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S URI RX A R Y 
Alt imet r ic  measurements  of sea-surface heights have  long  b e e n  used t o  locate 
unchar ted  mar ine  features .  Newly avai lable  d a t a  sets  ( G e o s a t - G M ,  ERS-I and 
Topex/PosEidon) ,  now allow t h e  topography  of submar ine  volcanoes t o  be 
accurately res tored  a n d  a m e t h o d  based  u p o n  inverse  model l ing is p re sen ted  i n  this 
pape r .  Th i s  m e t h o d  allows a joint  assimilation of alt imetric d a t a  a n d  sh ipborne  
profiles of ba thymetry  a n d / o r  gravity anomal ies  when available.  Fu r the rmore ,  
uncertainties can b e  c o m p u t e d  toge the r  with t h e  topography,  which const i tutes  a 
noticeable i m p r o v e m e n t  since these pa rame te r s  a r e  still missing in the usual 
ba thymetr ic  d a l a  bases. Tes t s  a r e  pe r fo rmed  using s imula ted  da ta ,  in o r d e r  to 
character ize  the  e r ro r s  which m a y  or m u s t  occur  with t h e  model led  topography  of a 
previously u n k n o w n  volcano, in particular t h e  e r ro r s  d u e  t o  d a t a  uncertaint ies  and 
t h e  lack of precise kno\vled_ge of sensit ive pa rame te r s  t ha t  a r e  used  i n  t h e  modelling. 
These e r ro r s  can  b e  main ta ined  unde r  the 100 ni level (mis) fo r  a l t imetr ic  d a t a  with 
a m e a s u r e m e n t  noise  of 5 cm (rins) or less, which is achieved f o r  Geosat, ERS-I and  
Topex/Posé'fdon alt imeters.  A n  e x a m p l e  of inversion of Seasa t  d a t a  is p resen ted  in  
the  case  of a s e a m o u n t  in F rench  Polynesia.  

Key words: alt imetry,  least-squares inversion, seamount topography. 

1 INTRODUCTION 

Bathymetry represents a basic data set for a great variety of geophysical studies in the oceans of the World. It also plays an 
important part in the economy, mainly in the evaluation and developnient of living and mineral resources as well as for niarine 
communicatiön cables, submarine navigation and even for ships, since uncharted shallow edifices are still encountered. 
However, in spite of the effort of inany oceanographical institutions during the past decades, sea-floor topography is still very 
poorly known in many oceanic areas. Moreover, the ship-track distribution is very unequal: most of them are located in the 
Northern Hemisphere whereas in the Southern Hemisphere, most of the tracks run along the continental coastlines and 
around the main islands. As a consequence, large portions of the Indian, South Pacific and South Altantic oceans remain 
devoid of direct measurements. Recently, Vogt 8.~ Jung (1991) advocated an international effort to improve the current 
bathymetry databases. When bathymetry is performed by oceanographic vessels, it is a very expensive and time-consuming 
proposition. Even if the most recent techniques (Sea Mark and enlarged Seabeanis) were used, i t  would take decades to cover 
the entire sea-floor. Vogt R: Jung thus proposed to incorporate all the geophysical data that c m  be converted into bathymetric 
ones, such as shipborne gravity anomalies and geoid heights from satellite altimetry. 

Gravity (in a large sense) lias long been used for bathymetric purposes such as the detection and positioning of uncharted 
structures (Lanibeck Sr Coleman 1982: Lazarewicz LQ Schwank 1952; Sandwell 1984; Baudry 19SS) or modelling of submarine 
topographies (Dison et al. 1983; Baudry, Dianient Sr Albouy 1957: Baudry & Calmant 1991; Jung R: Vogt 1992; Goodvvillie & 
Watts 1993). Most of these works were conducted in thc Fourier Domain to convert geoid height profiles into bathymetric 
profiles. 'This was mostly directed by the mathematical simplicity and by the way by the s p e d  of the computations. The 
drawbacks are: the profiles of dat:i necd to be regularly resampled; the spectra of [he these data profiles liilve to be lowpass 
filtered for the short-wavclcngih altinietric noisc riot to blow up in the bathymetric 
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to be  interpolated if 3-D maps are wished; tlie data set cannot be made with data of a different kind; and, last, that these 
resulting bathymetric grids cannot be directly accompanied by any quality information. Baudry & Calmant (1991) went to step 
further using a pair of Seasat tracks to precisely map the topography of a submarine volcano in French Polynesia, South Pacific. 
They used the collocation method to get a grid of regularly spaced geoid heights from the Seasat tracks and Fourier 
Transforms to convert these geoid heights into bathymetry. Their results show that the  restitution of such a feature can be 
achieved up to ?O per cent in depths and with less than 10 km of mispositioning. Besides, this was the first attempt to  deal with 
the question of the accuracy of interpolated values, an element that is dramatically lacking in the usual bathymetric data bases 
such as DBDBS or SYNBAPS (Van Wickhouse 1973). Indeed, Vogt B Jung (1991) do  not address this aspect of the 
production of bathymetric data. In fact, the  problem with errors in DBDB5 that they report must not be construed as a 
requirement to separate the right values from the wrong ones but as providing values with an associated uncertainty which niay 
take on  continuous and variable values over the mapped area. 

In the present paper, it is intended to test the representation of the topography of seamounts using 3 forward modelling 
based on the discrete inverse theory (Menke 1984; Tarantola 1987). When using such a method, the data set may be coinprised 
of data of different types. These are basically altinietric measurements, to which shipborne profiles of bathymetry and/or 
gravity anonlalies may be incorporated when available. With the inverse method, uncertainties linked to the modelled values of 
seamount topography may also be produced. Unlike the previous works using Fourier Transforms, the spatial distribution of 
the data is accounted for without the need for interpolation. The error budget of the data set, which moreover may differ from 
one subset to another within data of the same type (for geoid heights from different satellites, for example), is also entered in 
the modelling. 

The  relationship between seamount topography and bathymetric profiles is straightforward. As far as the gravity and geoid 
data are concerned, there is no linear relationship between the seamount topography and the data. In this instance, the 
solution is reached by using iteratively improved linearized forms of the e.xact relationship (quasi-Newton method). h'foreover, 
seamount topography is not the only density contrast represented in the data. The underlying upper lithosphere also presents 
density contrasts, the gravity signature of which is superimposed upon that of the bathymetric feature. These lithospheric 
density .contrasts are due to the compensation of the bathymetric feature. Two models of compensation are used in the present 
study: the regional compensation and the local compensation. In a context of regional compensation, the shape of the density 
interfaces is modelled as the response to loading of a thin elastic plate. This model of shape is currently applied to intraplate 
volcanoes that are emplaced on  an  old oceanic lithosphere (assumption of elastic behaviour of the upper lithosphere related to 
the cooling whilst aging; McNutt B Menard 197s; Watts 1979: Cazenave et ( I I .  19SO; Watts B Ribe 1984; CaImant, Cazenave & 
Francheteau 1990) or to volcanoes which emplaced recently (assumption of visocelastic behaviour of the upper lithosphere, 
Lambeck K: Nakiboglu 19SO; Lambeck 19Sla,b). The Airy model is used for the local compensation. It applies for either on 
ridge volcanoes in the assumption of elastic behaviour o r  volcanoes that eniplaced long ago with respect to the characteristic 
time of relaxation in the assumption of visoelastic behaviour. The  local compensation can also be used for modelling wide 
structures such as marine plateaus (Black 22 McAdoo 198s) o r  elongated ridges of presumed continental core. 

To test the capability of each type of data and of combinations of various types in resolving a seamount topography, 
modellings are performed with synthetic data over a volcano of pre-defined topography and geophysical setting. The  
uncertainties associated to  the  modelled values are also compared to  the actual errors in order to see how relevant they are. 

A case study is then presented in the niodelling of the topography of a seamount in French Polynesia. 

2 METHOD 

The topographic heights of the sea-floor a re  computed as the least-squares solution for model parameters of a discrete inverse 
problem. These model parameters consist in fact of different geophysical quantities according to the data type. For bathymetric 
data, the topographic heights correspond to  weighted averaged heights over a reference dcpth upon surface elements. When 
gravity or geoid data are used, the niodelled topographic heights correspoiid to the height of volumes based upon the surface 
elements and forming a predeiined density contrast with the surrounding seawater. T h e  solution is constructed by a linear 
combination of the data with optimal coefficients. These optimal coetrcients are deterniined by the physical relationship 
between each datum and each model parameter, including an iteratively adjusted model, u priori information on  tlie inodd  
parameters and are  the description of the errors which affect the data (Tarantola 1987). b,,(r), the modelled seamount 
topography at location r and u posteriori value of the model parameters for the rith iteration, is given by: 

' n ( r )  = b,(r) + Crr,G3GnCrr,GT-t Exrs'I-'{~lr(~) - ~r [bu( r ) I  i- Gn[bn-l(r)  - b"(r)I) (1) 

where b,(rj is the vector that contains the N priori values of the model parameters (seamount topography at location r) and 
where / ~ , $ - ~ ( r )  is the vector that contains the u posteriori values of the model parameters for the rz-ltli iteration. C,.,, is the 
covariance matris of the (7 priori model-parameter errors. E,T.,, is the data-error covariance matrix. G,,, and its transpose G,:, is 
the matrix the elements of \Vhidi  are given by a linear approximation of the data functionals gr(s) .  7 refers to the data type, 
T =  ST stands for seamount topography, 5 = GI-! for geoid heights undulations and r = GA lor gravity anomalics. d,(s) is the 



Table 1. List of symbols for the geophysical parameters. 

NAME SYMBOL VALUE. (SI units) 

Gravity Constant : G 6.67 10-11 

Earth parameters: 
Earth radius 
Mean gravity 

Lithospheric parameters: 
Seafloor depth 
depth of layer 2 / 3 Interface 
Moho depth 
volcano (load) density 
density of infilling sediments 
density of crustal layer 2 
density of crustal layer 3 
mantle density 
Plate stiffness 
Flexural length 

a 6 378 IO3 
Y 9.8 1 

Rsf 
R213 
Rm 
P v  
P s  
PZ 
P3 
Pm 
D 
a 

vector that contains the data values at locations s. The uncertainties associated with the niodel values are given by (Tarantola 
1987): 

o(r) = Vkir,(r = r')  (2) 
with Ci,.,, the li posreriori covariance matrix of the model parameters given by: 

C:r, = C,. - C,.,,G~[G,vC,,.G~ + Ess.]-'G,,C,., 

where N is the last iteration, when convergence is achieved. 
(3)  

2.1 

The symbols standing for the geophysical parameters entering in the ongoing formulae throughout the paper a re  listed in Table 
1. In this part, only the final form of algebraic espressions are given. Detailed developnients arc provided in the Appendices. 

Data functionals and associated linear operators 

(a) 

When the data and model parameters represent respectively sampled and interpolated values of the sanie geophysical function, 
the functional is readily given by: 

Ship tracks of seli-floor topograplzy 

where S ( )  is the Dirac impulse and S the interpolation domain. The corresponding linear operator is: 

G(s, r, T = S T )  = 6(s, r). 

(17) 
For the particular case of seamounts, lithospheric density contrasts (the shape of which is related to the height b(r) of the 
structure) must be  taken into account together with the density contrast between seawater and seamount. These contrasts of 
density are defined relative to a reference layering of thc upper oceanic lithsophere. For a regionally compensated structure 
(flesural parameter a Z O, see Appendix 2), the lithospheric density contrasts are due  to the elastic deflection ~ ( r ' )  of the 
upper lithospliere under the weight of the volcano element of volume AR(r)b(r) (see Fig. 1). In the case of a locally 
compensJted structure (flexural paranieter CY = O),  a light root t(r) provides the isostatic equilibrium (see Appendix 2). The  
data functionals relating the model parameters b(r)  to a datum of geoid height o r  gravity anomaly are given by tlie classical 
expressions of tlie gravity anomalies or geoid heights computed for a set of density interfaces defined on grid nodes. These are 
reported in Appendices 3 and 4. These data functionals are not linear in b(r) (see Appendix 3). Iterative linear approximations 
are thus performed to generate the l i n e x  operator G,, in eqs (2) and (3). 

Geoid liriglits niid grrruity a~ioi~zalies 

For a datum of geoid height, in the contest of regional compensation and at  the rzth iteration, G,, is: 
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Figure 1. Geophysical setting. A volcano emplaced on the oceanic lithosphere deflects the upper layers of the lithosphere and generates lateral 
, density contrasts with respect to the refercncc undeformed lithosphere. b(r )  and w(r ' )  respectively stand for the seamount topography and the 

lithospheric deflection. Other symbols are listed in Table 1. 

* hith 
R2 

va' + R' - 2aR cos $ 
1 u(R, $) = 

$+ is the angle between locations r and r' of model parameters. Kr i  ( ) is the Kelvin-Bessel function. 
For a datum of geoid height, in contest of local compensation and at  the rzth iteration, G, is: 

G,(s,r,z=GH,ry=O)=-An(r)(p,-p,,.) . r  
r Y 2 

For a datum of gravity anomaly, in context of regional compensation and at the lzth iteration, G,, is: 

G,(s, r, z = GA, LY Z O) = rAn(r) 

, With 
1. o(R, $) = 

(U - R ) R ~  
.\/a2 + R2 - 2oR cos $ 3  

' For a datum of gravity anomaly, in  contest of local conipensation and at thc nth iteration, G,, is: 

~ , ~ ( s ,  r, r = GA, = 01 = r m ( r ) ( p ,  - p,,,)[,] (R , ,  -I- u , - 9- , 
2 7 

I 
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2.2 A priori information 

A priori information has two components: II priori values for the model parameters and the covariance of the errors associated 
with this prior solution. The  a priori model values for the topography are set to zero. Thus, the covariance matrix of the a priori 
uncertainties should b e  that of the topography itself, consistently with the kriging/collocation formulations (Moritz 1978; 
Jouriiel 1989; Herzfeld 1992). Submarine volcanoes are too different in height and slope from one another for a realistic 
covariance functions t o  be  arrived at on  the basis of well-mapped volcanoes, and be used for the computation of the a priori 
covariance of unknown features (non-stationarity). The use of various usual analytic covariance functions has thus been tested 
(Gauss's, exponenital, 2nd and 3rd Markov's, Damped Cosine, Bessel's, Hirvonen's). After tries with all these, Hirvonen's 
function appears to  be  a good candidate since it has a null derivative at  the origin, is 'bell shaped' and is robust and Computed 
at low CPU cost. This covariance function is given by: 

where L, is the  correlation length (angular distance of half correlation) and go, the a priori uncertainty. The  actual \falues of 
these paranieters are unknown. They can be approached by those given by tlie covariance function of tlie tz posterioli 
topography issued of a computation with test realistic values. The refined values (which may include a correlation length that 
varies with azimuth, see Appendix 5), are further entered for a subsequent computation. The  effect of the values selected for 
the correlation length and the auto-covariance is discussed more extensively below within the simulations. 

3 SXRIULATIONS A N D  E R R O R  ANALYSIS 

Simulations have been performed to quantify the errors in topography that results from the presented inverse modelling. These 
errors can be  generated by the linearization of the data functionals. tlie uncertainties associated with the data, the geometry of 
the data sampling, the  use of different a priori information and the approximate values used for the geophysical parameters 
such as the plate stiffness and the volcano density. The data set used to perforni the simulations i s  the following: a volcano 
topography has been generated as a 0.4" long and 0.3" wide, 2 kni high bell-shaped surface at the centre of a 1.25" X 1.25" 
surface. This surface is divided in 625 nodes (0.05O X 0.05" grid steps) and is set at the reference depth of 4500 in. It  is displayed 
in Fig. ?(a). Based on  this topography, a geoid grid (Fig. 2b) and a gravity anonialies grid (Fig. 2c) have been computed. Table 
2 gives the value of all the geophysical parameters used to  compute these reference data sets. Value series have been extracted 
from these grids to  simulate satellite tracks for the geoid data and ship courses for the topography and gravity anomalies 
(shaded bins in Fig. 2). T o  better simulate true data, some experiments have also been conducted with noise added to the 
synthetic geoid, gravity anomalies and bathymetry, using a pseudo-random numbers generator. 5 cm, 1.0 cni and 20 cm 
additional white noise have been used for the geoid, 6mGal  and 15niGal for the gravity anomalies and 10ni  for tlie 
bathymetry. 

3.1 

The errors in computed topography due to the linearization have been evaluated when tlie reference geoid and gravity anomaly 
grids are used as input data (Fig. 3). When inverting the geoid grid, the extreme error is, after a few iterations, less than 20 m 
and tlie rnis is less than 2 m. As  far as the gravity anomalies are concerned, the results arc 40 ni of maximum error and 5 m rms. 
According to  these results, the linearization does not introduce significant errors in the modelling. The results of the first 
iteration step are those that a linear hypothesis (instead of iteratively linearizable) would have provided. One  can see that in 
this case, the errors remain significant since the rnis error is greater than 30 m using geoid heights and GO m using gravity 
anomalies, and the maximum error is close to 400 ni for geoid heights and more than 700 m for gravity anomalies. The  fact that 
the linearization induces more errors for gravity anomalies than the geoid heights is consistent with the fact that geoid heights 
vary more slowly with depth ( l / r )  than gravity anomalies do ( l / r ' ) .  These two experiments have been conducted with an  (I 
priori correlation L, of 0.2" and an  (I priori uncertainty cr0 of 1000 ni. In these cases, the true values of L, are not critical and 
identical results have been reached with other realistic values (O.OOlo, 0.1" and 0.3"). However, results are not that good with 
smaller values for go, but the value of 1000 in is nevertheless retained because it corresponds to a weak (2  priori information 
and subsequently to  an  u posteriori model mainly constrained by the data information, which is the way to analyse the accuracy 
of tlie linear approximation of the data functionals. 

Errors due to the linear approsimation of the data functionaIs 

3.2 

When the data coverage is not that dense. the covariance function used for t i  priori information is of greater importance. The 
larger the L, is, the further the correlation extends and the better the partly resol\'cd model parameters seem to be resolved. 

Errors associated with the a priori information 



(b) Geoid 

(c) Gravity anomaly 

Figilre 2. Simulated data. The grid is 1.2S"X 1.25" wide and the grid step is 0.05" (i.e. 625 grid points). (.a) Topography of the seamount (2000 m 
high, lying over a 4500 m reference depth), further used as reference topography. (b) Geoidal signature over the same grid. The iiiuximum 
heigllt of the geoid anomaly is 1.7 m (c) Gravity anomaly due to the seaniouiit over the grid. The ntaxinium value is 100 mGal. (b) and (c) are 
computed with the reference values given in Table 1. The values extracted from these griddcd sets to simulate geoid unduhtion measurements 
from a satellite altimeter and a shipborne prolile of bathymetry and _gravity anomalirs arc shaded. 

This effect is shown in Fig. 4. The  results presented in this ligure have been obtained by using as inptlt data two geoid tracks 
extracted from the reference geoid grid. The best results are obtained \vit11 I-, = 0.2". This L,  value is close to the values of the 
true correlation lengths (the simulated structure is not isotropic, see Fig. 5). 

The  value taken for the  (1 priori uncertainty also affects the solution. The true variance of the studied topography, square 
of the uncertainty, should be used in agreement with a collocatiun/kriging point of vicw. Besides, the larger the a p r h i  
uncertainty, the closer the solution will fit the data and thc lesser the constraint on the solution from a parnmeter altogether 
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Table 2. Numerical value of geophysical parameters used in the simulations. 

volcano density 

density of sediments 

density of crustal 
layer 2 

density of crustal 
layer 3 

density of upper 
m a n t l e  

flexural rigidity 

2.6 IO3 kg/m3 

2.6 IO3 kg/m3 

2.7 IO3 kg/m3 

2.9 IO3 kg/m3 

3.35 IO3 kg/m3 

7. 1022 Nm 

seafloor depth 4500 m 

thickness of layer 2 2500 m 

thickness of layer 3 4000 ni 

unknown. The errors associated with the use of different values of are shown in Fig. 6. The rms errors between the referelice 
seamount and the computed solution (model space) are sho\vn in Fig. 6(n) and the rnis crrors between the geoid data and the 
geoid heights computed from the a püsrcriüri model (data space) are shown in Fig. 6(b). This data set comprises two tracks 
extracted from the refcrence-simulated geoid heights to which a noise of 5 cni has been added. These simulations have been 
performed using L, = 0.2". In the model space, the best agreement between the reference and computed topographies is 
achieved when using o;, = 350 m. This value of a priori uncertainty corresponds to the square root of the auto-covariance of 
the simulated topography. The worst agreements in tlie model space are achieved with the extreme values of u" = 4500 ni (the 
sea-floor depth) and o;, = 100 ni. The results in the data space show that these values correspond to inadequate information. 
For u" = 3500 m, this large value corresponds to a very weak n priori constraint on the solution. The  geoidal signature of the 
posterior topography obtained using this value of cr0 approaches the data values better than the data uncertainty (1.5 cm rnis 

Data type 
-et- geoid heights 

gravity anomalies 

800 

[700 

iteration number 
i 2 3 4 5 6 

iteration number 

600 
h 

E 
v 

500 L 

m 

E 

n 

L 

m 

Figure 3. Errors duc to the lincarization sehenie lor geoid hcights and for gmvity anomalies. The errors are computed as the diKerence 
between the a poslcriari solution and Lhe refercncr topography. l'lic rnls diflcwnce (a)  alid tlie extreme absolute dilTerence (b)  are shown. 
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Figure 4. Errors related to the value of the correlation length L,  used in the LI priori information. The crrors are computed as the difference 
between the a posreriori solution and the reference topography. The rnis difference (a) and the extreme absolute difference (b) are shown. Thc 
data set used is made up of the two geoid tracks with 5 cm (rnis) nois? added. 

difference instead of 5 cni for the data uncertainty). Conversely, the sniall value of u"= 100 n i  restraints the solution too closeIy 
to the a priori value and the  rms difference in the data space is larger (7.3 cm) that the data uncertainty. 

The I I  posteriori solutions have an  auto-covariance intermediate between the one entered in IZ priori and the actual one 
(mean L,  = 0.2 and u. = 330 m). From 30 tests computed with L, values of 0.001", 0.1", 0.25", 0.35" and O S " ,  and u. values of 
100 ni, 350 111, 500 ni, 1000 m, 2500 m and 4500 ni, it appears out that the value of L, for the auto-covariance of the a posteriori 
solution lies within 0.15" and 0.24") and that the value of the variance Iies within 250 ni and 400ni. Clearly, these two 
parameters can thus be adjusted in two or three runs in order to largely reduce the errors previously pointed out. This step is 
also important when dealing with the a posteriori uncertainties. According to  eq. (3)) these are strongly related to the a priori 

- 
II) a, - g 0.6- .- 
II) c 

.- E 0.4- 
2. 
c 
O .- 
- 0.2- 
F 
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Do =330m 

along the latitude axis 

along the longitude axis 

--_ - 
0.0 i 

0.0 0.2 0.4 0.6 0.8 1 .o i 2 

distance lag (deg) 
" 

I 
Figure 5. Auto-covariance of the reference topography. The auto-correlation (auto-covariance normalized by its variance) is displayed and the 
square root of the variance, vt8, is indicated. The t\vo curws stand l'or the correlation along tlic longitude and latitude ascs. pointing out the 
Slight anisotropy prcscnt i n  the refereilcc topography. 
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Figure 6 .  Errors related to the value of the uncertainty used in the ( I  priori information. The errors are computed as the difference between 
the o posteriori solution and the reference topography. The rms dillerence (a) and the extreme absolute difference (b) are shown. The data set 
used is mode of the two gcoid tracks with 5 cm (rms) noise added. 

covariance and are  upper bounded by the a priori uncertainty c0. Thus, realistic a posteriori uncertainties require that the a 
priori covariance function be  finely determined by iterative fitting. 

3.3 Errors due to the data uncertainties 

The model parameters produced by the  inversions also depends on the error function of the data. As far as geoid heights are 
concerned, the data errors may be restricted to two sources. First a re  the measurement errors that can b e  modelled by a Dirac 
function. Second is a long-wavelength error. The  gravitational signature of the volcanoes only represent the short wavelength 
part of the geoid heights. Even when removing a long-wavelength reference field to the data and performing a cross-over 
adjustment, all the long wavelengths unrelated to the current problem cannot be exactly removed and it has to be  accounted in 
the budget of data errors. For  gravity anomalies and bdthymetric data, only the measurement errors have been considered. 

The  results of the simulations relating to the measurement errors are presented in Fig. 7 for the data sets of the geoid and 
gravity anomalies. For these simulations, the measurement errors consist of a random value within different bounds added to 
the  data simulating a white noise. The  bounds are 5 cm, 10 cm and 20 cni for the geoid data and 6 mGal and 15 mGal for the 
gravity data, 5 cm are representative of data from Geosat, ERS-1 and Topex/Pose^don, 10 cm for Seasat and 20 cin for Geos-3 
(Sailor Sr LeSchack 1957). G inGa1 and 15 mGat are for shipborne data of good and bad quality respectively. The  base data sets 
are the reference grids. They show that good results may be expected with the recent satellites even with data from Geos-3 (not 
taking into account the  numerous spikes present in this data set). When measurement noise is as large as 1Ocni, no 
improvement can be obtained by iteration. As far as the gravity anomalies are concerned, good results are still obtained with a 
GniGal measurement error but 15mGal  seems to be the upper limit of usable data since errors remain large and are not 
improved by iterations. 

The  other important source of error in the geoid data is the presence of a long-wavelength signal unrelated to  the volcano 
gravitational signature. This case has been simulated by removing a constant bias of the two geoid tracks extracted from the 
reference geoid grid. When this geoid data set is used alone, tlie errors (reference topography minus a powriori topography) 
appear as a 2-D undulation over the grid (Fig. Sa): the errois are rather low for the wll-resolved mudel points (along the data 
tracks) but the few resolved grid points present well-pronounccd topogi sphic lo\\s. Indeed, the central topographic high 
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Figure 7. Errors related to the data-measurement uncertainties, computed as the difference between the a posteriori solution and the reference 
topography. The rnis difference (a) and the extreme absolute difference (b) are shown. The data set used are the geoid and gravity grids with 
white noise added. For geoid height measurements, an additional noise of 5 cm simulates measurements from the Geosat, ERS-1 and 
Topex/Poséïdon altimeters, 10 cm is used for Seasat and 20 cm for Geos-3. For gravity-anomaly measurements, 6 mGal and 15 mGal stand 
for respectively good- and bad-quality data. 

generates positive geoid heights all along the data tracks and the topographic lows are  necessary to provide the negative data 
values a t  the boundaries of the grid. Although the overall height of the seamount is correctly restored, this result is not 
satisfactory since a posreriori values far from the a priori solution for few resolved model parameters are characteristic of a n  
inconsistency between the data set and the linear operator. When a bathymetric track is added to the data set (see Fig. 2 for 
location), the errors for the few resolved model points are even larger (Figs 8c and d) and the global rms error is increased: 
510m in cases (c)-(d) instead of 460111 in cases (a)-(b). This must be due to a second inconsistency between the two sets of 
data. 

I t  thus appears necessary to account for such an error in the data covariance matrix. It has been introduced as a Gaussian 
covariance of variance = (-0.3 m)* and correlation length much larger than the size of the  studied area. It has been applied to 
all the geoid height data in a simulation identical to  that presented in case 8(c), the result of which is shown in Fig. S(e). T h e  
overall error is greatly reduced (rms of 33 m, see Fig. Sf). All the model points have low errors whether they are well resolved 
or not. 'The inconsistency that was previously accommodated by the model points mostly constrained by the only a priori 
inforniation is then properly accounted for by the introduction of this long wavelength in the data covariance matrix. It must 
be noted that when geoid heights a re  the only available data type, entering such a long-wavelength covariance may make the 
sum matrix in eq. (1) improper for inversion. The  best way to handle this problem is a trail method, adding different constant 
values to  the geoid heights until the undulation is minimum. This procedure requires that the data set is selected in such a way 
that some model parameters remain unresolved in order that the inconsistency can be  highlighted. 

3.4 

Simulations have also been performed in order to test the effcct of non-exact values for the geophysical parameters such as the 
lithospheric stifiness o r  the volcano density. Thcse simulations have bccn performed with go = 1000 m and L, = 0.2". The  data 
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computed as the difference between the reference topography and the I I  posteriori topography i n  (a). 'That the data kernel and data values are 
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E Figure 9. Errors related to the value of the geophysical paranieters used to compute thc data functional and tlie linear operators. Two 
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f 
f 

t 
Tbc errors are computed as the difference between the n posteriori solution and the reference topography. The rilis difference (a) and the 
estreme absolute difference (b) are shown. The data sct used is niade of the two geoid tracks (noiseless). i 

set is the couple of geoid tracks extracted froin the reference geoid (no noise added). T h e  various cases, tlie results of which are 
shown in Fig. 9, are: for the reference case, a stiffness D of 7.1OZ2 Nni and a load density p v  of 2.G103 kg m-3; for case 1, an 
overestimate of D (1.51023 Nm) and an underestimate of pu (2.5 lo3 kg m-3); for case 2 an  underestimate of D (1.0 10"Nni) 
and an overestimate of p ,  (2.5 lo3 kg m-'); for case 3 an overestimate of D (1.5 1023Nm) and an  overestimate of p,, 
(2.5 lo3 kg ni-3); and  for case 4 an underestimate of D (1.0 loz2 Nm) and an underestiniate of pu (2.5 lo3 kg mP3). The  lowest 
errors are obtained in case 1 and the largest errors in case 4. Indeed, tlie stiffness and the load density act in  opposite ways: the 
larger the load density, the sinaller the  volume needed to produce a given gravitational signature and the larger the assumed 
stiffness for the lithosphere, the larger the plate deflection and volume of the negative density contrasts within the plate and the 
larger the load to  produce the  observed signature. In addition, the a posfrriori model is less sensitive to wrong estimates of the  
stiEness than those of the load density. In any case, it seems better to overestimate the stilfness than to underestimate it and, 
consequently, to slightly underestimate tlie load density if not well known. 

3.5 Simulation o f  a realistic case 

Finally, the results of a simulation in a realistic case are shown in Fig. 10. In this case, the model parameters are computed 
using the reference geoid grid, undersampled to olle dala point every 10 k m  with 5 cm white noise added; the stiffness and load 
density are assumed to be D = loz3 Nni (overestimated) und p,, = 2.5 lo3 kg inv3 (underestimated), respectively; the (7 priori 
information is L, = 0.3" and wo = 500 in. The u po.sferiori semiount topography illustrated in Fig. 10(a) is clearly a good result 
since the rnis of the errors (difference between rcfcrencc und oorrip~lted topographies) is lcss than 50 m. Indeed, when a profile 
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Figure 10. Exsmple of a posteriori topography in a realistic ciise (the computation is made with slightly wrong values for the parametcrs, 
which should be unknoi+n: D = 10’ Nni, pc = 2.5 g ~ m - ~ ,  L ,  = O.?, u. = 500 m). In (a) the data set used is the geoid grid undersampled at one 
data point every two grid points in both dircctions. A 5 cm white noise is added to the data valurs. The rnis error is 46 in. In (b) the profiles of 
bathymetry and gravity anomalies are added to the previous data set. The rms error is 33 in. 

of bathymetry and gravity ano~nalies is added to the data set, there is no significant improvement of the overall errors (see Fig. 
lob). Posterior uncertainties are shown in Fig. 11 for solutions using geoid heights 01i1y (Fig.‘l la) and with the addition of the 
profiles of the bathymetry and gravity anomalies (Fig. 1 lb). They vary from 69 to 170 in in the first casc and from 13 to 170 in 
when the profiles are added. The  largest values occur at the grid boundary. If these grid points are omitted, the largest 
uncertainties are 80 In in both cases. The posterior uncertainties obtained wlien using the geoid heights and the bathymetric 
and gravimetric profiles a re  coinpared to the actual errors in Fig. 12. The  uncertainties a re  larger than the errors for 95 per 
cent of the grid points, and only four grid points out oi  Ci25 prcscnt an errur twice as large as the computed uncertainty. This 
result means that all the components that enter into the computation of these uncertainties are properly taken into account. 
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Figure 11. A pmrrriori uncertainties associated with the topclgraphics it1 Fig. 10. 

These components are the data kernel, the spatial distribution of the data, their error fu~ictions and the c1 priori information. In 
actual practice, this last term is the m 0 S t  diilicult to adjust. Indeed, if the studied feature is far too irregular as regards the data 
coverage (high cnergy at  unsampled wavelengths), the selected covariance function is not adequate alld significant errors occur 
that cannot be handled e:ven iteratively. This point is d8bor;itcd U l m 1  i n  the following chapter, which addresses the study of a 
seamount already surveyed. 

4 C A S E  STUDY 

S6 is a seamount in French Polynesia, South Pacific, ~vhich W:IS f rs l  detected using altimetric data (Sandwell 1984). The  
scalnount location proposed in that stud)] W S  :thout 35 km soul11 o f  tlie actual one and :i more precise determination was given 
by Baudry et 171. (19S7). A shipboard coiilirmation wis prrfoi-nicd during the SEAPSO-5 cruise aboard the R/V Jean-Charcot 
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Figure 12. Posteriori uncertainties (case lob) versus error relative to the rcference topography. 

' f  

(Baudry & Dianient 1987). The  topography of this seamount has been modelled by Baudry & Calmant (1991) using Fourier 
Transforms to  convert the geoid grid into a bathymetric grid. This seamount has two well-differentiated peaks and 
consequently it is noticeably different from the somewhat idealized seamount previously used for the simulations. Last, the two 
Seasat tracks used in this study pass over the peaks and the central saddle is not sampled. 

The  grid used for the definition of the model parameters is 1.3" X 1.3" large, centred at 24.1"s of latitude and 203.7"W of 
longitude, and the grid step is 0.05" in both directions (i.e. 728 bins). The  data set available over this seamount comprises a pair 
of Seasat tracks that each pass over one peak, and a shipborne profile of bathymetry and gravity anomalies from SEAPSO-5. 
For the purpose of this study the bathymetric and gravimetric profiles have been binned according to the grid, the  average 
of the data over each grid element providing the data set and the associated variances providing the corresponding 
data uncertainty (Figs 13a and b). This bathymetric profile is further used to test the computed topography. The  values used 
for the computations are D = 10" Nm and pu = 2.6 lo3 kg m-3 for the flexural rigidity and the load density, respectively. 
The crustal model is: layer 2 with a thickness of 2.5 km and a density of 2.6 lo3 kg ni-' and a layer 3 with a thickness of 5 km 
and a density of 2.9 lo3 kg the mantle density is 3.35 lo3 kg m-'. Fig. 14 illustrates the seamount topography computed 
using: (a) the altimetric data, (b) the discretized gravity anomalies, and (cl all the data; along a roughly east-west-trend- 
ing profile (this profile does not cross the summits). These solutions have been reached by iteratively adjusting the  a priori 
covariance function. T h e  final values are L, = 0.2" (no anisotropy could be clearly pointed out) and cr,= 400 m. The  data have 
been bias adjusted in the altimetric solution so as to  minimize the artefacts described in Section 3.3, and in the complete solut- 
ion a long-wavelength error of 0.2 m in amplitude has been accounted for in the error function associated with the  altimetric 
data. 

The  altimetric solution (a) appears slightly less accurate than the gravimetric solution (b) since the rms error in (a) is 46 m 
compared to 43 m in (b). However, the displayed values correspond t o  more poorly resolved grid points for solution (a) than 
for (b) and thus to  grid points where the solution is more sensitive to  the a priori information. The  largest errors in  (a) occur 
where the actual bathymetry presents noticeable slope variations and the a priori covariance function is not able to  provide this 
information. Accordingly, the altinietric data set is not able to  resolve the two-peak shape as no topographic low is present a t  
the centre of the computed feature (Fig. 15a). Neither does the gravimetric solution (Fig. 15b), nor the complete solution (Fig. 
1%). This is due to  the large data uncertainties associated with the binned profiles. These large uncertainties are due  to  the 
large standard deviations of the bathymetry within the bins in this area. For  the gravity anomalies uncertainties a re  6 mCal. 
Although it is realistic in terms of measurement accuracy, this filters out the high frequencies in the data set. The way to obtain 
this central low with altimetric data would be  to  make the computations for smaller discretization steps. This would require 
denser altimetric data sets. This might be achieved using 1OIlz data of altimetric missions dedicated to dense coverage such as 
the Geosat Geodetic Mission. 

. .  
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Figure 14. Study of seamount SG. Posterior solution along an E-W-trending profile. The data coordinates (dots) and the location of the 
displayed profile (line) are given in icon. The shaded areas represent the posterior topography (bottom) and uncertainties (top). The barred 
dots stand for the binned bathymetry and the associated uncertainty. Crossings between the displayed bathymetric profiles and the Seasat 
profiles used as data set are indicated. (a) Solution using Seasat data only. Crossings between the displayed bathymetric profiles and the Seasat 
profiles used as data set are indicated. (b) Solution using binned gravity anomalies from SEAPSO-5. (c) Solution using Seasat data and binned 
profiles of bathymetry and gravity anomalies from SEAPSO-5 data. 

5 CONCLUSION 

The presented modelling, based on a least-squares inversion with u priori information, is indeed able to  provide realistic values 
for the topography of a submarine volcano from geoid heights, whether o r  not this data set is completed with bathymetry 
and/or gravity anomalies data. With Seasat data only, the addition of shipborne data noticeably improves the solution, but 
when the data set of altimetric geoid heights is dense enough (5 kni data spacing could b e  rapidly available by merging data 
from the Geodetic Mission of Geosat, Topex/Poséïdon and ERS-l), the bathymetric and gravimetric data will mostly provide a 
control information about the consistency between the geoid data and the linear operator. 

As the parameters of the u priori covariance function (variance and correlation length) cannot be  accurately defined in 
advance and since erroenous values may affect the results, these parameters can b e  iteratively adjusted by comparing the 
auto-covariance of the n posleriori topography with the LI priori values, within the limits of the wavelengths actually sampled to 
avoid aliasing effccts. When using the dense coverage data to come, the a priori information will be less crucial than in  the 
examples presented here. 

Using the method presented in this paper, the computation of gridded bathymetric values from all the bathymetric and 
altimetric data can now be envisaged even on sinal1 computers (the present work has been achieved on a workstation with only 
32Mb RAM and each solution took less th3n one hour to be attained). Bathymetry data are able to  restore the long 
\vavelenglh in the bathymetry. Altilnetry data can be converted in short-wavelength bathymetry. A bathymetric grid computed 
in taking advantage of both data sets would represent a dramatic improvement from the existing bathymctric data bases such as 
ETOPO-5 (Smith 19Y3). This work is now conducted on the EEZ of New Caledonia as a part of the French National Program 
for the valuation of the EEZ of the French Oveisen 'r'erritorics. 
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A P P E N D I X :  LINEARIZED F O R M  O F  THE DATA FUNCTIONALS 

A l  The surface elenlents associated with the ntodel parameters 

The computation area S is divided in elementary areas IQ(r ) ,  solution of the integration over dB and d h  for each arca element 
[AQ(r), Ah(r ) ]  centred a t  [e(r), A(r)] with e(r) the colatitude and h(r)  the longitude: 

( A l . l )  

A2 The Iithsopheric density contrasts 

The elastic deflection of the  upper lithosphere under the weight of a volcano generates lateral density contrasts, the  gravity 
signature of which has to be  accounted for when dealing with the gravity signature over a marine volcano. Lct us consider a 

I standard lithosphere with an upper crustal layer (layer 2) of thickness r2 and density p 2 ,  a lower crustal layer (layer 3) of 
thickness t, and density p 3  overlying a mantle of density p,, , .  The volcano density is denoted pu and the water density pIY. The  
sediments filling the flexural inoats are assumed to  have the density p , .  The deflection 6w due to a point load P is given by 

D V 6 l V  4- y(&, - p v ) 6 w  = P (A2.2) 

where D is the stiffness of the equivalent elastic plate and where ~ ( p , , ,  - ps)Siv is the Archimedes force due to the buoyancy of 
the crust deflected within the  lithospheric mantle. 

I 

Using P = y ( p ,  - p,,,)AQb the 3-D solution of eq. (A2.2) is (adapted from Tisseau-Moignard 1979): 
I 

(A2.3) 

i with 

! 
I 

c y =  (A2.4) ci" Y(P,,, - P S I  

, 
i 
, 
i 

with A the angular distance between the location of the load and that of the computed deflection. Kei is the Kelvin function 
and cy is called the flexural length. In the case of a distributed load P(r) = y ( p ,  - p,,)AQ(r)b(r), the deflection iv(r') is given by 
the sum of the elementary deliections in eq. (A2.3): 

(A2.5) 
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According to the assumption of an elastic upper lithosphere, this deflection is undergone by all its density interfaces. It then 
generates three lateral density contrasts a t  successively the load-layer 2 interface (pU--p2), the layer 2-laper 3 interface 
and at the Moho (p,-p,,).  

identical to that of t he  root. The thickness t(r) of this root is given by the isostatic equilibrium: 
In the case of a locally compensated structure (Airy coinperzsatiotz, (Y = O ) ,  the density of the structure is taken to be 

(A2.6) 

It is important to note that w(r) and t(r) are'linear combinations in b(r). Linear combinations in iv(r) or t(r) thus constitute 
linear combinations in  b(r). 

A3 Data functionals and linear operators for geoid height data 

The geoid height N ( s )  due to a density anomaly Ap distributed over a volume V is (Brun's formula): 

r du 

y 
N ( s )  = - ApJ 

v d a 2  + H2- 2aR cos $' 
(A3.1) 

where $ is the angular distance between s and the centre of the mass element du. r is the gravitational constant, y the mean 
gravity acceleration at  the surface of the Earth, a is the Earth radius and R the distance between the centre of the Earth and 
the mass element. Using du = R2 sin 8 d B  d A  dR, eq. (A3.1) is rewritten: 

with 

''(R' ICI) da2 + R2 - 2aR cos $ '  

R" 

(A3.2) 

(A3.3) 

S is the projection of the volume V onto the surface of the Earth. Rsup and Ri,,,. are the distance from the centre of the Earth 
to, respectively, the top and the bottom of the mass element. The  primitive %(R, $) of u(R, $) is: 

1 a' 
2 2 

Q(R,  $ # O )  = - ( R  + 3a cos $)va2 + R 2  - 2aR cos $ - - (1 - 1 R - a cos $ 
3 cos' $) Argsh (A.3.4a) 

and 
%(R, IC, = O )  = - fR2 - aR - a' Ln (a - R) .  
Argsh ( ) is the inverse hyperbolic sine and Ln ( ) the natural Logarithm. $ is the angular distance between r and s. 

(A3.4b) 

A3.1 Data functiorials 
The data functional g,,, is the discrete form of eq. (A3.2), combined with eq. (Al.1) and calculated for either the bathymetric 
feature b(r) and the  lithospheric density contrasts, the geometry of which is given by w(r) in the context of regional 
compensation (flexural parameter cc f O). 

In the context of regional compensation, gG),(s, (Y # o) is given by: 
r 

gGH(s, Cl # O )  =- An(r){(pu - P ~ v ) [ ~ ( ~ s f  + b(r), $sr)  - qfr(Rsf> $sr)] + (Ps - p2)[q'!(R.vf + "('), $A,) - q'(Rsfj $sr) ]  
Y r f z s  

+ (P" - P 3 ) [ w 7 2 / 3  + w(r ) ,  hr) - 071(&3, kJ1 + ( P 3  - P , , l ) [ w L  t- w, $ s J  - WRtm $ J I } -  (A3.5) 
In context of local compensation, g,,,(s, (Y = O) is given by: 

r 
gGH(s, (Y = O )  =- 2 An(r){(pu - pw)[Q(Rsf -k b(r), @sr) - $sr) ]  (pu - p,n)["rll(Rm + f (r>,  $sr> - "71(Rm, @3r)1} (A3'6) 

Y C € S  

$Ar is the angle between s and r. 

A3.2 Linear operators 
Eq. (A3.5) and eq. (A3.6) a re  not linear in the height Iz(r) of the mass element, whatever it is b(r), w(r) or  t(r). A first-order 

development is then used to  generate a linearized functional. Since h(r)  << R, setting Rrcr = Rsup - - = 

thus the barycentre of the mass element) in eq. (A3.2), the evaluation of the integral in R, %(Rsup) - %!(Ri,t), is replaced by the 
following first-order development: 

11 (r) h(r) Rinr + - ( R ~ ~ ~  is 
2 2 

(A3.7) 
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, For the sea-floor topography, h(r) represents b(r). For the lithospheric interfaces, 1z(r) represents w(r) or t(r). The computation 

’ ÍI ’ I í  (A3.S) 
I I  

(!i 
j j :  
I I  

1 Now, from eq. (A3.S), eq. (A3.S) and eq. (A2.5), the operator G,,(r, s, z = GH, (Y f 0)-linearized form relating a model I 
parameter to a datum of geoid height in context of regional compensation-is then, at the rzth iteration: 

G,,(s, r, z = Gli ,  CY #O) 

(A3.9) 

’ 
From eq. (A3.5), eq. (A3.S) and eq. (A2.6), G,t(r, s, T = GU, (Y = 0)-linearized form relating a model parameter to a datum of 
geoid height in context of local compensation-is, at the rzth iteration: 

A4 

The same developments are made for the gravity anomalies. These are primarily given by: 

Data functionals and linear operators for gravity-anomaly data 

(A3.10) 

(A4.1) 

and eq. (A4.1) is rewritten as foIlovus: 

(A4.2) 

I 
Í 

, with 

(a  - R)R* 
y a 2  -t R2 - 2aR COS J / 3 ’  

i ,  P ( R ,  J J )  = 

P ( R ,  J/),  the primitive of ¿l(R, J / )  is given by: 

(3 - 4 COS J / )  
a2 + R’ - 2aR cos ì,l/ 

/t(R, I(/ Z O )  = -\/a2 + R2 - 2aR cos J / )  + a(1-  3 cos2 J / )  Argsh [ is;:; J / ]  - 

and 

(1 - 5 cos J/ + 4 cos’ $)(R - a cos J / )  
sin’ $va2 + R2 - 2aR cos JJ 

- a  

(A4.3) 

t .  , 

t 
(A4.4a) 
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A3.2 Linear operators 

The  linearized form Ag*(s) of eq. (A4.1) is: 

(A4.7) 

From eq. (A4 .9 ,  eq. (A4.7) and eq. (A2.5), the operator G,,(r, s, T = GA, CY ?r: 0)-linearized form relating a model paramete, 
to a datum of gravity anomaly in context of regional compensation-is then, a t  the n th  iteration: 

G,,(s, r, z = GA, CY # O) 

From eq. (A4.5), eq. (A4.7) and eq. (A2.6), the operator G,I(r, s, T = GA, CY = O),  linearized form relating a model paranleter to 
a datum of gravity anomaly in context of local compensation, is: 

AS A priori information 

If the structure that the submarine topography of which is to be computed is known to be elongated, this can be entered 
amongst the a priori information. Indeed, the auto-covariance of the topography also reflects this anisotropy. It can thus be 
modelled by a correlation length that varies with the azimuth in the computation of the LI priori covariance matrix. In an 
elliptic approximation, three values of correlation lengths are necessary for three azimuths (adapted from Kearsley 1977): 

~ , ( a )  = LJO)  cos cy - L,(:) sin a](cos cy - sin cy) + I,,(:) sin 2a (A5.1) [ 
where CY is the azimuth of the rr' arc. 


