments are provided in the Appendices.

(a) Ship tracks of sea-floor topography

When the data and model parameters represent respectively sampled and interpolated values of the same geophysical function,
the functional is readily given by:

gor(s) = f () 5(s. 1) dr (@)

where §() is the Dirac impulse and S the interpolation domain. The corresponding linear operator is:
G(s,r, 7=ST)=5(s,1). , (5)

(b) Geoid heights and gravity anomalies

For the particular case of seamounts, lithospheric density contrasts (the shape of which is related to the height b(x) of the
structure) must be taken into account together with the density contrast between seawater and seamount. These contrasts of
density are defined relative to a reference layering of the upper oceanic lithsophere. For a regionally compensated structure
(flexural parameter o0, see Appendix 2), the lithospheric density contrasts are due to the elastic deflection w(r') of the
upper lithosphere under the weight of the volcano element of volume AQ(r)b(r) (see Fig. 1). In the case of a locally
compensated structure (flexural parameter « =0), a light root #(r) provides the isostatic equilibrium (see Appendix 2). The
data functionals relating the model parameters b(r) to a datum of geoid height or gravity anomaly are given by the classical
expressions of the gravity anomalies or geoid heights computed for a set of density interfaces defined on grid nodes. These are
reported in Appendices 3 and 4. These data functionals are not linear in b(r) (see Appendix 3). Iterative linear approximations
are thus performed to generate the linear operator G, in egs (2) and (3).
For a datum of geoid height, in the context of regional compensation and at the nth iteration, G,, is:

r b — p)RE -
G, (s,r,7=GH, a #0) =——A_Q(r){(pu _ p.‘,)u<Rv,f ) ? %) 2P o) LS A0() Kei (\/ﬁ le—r I)
¥ 2 ”(pm - ps)a.- LR @

11 r' ; i ) 1y '
hat [(P, - p2)”<R.\f + EA—;Q ’ l//rr') + (IJ2 - p3.)'f[ (RZ/‘j + le-(f—)_ s l]/rr') + (p3 - pm)” (Rm ,_}_,H__zlg_z b} l!’rr’):l} (6)
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I‘lgure 1. Geophysical setting. A volcano emplaced on the oceanic lithosphere deflects the upper layers of the lithosphere and generates lateral
.+ density contrasts with respect to the reference undeformed lithosphere. b(r) and w(r’) respectively stand for the seamount topography and the
- lithospheric deflection. Other symbols are listed in Table 1.

-

K %
VaZ+ R*—2aRcos i

(R, ) =

¥, is the angle between locations r and r' of model parameters. Kei () is the Kelvin—Bessel function.
. rr g p

For a datum of geoid height, in context of local compensation and at the nth iteration, G, is

G,(s.r, 7= GH, a = 0) = gm(r)(pu - p.)[“(R‘f T H( L ) “(R’" #2gs (r) ’ (ﬁ)] ®

I

For a datum of gravity anomaly, in context of regional compensatlon and at the nth iteration, G,, is

’ Gn(s’ r,T= GA} o 5 O) = TAQ(r){(pu - pw>‘l<R,yf o+ Il'-l( ) , l]/“‘> ( Pw Af 2 AQ(!‘ ) Kex (.\/‘ ll‘ l)

ﬂ(pm —Ps )CE r'eS

| with
(R, ) =

X [(Ps - Pz)”(Rsf ‘*‘&—.—21@ , l/’w) +(p2— Ps)”(Rz/s + ‘_Vn;zl(_‘il : ll'f"’) + <p3 - p”')"‘(R’” * Eﬁ:zl—(ﬂ ’ (/I""H} @)

(a = R)R?
VaZ+ R*=2aR cos §°

(10)

" For a datum of gravity anomaly, in context of local compensation and at the nth iteration, G,, is

v"‘-f‘G,l(S, r, 1= GA, o =0)=TAQ(r)(p, — p“,}[I!(RA‘.f +~'—':-1£r—)- P, > /'(Rm P "—l( R x,l/\,>:l (11)
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2.2 A priori information

A priori information has two components: a priori values for the model parameters and the covariance of the errors associated
with this prior solution. The a priori model values for the topography are set to zero. Thus, the covariance matrix of the a prioy
uncertainties should be that of the topography itself, consistently with the kriging/collocation formulations (Moritz 1978,
Journel 1989; Herzfeld 1992). Submarine volcanoes are too different in height and slope from onec another for a realistic
covariance functions to be arrived at on the basis of well-mapped volcanoes, and be used for the computation of the a prior
covariance of unknown features (non-stationarity). The use of various usual analytic covariance functions has thus been tested
(Gauss’s, exponenital, 2nd and 3rd Markov’s, Damped Cosine, Bessel’s, Hirvonen’s). After tries with all these, Hirvonen’s
function appears to be a good candidate since it has a null derivative at the origin, is ‘bell shaped’ and is robust and computed
at low CPU cost. This covariance function is given by:

5
o9
C..

" 1+ [lilrrr‘/Lc]z (12)

where L, is the correlation length (angular distance of half correlation) and o, the a priori uncertainty. The actual values of
these parameters are unknown. They can be approached by those given by the covariance function of the a posteriori
topography issued of a computation with test realistic values. The refined values (which may include a correlation length that
varies with azimuth, see Appendix 5), are further entered for a subsequent computation. The effect of the values selected for
the correlation length and the auto-covariance is discussed more extensively below within the simulations.

3 SIMULATIONS AND ERROR ANALYSIS

Simulations have been performed to quantify the errors in topography that results from the presented inverse modelling. These
errors can be generated by the linearization of the data functionals, the uncertainties associated with the data, the geometry of
the data sampling, the use of different a priori information and the approximate values used for the geophysical parameters
such as the plate stiffness and the volcano density. The data set used to perform the simulations is the following: a volcano
topography has been generated as a 0.4° long and 0.3° wide, 2km high bell-shaped surface at the centre of a 1.25°X 1.25°
surface. This surface is divided in 625 nodes (0.05° X 0.05° grid steps) and is set at the reference depth of 4500 m. It is displayed
in Fig. 2(a). Based on this topography, a geoid grid (Fig. 2b) and a gravity anomalies grid (Fig. 2c) have been computed. Table
2 gives the value of all the geophysical parameters used to compute these reference data sets. Value series have been extracted
from these grids to simulate satellite tracks for the geoid data and ship courses for the topography and gravity anomalies
(shaded bins in Fig. 2). To better simulate true data, some experiments have also been conducted with noise added to the
synthetic geoid, gravity anomalies and bathymetry, using a pseudo-random numbers generator. Scm, 10cm and 20 cm
additional white noise have been used for the geoid, 6 mGal and 15mGal for the gravity anomalies and 10m for the
bathymetry.

3.1 Errors due to the linear approximation of the data functionals

The errors in computed topography due to the linearization have been evaluated when the reference geoid and gravity anomaly
grids are used as input data (Fig. 3). When inverting the geoid grid, the extreme error is, after a few iterations, less than 20 m
and the rms is less than 2 m. As far as the gravity anomalies are concerned, the results are 40 m of maximum error and 5 m rms.
According to these results, the linearization does not introduce significant errors in the modelling. The results of the first
iteration step are those that a linear hypothesis (instead of iteratively linearizable) would have provided. One can see that in
this case, the errors remain significant since the rms error is greater than 30 m using geoid heights and 60 m using gravity
anomalies, and the maximum error is close to 400 m for geoid heights and more than 700 m for gravity anomalies. The fact that
the linearization induces more errors for gravity anomalies than the geoid heights is consistent with the fact that geoid heights
vary more slowly with depth (1/r) than gravity anomalies do (1/r°). These two experiments have been conducted with an a
priori correlation L, of 0.2° and an a priori uncertainty o, of 1000 m. In these cases, the true values of L, are not critical and
identical results have been reached with other realistic values (0.001°, 0.1° and 0.3%). However, results are not that good with
smaller values for oy, but the value of 1000 m is nevertheless retained because it corresponds Lo a weak a priori information
and subsequently to an a posteriori model mainly constrained by the data information, which is the way to analyse the accuracy
of the linear approximation of the data functionals.

3.2 Errors associated with the a priori information

When the data coverage is not that dense, the covariance function used for a priori information is of greater importance. The
larger the L. is, the further the correlation extends and the betler the partly resolved model parameters seem to be resolved.
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(a)Topography

Figure 2. Simulated data. The grid is 1.25° X 1.25° wide and the grid step is 0.05° (i.e. 625 grid points). (a) Topography of the seamount (2000 m
high, lying over a 4500m reference depth), further used as reference topography. (b) Geoidal signature over the same grid. The maximum
height of the geoid anomaly is 1.7 m (c) Gravity anomaly due to the seamount over the grid. The maximum value is 100 mGal. (b) and (c) are
computed with the reference values given in Table 1. The values extracted {rom these gridded sets to simulate geoid undulation measurements
from a satellite altimeter and a shipborne profile of bathymetry and gravily anomalies arc shaded.

This effect is shown in Fig. 4. The results presented in this figure have been obtained by using as input data two geoid tracks
extracted from the reference geoid grid. The best results are obtained with L, =0.2° This L, value is close to the values of the
frue correlation lengths (the simulated structure is not isotropic, see Fig. 5).

The value taken for the a priori uncertainty also affects the solution. The true variance of the studied topography, square
of the uncertainty, should be used in agreement with a collocation/kriging point of view. Besides, the larger the a prior
uncertainty, the closer the solution will fit the data and the lesser the constraint on the solution from a parameter altogether
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Table 2. Numerical value of geophysical parameters used in the simulations.

volcano density 2.6 103 kg/m3
density of sediments 2.6 103 kg/m3
density of crustal 2.7 103 kg/m3
layer 2
density of crustal 2.9 103 kg/m3
layer 3
density of upper 3.35 103 kg/m3
mantle
flexural rigidity 7. 1022 Nm
seafloor depth 4500 m
thickness of layer 2 ' 2500 m
thickness of layer 3 4000 m

unknown. The errors associated with the use of different values of o, are shown in Fig. 6. The rms errors between the reference
seamount and the computed solution (model space) are shown in Fig. 6(a) and the rms errors between the geoid data and the
geoid heights computed from the a posteriori model (data space) are shown in Fig. 6(b). This data set comprises two tracks
extracted from the reference-simulated geoid heights to which a noise of 3cm has been added. These simulations have been
performed using L_.=0.2° In the model space, the best agreement between the reference and computed topographies is
achieved when using o, = 350 m. This value of a priori uncertainty corresponds to the square root of the auto-covariance of
the simulated topography. The worst agreements in the model space are achieved with the extreme values of o, = 4500 m (the
sea-floor depth) and o, =100 m. The resuits in the data space show that these values correspond to inadequate information.
For oy = 4500 m, this large value corresponds to a very weak a priori constraint on the solution. The geoidal signature of the
posterior topography obtained using this value of o, approaches the data values better than the data uncertainty (1.5 cm rms
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Figure 3. Errors due to the lincarization scheme for geoid heights and for gravity anomalies. The errors are computed as the difference
between the a posteriori solution and the reference topography. The rms difference (a) and the extreme absolute difference (b are shown.
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Figure 4. Errors related to the value of the correlation length L, used in the a priori information. The errors are computed as the difference
between the a posteriori solution and the reference topography. The rms difference (a) and the extreme absolute difference (b) are shown. The
data set used is made up of the two geoid tracks with 5cm (rms) noise added.

difference instead of 5 cm for the data uncertainty). Conversely, the small value of oy = 100 m restraints the solution too closely
to the a priori value and the rms difference in the data space is larger (7.3 cm) that the data uncertainty.

The a posteriori solutions have an auto-covariance intermediate between the one entered in a priori and the actual one
(mean L, =0.2 and oy =330m). From 30 tests computed with L, values of 0.001°, 0.1°, 0.25°, 0.35° and 0.5°, and o values of
100 m, 350 m, 500 m, 1000 m, 2500 m and 4500 m, it appears out that the value of L_for the auto-covariance of the a posteriori
solution lies within 0.15° and 0.24°, and that the value of the variance lies within 250 m and 400 m. Clearly, these two
parameters can thus be adjusted in two or three runs in order to largely reduce the errors previously pointed out. This step is
also important when dealing with the a posteriori uncertainties. According to eq. (3), these are strongly related to the a priori

O, =330m

along the latitude axis

along the longitude axis

correlation {dimensionless)
o
n
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distance lag (deg)
" Figure 5. Auto-covariance of the reference topography. The auto-correlation (auto-covariance normalized by its variance) is displayed and the

square root of the variance, oy, is indicated. The two curves stand for the correlation along the longitude and latitude axes, pointing out the
slight anisotropy present in the reference topography.
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Figure 6. Errors related to the value of the uncertainty used in the a priori information. The errors are computed as the difference between
the a posteriori solution and the reference topography. The rms difference (a) and the extreme absolute difference (b) are shown. The data set
used is made of the two geoid tracks with 5 cm (rms) noise added.

covariance and are upper bounded by the a priori uncertainty o, Thus, realistic a posteriori uncertainties require that the a
priori covariance function be finely determined by iterative fitting.

3.3 Errors due to the data uncertainties

The model parameters produced by the inversions also depends on the error function of the data. As far as geoid heights are
concerned, the data errors may be restricted to two sources. First are the measurement errors that can be modelled by a Dirac
function. Second is a long-wavelength error. The gravitational signature of the volcanoes only represent the short wavelength
part of the geoid heights. Even when removing a long-wavelength reference fleld to the data and performing a cross-over
adjustment, all the long wavelengths unrelated to the current problem cannot be exactly removed and it has to be accounted in
the budget of data errors. For gravity anomalies and bathymetric data, only the measurement errors have been considered.

The results of the simulations relating to the measurement errors are presented in Fig. 7 for the data sets of the geoid and
gravity anomalies. For these simulations, the measurement errors consist of a random value within different bounds added to
the data simulating a white noise. The bounds are 5cm, 10 cm and 20 cm for the geoid data and 6 mGal and 15 mGal for the
gravity data, 5 cm are representative of data from Geosat, ERS-1 and Topex/Poséidon, 10 cm for Seasat and 20 cm for Geos-3
(Sailor & LeSchack 1987). 6 mGal and 15 mGal are for shipborne data of good and bad quality respectively. The base data sets
are the reference grids. They show that good results may be expected with the recent satellites even with data from Geos-3 (not
taking into account the numerous spikes present in this data set). When measurement noise is as large as 10cm, no
improvement can be obtained by iteration. As far as the gravity anomalies are concerned, good results are still obtained with a
6 mGal measurement error but 15 mGal seems to be the upper limit of usable data since errors remain large and are not
improved by iterations.

The other important source of error in the geoid data is the presence of a long-wavelength signal unrelated to the volcano
gravitational signature. This case has been simulated by removing a constant bias of the two geoid tracks extracted from the
reference geoid grid. When this geoid data set is used alone, the errors (reference topography minus a posreriori topography)
appear as a 2-D undulation over the grid (Fig. 8a): the errors are rather low for the well-resolved model points (along the data
tracks) but the few resolved grid points present well-pronounced topographic lows. Indeed, the central topographic high
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Figure 7. Errors related to the data-measurement uncertainties, computed as the difference between the a posteriori solution and the reference
topography. The rms difference (a) and the extreme absolute difference (b) are shown. The data set used are the geoid and gravity grids with
white noise added. For geoid height measurements, an additional noise of 5cm simulates measurements from the Geosat, ERS-1 and
Topex/Poséidon altimeters, 10cm is used for Seasat and 20 cm for Geos-3. For gravity-anomaly measurements, 6 mGal and 15 mGal stand
for respectively good- and bad-quality data.

generates positive geoid heights all along the data tracks and the topographic lows are necessary to provide the negative data
values at the boundaries of the grid. Although the overall height of the seamount is correctly restored, this result is not
satisfactory since a posteriori values far from the a priori solution for few resolved model parameters are characteristic of an

. inconsistency between the data set and the linear operator. When a bathymetric track is added to the data set (see Fig. 2 for
- location), the errors for the few resolved model points are even larger (Figs 8¢ and d) and the global rms error is increased:

A

510 m in cases (c)-(d) instead of 460 m in cases (a)-(b). This must be due to a second inconsistency between the two sets of
data.

It thus appears necessary to account for such an error in the data covariance matrix. It has been introduced as a Gaussian
covariance of variance = (—0.3 m)? and correlation length much larger than the size of the studied area. It has been applied to
all the geoid height data in a simulation identical to that presented in case 8(c), the result of which is shown in Fig. 8(e). The
overall error is greatly reduced (rms of 33 m, see Fig. 8f). All the model points have low errors whether they are well resolved
or not. The inconsistency that was previously accommodated by the model points mostly constrained by the only a priori
information is then properly accounted for by the introduction of this long wavelength in the data covariance matrix. It must
be noted that when geoid heights are the only available data type, entering such a long-wavelength covariance may make the
sum matrix in eq. (1) improper for inversion. The best way to handle this problem is a trail method, adding different constant
values to the geoid heights until the undulation is minimum. This procedure requires that the data set is sclected in such a way
that some model parameters remain unresolved in order that the inconsistency can be highlighted.

3.4 Errors associated with the geophysical parameters

Simulations have also been performed in order to test the effect of non-exact values for the geophysical parameters such as the
lithospheric stiffness or the volcano density. These simulations have been performed with o= 1000 m and L, =0.2° The data
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Figure 9. Errors rclated to the value of the geophysical parameters used to compute the data functional and the linear operators. Two
parameters are considered: the plate stiffness D and the volcano density p,. The four cases correspond to the following values:
case I: D =1510Nm and p, =25gcm™>
D> Dml’ and P < Purer
case2: D =1010"Nm and p, =28gem™.
D < Dref and Py > pv,ref'
case 3: D =1510"Nm and p, =28gem™.
D >Drcf and Py > pu,ref' .
case 4 D =1010"Nm and p, =2.5gcm™>.
D < Dref and Py < pu,rcf'
The errors are computed as the difference between the a posteriori solution and the reference topography. The rms difference (a) and the
extreme absolute difference (b) are shown. The data set used is made of the two geoid tracks (noiseless).

set is the couple of geoid tracks extracted from the reference geoid (no noise added). The various cases, the results of which are
shown in Fig. 9, are: for the reference case, a stiffness D of 7.10** Nm and a load density p, of 2.610° kg m™; for case 1, an
overestimate of D (1.510°* Nm) and an underestimate of p, (2.5 10° kg m™>); for case 2 an underestimate of D (1.0 10** Nm)
and an overestimate of p, (2.810°kgm™); for case 3 an overestimate of D (1.510®Nm) and an overestimate of p,
(2.810° kg m™); and for case 4 an underestimate of D (1.0 10°* Nm) and an underestimate of p, (2.5 10> kg m™). The lowest
errors are obtained in case 1 and the largest errors in case 4. Indeed, the stiffness and the load density act in opposite ways: the
larger the load density, the smaller the volume needed to produce a given gravitational signature and the larger the assumed
stiffness for the lithosphere, the larger the plate defiection and volume of the negative density contrasts within the plate and the
larger the load to produce the observed signature. In addition, the a posteriori model is less sensitive to wrong estimates of the
stiffness than those of the load density. In any case, it scems better to overestimate the stiffness than to underestimate it and,
consequently, to slightly underestimate the load density if not well known.

3.5 Simulation of a realistic case

Finally, the results of a simulation in a realistic case are shown in Fig. 10. In this case, the model parameters are computed
using the reference geoid grid, undersampled to one data point every 10 km with 5 cm white noise added; the stiffness and load
density are assumed to be D =10% Nm (overestimated) and p, =2.510° kg m™ (underestimated), respectively; the a priori
information is L. = 0.3° and oy =500 m. The a posteriori seamount topography illustrated in Fig. 10(a) is clearly a good result
since the rms of the crrors (difference between reference and computed topographies) is less than 50 m. Indeed, when a profile
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Figure 10. Example of a posteriori topography in a realistic case (the computation is made with slightly wrong values for the parameters,
which should be unknown: D =10% Nm, p, =2.5gcm™>, L. =0.3°, vo=>500m). In (a) the data set used is the geoid grid undersampled at one
data point every two grid points in both directions. A 5 cm white noise is added to the data values. The rms error is 46 m. In (b) the profiles of
bathymetry and gravity anomalies are added to the previous data set. The rms error is 43 m.

of bathymetry and gravity anomalies is added to the data set, there is no significant improvement of the overall errors (see Fig.
10b). Posterior uncertainties are shown in Fig. 11 for solutions using geoid heights only (Fig. 11a) and with the addition of the
profiles of the bathymetry and gravity anomalies (Fig. 11b). They vary from 69 to 170 m in the first case and from 13 to 170 m
when the profiles are added. The largest values cccur at the grid boundary. If these grid points are omitted, the largest
uncertainties are 80 m in both cases. The posterior uncertainties obtained when using the geoid heights and the bathymetric
and gravimetric profiles are compared to the actual errors in Fig. 12. The uncertainties are larger than the errors for 95 per
cent of the grid points, and only four grid points out of 625 present an error twice as large as the computed uncertainty. This
result means that all the components that enter into the computation of these uncertainties are properly taken into account.
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Figure 11. A posteriori uncertainties associated with the topographics in Fig. 10.

These components are the data kernel, the spatial distribution of the data, their error functions and the a priori information. In
actual practice, this last term is the most difficult to adjust. Indeed, if the studied feature is far too irregular as regards the data
coverage (high energy at unsampled wavelengths), the selected covariance function is not adequate and significant errors occur
that cannot be handled even iteratively. This point is elaborated upon in the following chapter, which addresses the study of a
seamount already surveyed.

4 CASE STUDY

S6 is a seamount in French Polynesia, South Pacific, which was first detected using altimetric data (Sandwell 1984). The
seamount location proposed in that study was about 35 km south of (he actual one and 4 more precise determination was given
by Baudry ez al. (1987). A shipboard confirmation was performed during the SEAPSO-5 cruise aboard the R/V Jean-Charcot
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Figure 12. Posteriori uncertainties (case 10b) versus error relative to the reference topography.

(Baudry & Diament 1987). The topography of this seamount has been modelled by Baudry & Calmant (1991) using Fourier
Transforms to convert the geoid grid into a bathymetric grid. This seamount has two well-differentiated peaks and
consequently it is noticeably different from the somewhat idealized seamount previously used for the simulations. Last, the two
Seasat tracks used in this study pass over the peaks and the central saddle is not sampled.

The grid used for the definition of the model parameters is 1.3° X 1.3° large, centred at 24.1°S of latitude and 203.7°W of
longitude, and the grid step is 0.05° in both directions (i.e. 728 bins). The data set available over this seamount comprises a pair
of Seasat tracks that each pass over one peak, and a shipborne profile of bathymetry and gravity anomalies from SEAPSO-5.
For the purpose of this study the bathymetric and gravimetric profiles have been binned according to the grid, the average
of the data over each grid element providing the data set and the associated variances providing the corresponding
data uncertainty (Figs 13a and b). This bathymetric profile is further used to test the computed topography. The values used
for the computations are D =10%' Nm and p, =2.6 10°kgm™> for the flexural rigidity and the load density, respectively.
The crustal model is: layer 2 with a thickness of 2.5 km and a density of 2.6 10° kg m™ and a layer 3 with a thickness of 5km
and a density of 2.910° kg m™>; the mantle density is 3.35 10° kg m™>. Fig. 14 illustrates the seamount topography computed
using: (a) the altimetric data, (b) the discretized gravity anomalies, and (c) all the data; along a roughly east—west-trend-
ing profile (this profile does not cross the summits). These solutions have been reached by iteratively adjusting the a priori
covariance function. The final values are L, = 0.2° (no anisotropy could be clearly pointed out) and o= 400 m. The data have
been bias adjusted in the altimetric solution so as to minimize the artefacts described in Section 3.3, and in the complete solut-
ion a long-wavelength error of 0.2 m in amplitude has been accounted for in the error function associated with the altimetric
data. ,

The altimetric solution (a) appears slightly less accurate than the gravimetric solution (b) since the rms error in (a) is 46 m
compared to 43 m in (b). However, the displayed values correspond to more poorly resolved grid points for solution (a) than
for (b) and thus to grid points where the solution is more sensitive to the a priori information. The largest errors in (a) occur
where the actual bathymetry presents noticeable slope variations and the a priori covariance function is not able to provide this
information. Accordingly, the altimetric data set is not able to resolve the two-peak shape as no topographic low is present at
the centre of the computed feature (Fig. 15a). Neither does the gravimetric solution (Fig. 15b), nor the complete solution (Fig.
15¢). This is due to the large data uncertainties associated with the binned profiles. These large uncertainties are due to the
large standard deviations of the bathymetry within the bins in this area. For the gravity anomalies uncertainties are 6 mGal.
Although it is realistic in terms of measurement accuracy, this filters out the high frequencies in the data set. The way to obtain
this central low with altimetric data would be to make the computations for smaller discretization steps. This would require
denser altimetric data sets. This might be achieved using 10 Hz data of altimetric missions dedicated to dense coverage such as
the Geosat Geodetic Mission.
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Figure 13. Binned values of bathymetry (a) and gravity anomalies (b) from measurements made during cruise SEAPSO-5 aboard R/V J.
Charcot. The shade scale stands for the standard deviation around cach mean value, further used as the data uncertainty.
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Figure 14. Study of seamount S6. Posterior solution along an E-W-trending profile. The data coordinates (dots) and the location of the
displayed profile (line) are given in icon. The shaded areas represent the posterior topography (bottom) and uncertainties (top). The barred
dots stand for the binned bathymetry and the associated uncertainty. Crossings between the displayed bathymetric profiles and the Seasat
profiles used as data set are indicated. (a) Solution using Seasat data only. Crossings between the displayed bathymetric profiles and the Seasat
profiles used as data set are indicated. (b) Solution using binned gravity anomalies from SEAPSO-5. (c) Solution using Seasat data and binned
profiles of bathymetry and gravity anomalies from SEAPSO-5 data.

5 CONCLUSION

The presented modelling, based on a least-squares inversion with a priori information, is indeed able to provide realistic values
for the topography of a submarine volcano from geoid heights, whether or not this data set is completed with bathymetry
and/or gravity anomalies data. With Seasat data only, the addition of shipborne data noticeably improves the solution, but
when the data set of altimetric geoid heights is dense enough (5 km data spacing could be rapidly available by merging data
from the Geodetic Mission of Geosat, Topex/Poséidon and ERS-1), the bathymetric and gravimetric data will mostly provide a
control information about the consistency between the geoid data and the linear operator.

As the parameters of the a priori covariance function (variance and correlation length) cannot be accurately defined in
advance and since erroenous values may affect the results, these parameters can be iteratively adjusted by comparing the
auto-covariance of the a posteriori topography with the a priori values, within the limits of the wavelengths actually sampled to
avoid aliasing effects. When using the dense coverage data to come, the a priori information will be less crucial than in the
examples presented here.

Using the method presented in this paper, the computation of gridded bathymetric values from all the bathymetric and
altimetric data can now be envisaged even on small computers (the present work has been achieved on a workstation with only
32Mb RAM and each solution took less than one hour to be attained). Bathymetry data are able to restore the long
wavelength in the bathymetry. Altimetry data can be converted in short-wavelength bathymetry. A bathymetric grid computed
in taking advantage of both data sets would represent a dramatic improvement from the existing bathymetric data bases such as
ETOPO-5 (Smith 1993). This work is now conducted on the EEZ of New Caledonia as a part of the French National Program
for the valuation of the EEZ of the French Oversea Territorics.
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APPENDIX: LINEARIZED FORM OF THE DATA FUNCTIONALS

Al The surface elements associated with the model parameters

The computation area § is divided in elementary areas AQ(r). solution of the integration over d6 and dA for each arca element
[AB(r), AA(r)] centred at [8(x), A(x)] with 6(r) the colatitude and A(r) the longitude:

A8
AW =] sinodo f d.\=A/\(r)[2sin (e
AA

Ad(r)

)sin G(r)] ~ AA(r)AG(r) sin 4(x). (A1.1)

A2 The lithsopheric density contrasts

- The elastic deflection of the upper lithosphere under the weight of a volcano generates lateral density contrasts, the gravity
" signature of which has to be accounted for when dealing with the gravity signature over a marine volcano. Let us consider a
l" standard lithosphere with an upper crustal layer (layer 2) of thickness ¢, and density p,, a lower crustal layer (layer 3) of
© thickness ¢; and density p5 overlying a mantle of density p,,. The volcano density is denoted p,, and the water density p,,. The

sediments filling the flexural moats are assumed to have the density p,. The deflection éw due to a point load P is given by
DVSsw + y(p,, — p,)dw =P (A2.2)
where D is the stiffness of the equivalent elastic plate and where y(p,, — p;)8w is the Archimedes force due to the buoyancy of

the crust deflected within the lithospheric mantle.
Using P = y(p, — p,.)AQb the 3-D solution of eq. (A2.2) is (adapted from Tisseau-Moignard 1979):

o —p R A
< Bw =—(-’i“———’1&)——§1<e1 (\/E ~>AQb (A2.3)
' T(pm — ps)e a
with
N L (A2.4)

’y(pln ’.—p:)

with A the angular distance between the location of the load and that of the computed deflection. Kei is the Kelvin function
and « is called the flexural length. In the case of a distributed load P(r) = y(p, — p,.)AQ(r)b(r), the deflection w(r') is given by
the sum of the elementary deflections in eq. (A2.3):

w(r’) =M§£ S Kei (vgl_‘”_"‘),m(,)b (r). (A2.5)
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According to the assumption of an elastic upper lithosphere, this deflection is undergone by all its density interfaces. It they
generates three lateral density contrasts at successively the load-layer 2 interface (p,~p,), the layer 2-layer 3 interface (p"‘/’s)
and at the Moho (p3—p,,)-

In the case of a locally compensated structure (Airy compensation, c=0), the density of the structure is taken to be
identical to that of the root. The thickness #(x) of this root is given by the isostatic €quilibrium:

(Py —Pw)

@ =b0

(A2.6)

[t is important to note that w(r) and #(x) are linear combinations in b(r). Linear combinations in w(r) or #(r) thus constitute
linear combinations in b(r).

A3 Data functionals and linear operators for geoid height data
The geoid height N(s) due to a density anomaly Ap distributed over a volume Vis (Brun’s formula):
dv

r
N(s)=—A J - = , A3l
®) Y pv\fa“-i—R‘-—ZaRcosd/ (A3.2)

where i is the angular distance between s and the centre of the mass element dv. T" is the gravitational constant, y the mean
gravity acceleration at the surface of the Earth, a is the Earth radius and R the distance between the centre of the Earth and
the mass element. Using dv = R*sin 8d8dA dR, eq. (A3.1) is rewritten:

1" ) Rsup
N(s) =~— ApJ fsin 6de d)\f w(R, ) dR (A3.2)
Y N Rint
with
RZ
(R, )= . (A3.3)

Va* + R* — 2aR cos ¢

S is the projection of the volume V onto the surface of the Earth. R, and R, are the distance from the centre of the Earth
to, respectively, the top and the bottom of the mass element. The primitive U(R, ¢) of #(R, ¢) is:

2 —
UR, §#0) == (R + 3a cos Y)Va~ -+ R*— 2aR cos  —— (1 —3cos? i) Argsh [R_anc_ol/_,s_ylz] (A34a)
a
and
UR, y=0)=-3R*—aR—a’Ln(a—R). (A3.4b)

Argsh () is the inverse hyperbolic sine and Ln () the natural Logarithm. i is the angular distance between r and s.

A3.1 Data functionals
The data functional gg,, is the discrete form of eq. (A3.2), combined with eq. (AL.1) and calculated for either the bathymetric
feature b(r) and the lithospheric density contrasts, the geometry of which is given by w(r) in the context of regional
compensation (flexural parameter « 7 0).

In the context of regional compensation, g (s, @ # 0) is given by:

r
gGH(S$ a#* 0) =:; ES AQ‘(r){(pu - pw)[qz(Rxf + b(l‘), d/sr) - GZI(R;f) l1ll.rr)] + (px - p’l)[dll(va + W(I‘), lllsr) - ﬁZ[(RSf’ l/jsr)]

+ (p2 - pB)[(‘u(RZIC’a + W(l‘), lllsr) - JU(RZISJ z'/"Sr)] + (p3 - pm)[éu(Rm + l"’(r)? Lllsr) - %(‘Rm) libsr)]}' (A35)
In context of local compensation, gy (s, @ =0) is given by:

: r
8an(s, @ =0) = 25 AQH{(py = P URy + b (x), ) = URsp, Y5 )] + (pu = P UR , + 1(x), i) — U(R .oy s, )]} (A3.6)

¥, is the angle between s and r.

A3.2 Linear operators

Eg. (A3.5) and eq. (A3.6) are not linear in the height /(r) of the mass element, whatever it is b(r), w(r) or #(x). A first-order
h(r) ll(r)
—2—_= inf

) — U(R;,p), is replaced by the

development is then used to generate a linearized functional. Since s(r) < R, setting R, = Ry, — (Ryer 18

thus the barycentre of the mass element) in eq. (A3.2), the evaluation of the integral in R, U(R
following first-order development:

h(r)du h(xr)dU
UR ) - UR) = {UR)+" 2] |- {aur - "2 2%

2 dRly,, UReer) =70

sup

} = h(©)u(R, ¥)| . (A3.7)

Ry
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For the sea-floor topography, /(x) represents b (r). For the lithospheric interfaces, /(r) represents w(x) or ¢(x). The computation (
|
!
|
i
|
|

chf
=~ A AQ h(r). A3,
N (S) P ES (r) \/7+ chf_ 2aRref cos l//sr Z(r) ( 8) !

Now, from eq. (A3.5), eq. (A3.8) and eq. (A2.5), the operator G, (x,s, 7= GH, o # 0)—linearized form relating a model
parameter to a datum of geoid height in context of regional compensation—is then, at the nth iteration:

G, (s.xr,7=GH, a#0)

__E - bn—](r) ( pw) sf ' ol ll""‘l"l
- ¥ AQ(r){(pu p\v)” (Rsf + 2 ) (r/lsr) 7E(P,,, _ ,DS) S‘ AQ(K’ ) Kei <\/§ o )

X [(Ps Pz)”(Rsf L — ”_1( 2 ’rr'> +(p2— Ps)’/<R2/3 +&21_(r_)’ ‘//n-'> + (02— P )t <Rm 0 fas 1( ) s W )” (A3.9)

From eq. (A3.5), eq. (A3.8) and eq. (A2.6), G, (x,s, 7= GH, e = 0)—linearized form relating a model parameter to a datum of
geoid height in context of local compensation—is, at the nth iteration:

G,(s.r,7=GH, a =0) = 5 AQ()(p, — pw)[// (Rsf +2"—"2L(r—), W, > U(R,,, ol :(r) ) ¢>] (A3.10)

A4 Data functionals and linear operators for gravity-anomaly data
The same developments are made for the gravity anomalies. These are primarily given by:

(a—R)dv

Ag(s)=TA f Ad.l
8(s) PN R —2aR cos §” (Ad.1)
and eq. (A4.1) is rewritten as follows:
Rsup .
Ag(s) = FApff sin 648 d)\f o(R, ) dR (A4.2)
S Rint
with !
R ) (a=R)R? A43
i e\, W)= ) ) ‘ .
b Va*+ RT—2aR cos §° ( )
#(R, ), the primitive of ¢(R, ) is given by:
R—acosy (3—4cosy)
f(R, ¥ 7 0) = —~Va® + R? — 2aR cos ¢} + a(1l — 3 cos? ) Ar, sh[ - :l—a2
“(R, I =0) ¥ +a ) Arsh |~ e
1—5cosy+4cos R —acos
L v rwx ¥) (i)
sin® yVa® + R —2aR cos
.. and )
5 MR, 0)= —a—ﬁ +2aLln(a—R)—(a—R) (A4.4b)
i a-= i
i i
5 d
‘. A4.1 Data functionals
Combining eq. (A4.2) and eq. (Al.1) the data functional in case of regional compensation gg.4(s, @ % 0) is given by: i
o A :
gr gGA(S7 a7 0) =T E.S’ AQ([‘){(pu - pw)[?/'(R.s‘f + b(l‘), ’J’sr) - 7/‘(Rsf: (psr)] + (ps - pl)[qf(Rsf + W(l’), lllxr) - 7/V(Rsf’ ll’sr)]
?z +(pa— P3)[7/(R2/3 +w(r), gy, — V' (Ry3, lllsr)] +(p2— Pm)[o/’f(Rm + w(r), Y) = V(R,., lﬁsr)]}- (A4.5)
In case of local compensation, gga(s, @ = 0) is given by: ;5
I
;" th (S’ a = 0) = r ‘ST/‘_S AQ(r){(pu - pw)[cV'(RKf =+ b(l’), ‘llxr) - ‘7/‘(Rxf) ‘l/sr)] + (pu - p,,,)[?f(Rm + l(l‘), ll/.\r) - 7/(R1117 war)]} (A46) E
;

/
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A4.2  Linear operators
The linearized form Ag*(s) of eq. (A4.1) is:
Rz'ef)Rch

Ag*(s)=TAp > AQ(Y)

h(r). . :
fes Va2 + R —2aR, ;cos ., > ®) (A477)f ,

ref

From eq. (A4.5), eq. (A4.7) and eq. (A2.5), the operator G,(r,s, T= GA, a # 0)—linearized form relating a model parameter

to a datum of gravity anomaly in context of regional compensation—is then, at the nth iteration:

G,(s,r, 7= GA, a #0)

=raa®f o, = poe( Ry + 22y, )+
II'—l( )

(P = pu)R vf Z AQ(r') Kei (\/—] —r l)

”(pm Ps a r'eS
{(pu - p2)"(Rsf T

From eq. (A4.5), eq. (A4.7) and eq. (A2.6), the operator G, (r,s, 7= GA, a = 0), linearized form relating a model parameter to
a datum of gravity anomaly in context of local compensation, is:

G, (5,1, 7= GA, a =0) = TAQ(r)(p, — pw)[,.(zesf + b—tzﬁ) , ¢> - v(R,,, L ””I(r) , lpﬂ (A4.9)

AS A priori information

If the structure that the submarine topography of which is to be computed is known to be elongatied, this can be entered
amongst the a priori information. Indeed, the auto-covariance of the topography also reflects this anjsotropy. It can thus be
modelled by a correlation length that varies with the azimuth in the computation of the a priori covariance matrix. In an
elliptic approximation, three values of correlation lengths are necessary for three azimuths (adapted from Kearsley 1977):

L.(a)= [LC(O) cos & — Lc<g> sin a}(cos a—sina) + LC<§) sin 2« ' (A5.1)

where « is the azimuth of the rr' arc.

s l/;w) +(p2— Ps)"(szs "hl( ) s W ) + (o3 pn)e ( - Bami) 1( ) s Y )} (A43) 7‘ )




