Reprinted from The Journal of Organic Chemistry, 1992, Vol. 57.
Copyright © 1992 by the American Chemical Society and reprinted by permission of the copyright owner.

The Natural Polypropionate-Derived Esters of the Mollusc Onchidium sp.

Jaime Rodriguez and Ricardo Riguera*
Departamento de Quimica Orgänica, Facultad de Química, Universidad de Santiago, Santiago de Compostela, 15706, Spain

Cécile Debitus
Cnoun Fonas Docmanaire
Centre ORSTOM, B. P. A5, Noumeâ Cedex, New Caledonia
Received January 27, 1992

Abstract

Eight new polypropionate-derived esters (5-8 and 10-13) have been isolated from pulmonate molluses of the genus Onchidium collected in the South Pacific. The structures of these compounds were determined spectroscopically in particular by one- and two-dimensional NMR and low and high EIMS. The absolute stereochemistry of the seven asymmetric centers was determined by using the Trost-Mosher methodology. Saponification afforded two triols named onchitriol I and II (4 and 9, respectively). Compounds 4-13 displayed in vitro antitumor activity against several cell lines. Onchitriol I and II had antiviral activity also

Introduction

The marine mollusc phylum has been the object of intense chemical scrutiny by several research groups. The initial interest was prompted by reports that colorful, shellless molluscs which appear to be highly vulnerable to predation might utilize defensive secretions. ${ }^{1}$ The pulmonates of the family Onchidiacea inhabit the rocky intertidal zones of many tropical shorelines and are known to contain epidermal glands described as "repugnatorial". These molluscs have proved to be a rich source of in vitro cytotoxic ${ }^{2}$ and in vivo antineoplastic ${ }^{3}$ substances of novel molecular types. One of the first examples was onchidal a defensive allomone of Onchidella binneyi. ${ }^{4}$

The most interesting compounds isolated from these species have a propionate-based biogenetic origin and posses a linear or cyclic polypropionate carbon skeleton.

[^0]According to Faulkner, three general classes can be distinguished: ${ }^{5}$ the simple polypropionates, such as denticulatin A^{6} the α-pyrones, exemplified by diemenesin; ${ }^{7}$ and the γ-pyrones like siphonarins A and B. ${ }^{8}$ The γ-pyrones include the polyhydroxylated peroniatriols I and II $(1,2)$ and ilikonapyrone (3), which were isolated from the saponified extracts of Peronia peronii ${ }^{9}$ and Onchidium verruculatum, ${ }^{10}$ respectively; these compounds have a linear structure containing two γ-pyrone rings, three hydroxyl groups, and other asymmetric centers.

The general structure and relative stereochemistry of the acetonide of $\mathbf{3}$ were established by X-ray analysis, and
(5) Manker, D. C.; Faulkner, D. J.; Stout, T. J.; Clardy, J. J. Org. Chem. 1989, 54, 5371
(6) Hochlowski, J. E.; Faulkner, D. J.; Matsumoto, G. K.; Clardy, J. J. Am. Chem. Soc. 1983, 105, 7413.
(7) Howcholowski, J. E.; Faulkner, D. J. Tetrahedron Lett. 1983, 24 1917.
(8) Howcholowski, J. E.; Coll, J. C.; Faulkner, D. J.; Biskupiak, J. E.; Ireland, C. M.; Zheng, Q.; He, C.; Clardy, J. J. Am. Chem. Soc. 1984, 106 6748.
(9) Biskupiak, J. E.; Ireland, C. M. Tetrahedron Lett. 1985, 26, 4307
(10) Ireland, C. M.; Biskupiak, J. E.; Hite, G. J.; Rapposch, M. Scheuer, P. J.; Ruble, J. R. J. Org. Chem. 1984, 49, 559.

Chart I

Chart II

Onchitriol $\mid A, R_{1}=H, R_{2}=A_{3}=A c, 5$
Onchitrol \& $B, R_{1}=H, R_{2}=(C O) E t, R_{3}=A c, 6$
Onchitriol I $C, R_{1}=H, R_{2}=A c, R_{3}=\{(C O) E t, 7$
Onchitriol ID, $R_{1}=A c, R_{2}=R_{3}=(C O) E t, 8$

Onchitriol II $A, R_{1}=R_{2}=H, R_{3}=A c, 10$
Onchitriol il $B, R_{1}=R_{2}=H, R_{3}=(C O) E t, 11$
Onchitriol II C, $R_{1}=R_{2}=R_{3}=A c, 12$
Onchitriol II D, $R_{1}=R_{3}=A c, R_{2}=H, 13$

Figure 1. Partial structures of onchitriol I A (5).
those of 1 and 2 were originally inferred by comparison of their NMR data with those of 3 ; synthesis of the optically active left wing ($\mathrm{C} 1-\mathrm{C} 10$) fragment has recently allowed the correction of the configuration at C4. ${ }^{11}$ The absolute stereochemistry of ilikonapyrone (3) could not be deduced from its X-ray data, and that of peroniatriols I (1) and II (2) remain unknown also.

In this paper we describe the isolation and relative and absolute stereochemistry of eight cytotoxic acetates and propionates ($5-8$ and $10-13$) isolated from a so far undetermined Onchidium sp. Compounds 5-8 are esters of the same triol 4 named onchitriol I while 10-13 are esters of another triol 9 onchitriol II.

Isolation and Characterization

Molluscs of the genus Onchidium were collected by scuba diving at Chesterfield atoll in the Mouillage islands, 450 km northwest of New Caledonia. $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was obtained and partitioned between aqueous methanolic mixtures and n-hexane, $\mathrm{CCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and n - BuOH (see Experimental Section). The CCl_{4} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fractions

[^1] 1990, 31, 5491.
showed cytotoxic activity in vitro against KB human epidermoid carcinoma cells.

Bioassay-directed chromatographic separation of the extracts resulted in the isolation of compounds 5-8 and 9-13. Flash chromatography on silica gel, followed by reversed-phase HPLC, afforded onchitriol ID (8), II C (12), and II D (13) from the CCl_{4} extract; onchitriol I A (5), I B (6), I C (7), II A (10), and II B (11) were isolated from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract.

Compounds 5-8. Onchitriol I A (5), the major component of the mixture, was obtained as a colorless amorphous powder. High-resolution EI mass spectral analysis gave the molecular formula $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{9}$ (observed 628.3613 , required $628.3611, \Delta=0.2 \mathrm{mmu}$), indicating 11 degrees of unsaturation. The infrared spectrum of 5 contained hydroxyl ($3300 \mathrm{~cm}^{-1}$), ester ($1730 \mathrm{~cm}^{-1}$), and dienone ($1660 \mathrm{~cm}^{-1}$) bands. ${ }^{1} \mathrm{H}$ NMR signals in the 2 ppm region indicated that the ester function was due to two acetate groups.

The partial structures a, b, cand d (see Figure 1) were deduced from ${ }^{1} \mathrm{H}$ NMR spin decoupling and Relay COSY experiments. The chemical shifts of the protonated carbons were assigned by a $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation experiment (HMQC). ${ }^{12}$

Assignment of the C1-C4 portion (partial structure a) was straightforward upon inspection of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, which showed an ethyl group contiguous to a hydroxyl group and a methine proton (both at C3) which in turn are contiguous to a methyl substituent and methine proton at C4.

The structural subunit \mathbf{b} is characterized by a E-double bond and a methylated methine group at C10. The partial structure \mathbf{c} was shown by the presence of two acetates and signals corresponding to protons H 13 and H 15 at $\delta 5.238$ $(\mathrm{d}, J=10.6 \mathrm{~Hz})$ and $\delta 5.626(\mathrm{dd}, J=10.3$ and 2.1 Hz) vicinal to another two methines (C14 and C16). Finally, substructure d is a normal ethyl moiety.

Examination of long-range homonuclear ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling (using the 2D Relay COSY sequence) and long-range heteronuclear ${ }^{13} \mathrm{C}-1 \mathrm{H}$ coupling (HMBC sequence) ${ }^{13}$ together with NOESY experiments enabled the above spin systems to be put together.

Three-bond coupling of the vinyl proton H11 ($\delta 5.893$) with C13 and between H14 ($\delta 2.220$) and C12 ($\delta 133.47$) permitted us to deduce that subunits \mathbf{b} and \mathbf{c} are bound together. The E configuration of the double bond was deduced from the NOESY spectrum which shows a NOE cross-peak between the H 13 resonance and the vinyl proton H 11 and was confirmed by the ${ }^{13} \mathrm{C}$ chemical shift of the vinylic methyl group at $\delta 11.69 .^{14}$

The highly deshielded protons, $\mathrm{H} 4, \mathrm{H} 9, \mathrm{H} 16$, and H 22 correlate with carbons in the $30-43 \mathrm{ppm}$ region, indicating that they are not bound to oxygen and must thus be vicinal

[^2]to tetrasubstituted dienones. The quaternary signals at $\delta 179.02,161.65,159.87,159.06,119.85,118.93,118.01$, and 117.39 agree with two fully substituted γ-pyrone rings bearing methyl groups on the β carbons (${ }^{1} \mathrm{H}$ NMR $\delta 186$, $2.159,2.070$ and 2.046). Thus, the spin systems a and d are linked to γ-pyrone rings through C 4 and C 22 , respectively.

Fragments a-d can be connected to give either an ilikonapyrone like structure ($\mathbf{a}-\mathrm{c}-\mathrm{b}-\mathrm{d}$) or a peroniatriol-like one ($\mathbf{a}-\mathbf{b}-\mathbf{c}-\mathbf{d}$). These two different structures ($\mathbf{5 a}$ and $5 \mathbf{b}$, see Figure 1) are not easily distinguishable by NMR; the actual arrangement was deduced from the low-resolution mass spectrum (EIMS, see Scheme I), which showed relevant peaks at $m / z 449,407,349$ and 307 that could only be explained as deriving from structure 5 a.

The isomeric onchitriols I B (6) and I C (7) were also isolated from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction, being obtained as colorless amorphous powders by HPLC on an octadecylsilane column. Their HREIMS spectra afforded the molecular formula $\mathrm{C}_{37} \mathrm{H}_{54} \mathrm{O}_{9}$ ($\Delta=0.7 \mathrm{mmu}$ for $6, \Delta=0.0 \mathrm{mmu}$ for 7). Both have have one more CH_{2} group than 5; their ${ }^{1} \mathrm{H}$ NMR, UV, and IR spectra were almost identical with those of 5 , except for having an additional two-proton quartet ($\delta 2.22$ for $6, \delta 2.07$ for 7) coupled with a high-field triplet at $\delta 1.06$ in 6 and 0.95 in 7 , as confirmed by ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY experiments. These data suggested that an acetate group of 5 was replaced by a propionate in 6 and 7 , and since the NMR data for the a spin system of 5 are identical to those obtained for 6 and 7, the acetate and propionate esters must be located at C13 and/or C15. Finally, since the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of 7 showed a cross-peak correlation between the methylene group of the propionate ester ($\delta 2.17$) and both H22 protons ($\delta 2.62$), and since this effect was absent in 6 , compound 7 is the C 15 propionate and 6 the C13 propionate.

Chart III

Additional evidence for the locations of the $0 \mathrm{COCH}_{2}-$ CH_{3} group was provided by the low-resolution mass spectra of 6 and 7 showing the production of stable allylic cation fragments by loss of, respectively, $73\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ and 59 ($\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$) mass units from the molecular ion and by peaks due to McLafferty rearrangement of the left-wing pyrone, which loses $\mathrm{OCOCH}_{2} \mathrm{CH}_{3}$ (73) or OCOCH_{3} (59) (see Scheme I).
Onchitriol ID (8) was obtained from the CCl_{4} fraction by HPLC. HREIMS showed the molecular ion peak at $m / z 698.4040\left(\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{10}, \Delta=2.6 \mathrm{mmu}\right)$. The presence of three ester groups at $\mathrm{C} 3, \mathrm{C} 13$, and C 15 was deduced from the deshielding of protons $\mathrm{H} 3, \mathrm{H} 13$, and H 15 , which were easily identificable from their multiplicities at $\delta 5.34$ (dd, H15), 5.07 (ddd, H3), and 4.81 (d, H13). The position of each ester was deduced as before from the low-resolution electron impact spectrum, which implied the presence of an acetate group on C3 and two propionates in C13 and C15.
Saponification of compounds $5-8$ by stirring in 1% $\mathrm{KOH} / \mathrm{MeOH}$ gave, in all cases, a single triol named onchitriol I ($4, \mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}, \Delta=0.1 \mathrm{mmu}$.), whose per-oniatriol-type structure was confirmed by HREIMS fragments at $m / z 365.2333$ and 307.1928 produced by type a and d cleavage, respectively (see Scheme I).

Compounds 10-13. Onchitriol II A (10) was obtained from the methylene chloride extract. Its molecular formula was determined by HREIMS as $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{8}(\mathrm{~m} / \mathrm{z} 586.3500$, $\Delta=0.5 \mathrm{mmu}$), indicating less esterification than in ${ }^{5}-8$. All ${ }^{1} \mathrm{H}$ NMR signals were corroborated by a ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY experiment, and the ${ }^{13} \mathrm{C}$ NMR signals were assigned by comparison with those of 5 and a DEPT experiment; the deshielding of H 13 at $\delta 5.43(\mathrm{dd}, 1 \mathrm{H}, J=10.5$ and 1.7 Hz$)$ indicates that the acetate group of 10 is borne by C15.

HREIMS of 11 showed a molecular ion at $m / z 600.3676$ requiring the molecular formula $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{8}(\Delta=0.6 \mathrm{mmu})$, 14 mass units more than 10 , and since the spectral data of 11 were very similar to those of 10 it was concluded that 11 differed from 10 only in the replacement of the acetate group at C15 by a propionate group.

Onchitriol II C (12) has the molecular formula $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{10}$ ($\Delta 0.7 \mathrm{mmu}$). The proton chemical shifts observed for H 3 , H13, and H15 ($\delta 5.07 \mathrm{ddd}, \delta 4.82 \mathrm{~d}$ and 5.34 dd , respectively) are in keeping with its having three acetyl groups; the rest of the protons were assigned by ${ }^{1}{ }^{-1}{ }^{-1} \mathrm{H} \operatorname{COSY}$ (see Table II).
The last compound isolated was onchitriol II D (13) which has the molecular formula $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{9}(\Delta=0.1 \mathrm{mmu})$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed geminal ester protons at δ 5.58 (dd, $J=10.3$ and 1.8 Hz) identified as H 13 and $\delta 5.06$ (ddd, $J=9.8,7.5$, and 3.2 Hz) identified as H 3 , indicating that compound 13 is a C3, C15 diacetylated derivative.

Upon saponification, compounds $10-13$ all gave onchi-

Table I. NMR Data of Onchitriol IA (5) from Onchidium
sp.

C	${ }^{13} \mathrm{C}$	HMQC connections ${ }^{\text {a,b }}$	HMBC connections
1	10.25 q	0.957 t. 7.3	H2
2	28.21 t	1.211 m	H1, H3
		1.394 m	
3	75.03 d	3.593 ddd, 8.5, 8.5, 3.0	H2, H4, H24
4	41.95 d	2.770 dq, 8.5, 7.0	H24
5	159.0゙6 s*		
6	$118.01 \mathrm{~s}^{8}$		H25
7	179.02 s		
8	$117.39 \mathrm{~s}^{\text { }}$		H26
9	159.87 s*		
10	34.36 d	$3.677 \mathrm{dq}, 7.0,8.5$	H11, H27
11	132.46 d	$5.893 \mathrm{dq}, 1.2,8.5$	H10, H27
12	133.48 s		H10, H28
13	78.86 d	5.238 d, 10.6	H11, H28, H29
14	35.14 d	$2.220 \mathrm{ddq}, 10.6,2.1,7.0$	H13, H29
15	72.30 d	$5.626 \mathrm{dd}, 10.3,2.1$	H16, H30
16	37.36 d	$3.136 \mathrm{dq}, 10.3,7.0$	
17	$161.65 \mathrm{~s}^{*}$		
18	$119.85 \mathrm{~s}^{\mathbf{\$}}$		H31
19	179.02 s		
20	$118.93 \mathrm{~s}^{8}$		H32
21	161.65 s*		
22	24.65 t	2.270 m	
		2.400 m	
28	19.97 q	$1.190 \mathrm{t}, 7.6$	H22
24	14.06 q	$1.312 \mathrm{~d}, 7.0$	H3, H4
25	$9.67 \mathrm{q}^{\text {* }}$	2.046 s	
26	$9.53 \mathrm{q}^{\text {\# }}$	2.159 s	
27	18.90 q	$1.170 \mathrm{~d}, 7.0$	H10, H11
28	11.69 q	$1.601 \mathrm{~d}, 1.2$	H11, H13
29	8.07 q	$0.916 \mathrm{~d}, 7.0$	H13, H15
30	13.32 q	$1.059 \mathrm{~d}, 7.0$	H16
31	$10.29 \mathrm{q}^{\text {\# }}$	2.186 s	
32	$9.67 \mathrm{q}^{\text {* }}$	2.070 s	
CO	170.86 s		
CH_{3}	20.74 q	1.914 s	
CO	169.95 s		
CH_{3}	19.97 q	1.640 s	

${ }^{a} 500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. Signals with identical superscripts ($*, \$, \#$) within a column may be interchanged. ${ }^{5} \delta_{\mathrm{H}}$, multiplicity, J in Hz .
triol II (9), molecular formula $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}(\Delta=0.4 \mathrm{mmu})$.
Relative Configuration of Onchitriol I and II. The relative stereochemistry of 4 and 9 was determined by comparison of their NMR data with those of the known compound 1-3. The agreement between carbon and proton chemical shifts and vicinal J values for the C10-C16 fragment of 4 and those of 1 and of the analogous system of 3 shows that in all three this segment has the same relative stereochemistry, the 1,3 diol unit adopting a hy-drogen-bonded chair conformation. ${ }^{9}$ Onchitriol II (9) has different $J_{\mathrm{H}_{13}-\mathrm{H}_{44}}$ of 3 Hz , suggesting that H_{13} is now equatorial and the OH axial. Analogously, in both 4 and

Table II. ${ }^{1}$ H NMR Data of Onchitriols I (5-8)

H	δ (ppm), multiplicity (J in Hz)			
	$5^{\text {a }}$	6^{a}	$7^{\text {a }}$	$8^{\text {a }}$
1	0.95 t, 7.3	$0.95 \mathrm{t}, 7.3$	$0.95 \mathrm{t}, 7.3$	$0.83 \mathrm{t}, 7.4$
2	1.40 m	1.39 m	1.40 m	1.42 m
3	3.75 ddd, 7.9, 7.9, 3.5	3.73 ddd, 7.1, 7.9, 3.3	3.72 ddd, 7.1, 7.9, 3.3	5.07 ddd, 8.2, 8.0, 3.4
4	$2.96 \mathrm{dq}, 7.1,7.9$	$2.97 \mathrm{dq}, 7.1,7.1$	$2.96 \mathrm{dq}, 7.1,7.1$	$3.19 \mathrm{dq}, 8.2,7.0$
10	$3.82 \mathrm{dq}, 7.1,8.6$	$3.81 \mathrm{dq}, 7.1,8.6$	$3.82 \mathrm{dq}, 7.1,8.5$	$3.83 \mathrm{dq}, 7.0,8.9$
11	$5.63 \mathrm{dq}, 1.3,8.6$	$5.62 \mathrm{dq}, 1.3,8.6$	$5.62 \mathrm{dq}, 1.2,8.5$	$5.62 \mathrm{dq}, 1.2,8.9$
13	$4.83 \mathrm{~d}, 10.7$	$4.84 \mathrm{~d}, 10.6$	$4.81 \mathrm{~d}, 10.7$	$4.81 \mathrm{~d}, 10.6$
14	2.16 ddq, 10.7, 2.1, 7.0	2.17 ddq, 10.6, 2.0, 7.0	2.15 ddq, 10.6, 2.0, 7.1	2.12 ddq, 9.7, 1.7, 7.0
15	$5.34 \mathrm{dd}, 10.3,2.1$	$5.32 \mathrm{dd}, 10.3,2.0$	$5.36 \mathrm{dd}, 10.3,2.1$	5.34 dd, 10.4, 2.1
16	$3.22 \mathrm{dq}, 10.3,7.0$	$3.22 \mathrm{dq}, 10.3,6.9$	$3.23 \mathrm{dq}, 10.3,7.0$	$3.22 \mathrm{dq}, 10.4,6.9$
22	2.60 q, 7.3	2.60 m	2.62 m	2.61 m
23	$1.25 \mathrm{t}, 7.3$	1.25 t, 7.1	$1.22 \mathrm{t}, 7.1$	1.23 t, 7.5
24	1.20 d, 7.1	$1.23 \mathrm{~d}, 7.1$	$1.23 \mathrm{~d}, 7.1$	$1.21 \mathrm{~d}, 7.0$
25	1.91 s*	1.96 s*	1.97 s*	$1.95 \mathrm{~s}^{*}$
26	1.97 s*	1.95 s*	1.95 s*	1.95 s*
27	$1.19 \mathrm{~d}, 7.1$	$1.20 \mathrm{~d}, 7.0$	$1.22 \mathrm{~d}, 7.0$	1.29, d 7.0
28	1.63 d, 1.3	$1.63 \mathrm{~d}, 1.3$	$1.62 \mathrm{~d}, 1.3$	1.65 d, 1.32
29	$0.92 \mathrm{~d}, 7.0$	$0.90 \mathrm{~d}, 7.0$	$0.89 \mathrm{~d}, 7.0$	$0.89 \mathrm{~d}, 7.0$
30	1.18 d, 7.0	$1.19 \mathrm{~d}, 7.1$	$1.20 \mathrm{~d}, 7.0$	$1.23 \mathrm{~d}, 7.0$
31	1.97 s*	1.91 s*	1.97 s*	1.94 s*
32	1.95 s*	1.79 s*	1.91 s*	$1.91 \mathrm{~s}^{*}$
Ac	1.95 s	1.95 s	$1.95 \mathrm{~s}^{*}$	2.09 s*
Ac	1.79 s			
Et		$2.22 \mathrm{~m} ; 1.06 \mathrm{t}, 7.2$	$2.17 \mathrm{~m} ; 0.95 \mathrm{t}, 7.3$	2.22-2.00 m; $0.93 \mathrm{t}, 7.5$
Et				$2.37 \mathrm{~m} ; 1.05 \mathrm{t}, 7.4$

${ }^{a} 250 \mathrm{MHz}, \mathrm{Cl}_{3} \mathrm{CD}$. Resonances with * may be interchanged.

Figure 2. Coupling constants observed experimentally and calculated by molecular mechanics.

9 the C3-C4 fragment must have the same relative spatial orientation as 2 and $3 .{ }^{15}$
To check the stereochemistry proposed for the 1,3 diol system of 4 and 9 we prepared the corresponding di-

[^3]

Figure 3. ${ }^{1} \mathrm{H}$ NMR chemical shifts of chiral $\operatorname{Bis}(O$-methylmandelates) of $2(R), 4(R)-(-)$-pentanediol.
oxolanes (14 and 19) and carried out ${ }^{1} \mathrm{H}$ NMR measurements of coupling constants and MM calculations for appropriate models. The results (Figure 2) show good agreement between the J values and dihedral angles calculated for the minimum energy conformation and the experimental values.
Absolute Configurations of Onchitriols. The presence of secondary OH groups vicinal to asymmetric centers in compounds $4-13$ suggested that the absolute stereochemistry of the molecules might be solved by stepwise analysis of the absolute configuration of the hydroxylated carbons and further use of the relative stereochemical relationship with the rest of the centers. This approach was carried out using the well-known Trost-Mosher ${ }^{16,17}$ methodology preparing mono-, bis-, or tris(mandelates) of selected compounds. The validity of this method for the 1,3 diol system not studied before was proved with the chiral standard $(2 R, 4 R)-(-)$-pentanediol. The ${ }^{1} \mathrm{H}$ NMR spectra of the (R)- and (S)-O-methylmandelate diesters showed chemical shift patterns (see Figure 3) in agreement with the projections where substituents in the vicinity of the aryl group are shielded.

Thus, to determine the absolute stereochemistry of onchitriol I (4) and its derivatives 5-8 at C-3, compound 5,

[^4]Table III. ${ }^{1} \mathrm{H}$ NMR Data of Onchitriols II (10-13)

H	$\delta(\mathrm{ppm})$, multiplicity (J in Hz)			
	10^{a}	$11^{\text {a }}$	12^{a}	$13^{\text {a }}$
1	$0.95 \mathrm{t}, 7.3$	$0.96 \mathrm{t}, 7.5$	0.85 t, 7.4	$0.90 \mathrm{t}, 7.4$
2	1.42 m	1.42 m	1.52 m	1.60, 1.90 m
3	3.64 ddd, 8.1, 8.4, 3.0	3.62 ddd, 8.0, 8.5, 3.0	5.07 ddd, 8.1, 8.4, 3.4	5.06 ddd, $9.8,7.5,3.2$
4	$2.99 \mathrm{dq}, 8.1,7.0$	$2.98 \mathrm{dq}, 8.0,7.0$	$3.20 \mathrm{dq}, 8.1,7.0$	$3.20 \mathrm{dq}, 7.0,9.8$
10	$3.80 \mathrm{dq}, 7.1,9.4$	$3.81 \mathrm{dq}, 6.9,9.0$	3.83 dq, 7.0, 9.1	$3.82 \mathrm{dq}, 6.9,8.6$
11	$5.46 \mathrm{dq}, 1.1,9.4$	$5.45 \mathrm{dq}, 1.1,9.0$	$5.65 \mathrm{dq}, 1.3,9.1$	$5.42 \mathrm{dq}, 1.4,8.8$
13	$3.53 \mathrm{~d}, 9.7$	$3.49 \mathrm{~d}, 9.7$	$4.82 \mathrm{~d}, 10.7$	$3.63 \mathrm{~d}, 10.0$
14	2.07 ddq, 9.7, 1.7, 7.0	2.10 ddq, 9.7, 1.7, 7.0	2.10 ddd, 9.7, 1.7, 7.0	1.70 ddq, 10.0, 1.8, 7.0
15	$5.43 \mathrm{dd}, 10.5,1.7$	$5.40 \mathrm{dd}, 10.5,1.7$	5.34 dd, 10.4, 2.1	5.58 dd, 10.3, 1.8
16	$3.31 \mathrm{dq}, 10.5,7.0$	$3.33 \mathrm{dq}, 10.5,6.9$	$3.24 \mathrm{dq}, 10.4,6.9$	$3.30 \mathrm{dq}, 10.3,7.0$
22	$2.57 \mathrm{q}, 7.4$	$2.57 \mathrm{q}, 7.5$	$2.58 \mathrm{q}, 7.5$	2.60 m
23	$1.19 \mathrm{t}, 7.4$	$1.20 \mathrm{t}, 7.5$	$1.24 \mathrm{t}, 7.5$	1.22 t, 7.3
24	$1.20 \mathrm{~d}, 7.0$	$1.20 \mathrm{~d}, 7.0$	$1.21 \mathrm{~d}, 7.0$	$1.20 \mathrm{~d}, 7.0$
25	2.02 s*	$2.02 \mathrm{~s}^{*}$	$1.96 \mathrm{~s}^{*}$	1.97 s*
26	1.98 s*	1.98 s*	1.95 s*	1.94 s*
27	1.34 d, 7.1	1.33 d, 7.0	$1.31 \mathrm{~d}, 7.0$	1.30 d, 6.9
28	$1.51 \mathrm{~d}, 1.1$	$1.52 \mathrm{~d}, 1.1$	1.65 d, 1.3	1.62 d, 1.3
29	$0.82 \mathrm{~d}, 7.0$	$0.81 \mathrm{~d}, 7.0$	0.90 d, 7.0	$0.81 \mathrm{~d}, 7.0$
30	1.19 d, 7.1	$1.19 \mathrm{~d}, 7.0$	$1.23 \mathrm{~d}, 7.0$	$1.19 \mathrm{~d}, 7.0$
31	$1.95 \mathrm{~s}^{*}$	1.95 s*	$1.92 \mathrm{~s}^{*}$	$2.01 \mathrm{~s} *$
32	$1.93 \mathrm{~s}^{*}$	1.92 s*	1.92 s*	1.98 s*
Ac	$1.88 \mathrm{~s}^{*}$		$2.09 \mathrm{~s}^{*}$	1.87 s*
Ac			$1.95 \mathrm{~s}^{*}$	1.81 s*
Ac		-	1.79 s*	
Et		$2.30-2.20 \mathrm{~m} ; 1.20 \mathrm{t}, 7.3$		

${ }^{3} 250 \mathrm{MHz}, \mathrm{Cl}_{3} \mathrm{CD}$. Resonances with * may be interchanged.

Table IV. ${ }^{13} \mathrm{C}$ NMR Data on Onchitriols from Onchidium

C	4^{a}	5^{a}	6^{a}	$9^{\text {a }}$	$10^{\text {a }}$	13^{x}
1	9.6 q	9.5 q	9.5 q	9.7 q	9.5 q	9.6 q
2	27.9 t	28.0 t	28.0 t	27.6 t	27.9 t	24.7 t
3	75.4 d	75.2 d	75.2 d	75.2 d	74.6 d	75.8 d
4	41.4 d	41.5 d	41.5 d	41.8 d	40.9 d	38.7 d
5	164.7 s*	162.4 s*	164.9 s*	165.6 s*	165.1 s*	165.1 s*
6	119.8 s	$118.5 \mathrm{~s}^{\text {s }}$	$118.7 \mathrm{~s}^{\text {s }}$	$120.2 \mathrm{~s}^{\text {s }}$	119.4 s*	116.9 s ${ }^{\text {s }}$
7	$179.8 \mathrm{~s}^{\text {m }}$	179.8 s	179.8 s	$179.8 \mathrm{~s}^{*}$	$179.9 \mathrm{~s}^{\text {\# }}$	179.9 s
8	118.8 s ${ }^{\text {\$ }}$	118.5 s ${ }^{\text {s }}$	-	-	$-$	-
9	164.4 s*	164.4 s*	164.4 s*	164.9 s*	$165.0 \mathrm{~s}^{*}$	163.1 s*
10	39.1 d	34.3 d	34.3 d	39.2 d	34.1 d	34.0 d
11	127.3 d	131.7 d	131.4 d	125.5 d	130.1 d	129.0 d
12	137.6 s	133.4 s	133.6 s	137.3 s	138.0 s	137.3 s
13	79.8 d	78.6 d	78.4 d	79.9 d	78.6 d	78.3 d
14	34.4 d	34.9 d	35.1 d	34.3 d	36.5 d	36.5 d
15	72.4 d	72.4 d	72.4 d	73.1 d	74.4 d	74.1 d
16	36.4 d	37.2 d	37.2 d	34.0 d	37.3 d	37.4 d
17	$164.3 \mathrm{~s}^{*}$	164.7 s*	$162.4 \mathrm{~s}^{*}$	164.5 s*	$163.0 \mathrm{~s}^{*}$	163.3 s*
18	118.0 s ${ }^{\text {\$ }}$	118.5 s ${ }^{\text {\% }}$	-	-	-	-
19	$179.8 \mathrm{~s}^{*}$	179.8 s	179.8 s	$180.0 \mathrm{~s}^{*}$	$179.8 \mathrm{~s}^{*}$	179.9 s
20	117.4 s\$	$118.5 \mathrm{~s}^{8}$	-	-	-	-
21	164.3 s*	164.9 s*	159.2 s*	164.1 s*	$165.0 \mathrm{~s}^{*}$	163.1 ${ }^{*}$
22	24.7 t	24.7 d	24.7 d	24.5 d	24.7 t	24.7 t
23	11.4 q	13.9 q	10.9 q	10.5 q	10.9 q	11.2 q
24	13.9 q	13.9 q	14.0 q	15.3 q	14.2 q	14.2 q
25	10.1 q	9.3 q	9.4 q	9.5 q	9.2 q	9.2 q
26	9.3 q	9.4 q	9.3 q	9.3 q	9.4 q	14.0 q
27	18.7 q	18.8 q	18.8 q	19.5 q	19.2 q	18.8 q
28	14.4 q	11.8 q	11.9 q	13.6 q	11.2 q	14.2 q
29	9.4 q	8.9 q	9.0 q	9.2 q	9.1 q	8.7 q
30	12.0 q	13.7 q	13.7 q	13.7 q	15.2 q	13.9 q
31	9.1 q	10.1 q	10.1 q	9.7 q	9.8 q	10.6 q
32	9.2 q	9.5 q	9.5 q	9.3 q	9.5 q	9.4 q
CO	-	169.3 s	175.4 s	-	171.6 s	170.5 s
CH_{2}	-	-	27.6 t	-	-	20.7 t
CH_{3}	-	21.0 q	8.7 q	-	20.5 q	170.5 s
CO	-	169.8 s	175.4 s	-	-	-
CH_{2}	-	-	-	-	-	20.4 t
CH_{3}	-	20.3 q	20.3 q	-	-	170.5 s
CO	-	-	-	-	-	-
CH_{3}	-	-	-	-	\checkmark	20.7 q

${ }^{a} 63 \mathrm{MHz} \mathrm{Cl}{ }_{3} \mathrm{CD}$. Signals with identical superscripts (*, \$, \#) within a column may be interchanged. The multiplicity of the signals was confirmed by DEPT.

Table V. ${ }^{1}$ H NMR Data for Onchitriol I (4) and Onchitriol II (9)

H	$\delta(\mathrm{ppm})$, multiplicity (J in Hz)	
	4^{a}	$9^{\text {a }}$
1	0.95 t. 7.3	0.87 t, 7.3
2	$1.43 \mathrm{~m} ; 1.40 \mathrm{~m}$	$1.60 \mathrm{~m} ; 1.40 \mathrm{~m}$
3	3.55 ddd 7.2, 8.3, 3.5	3.55 ddd 8.3, 7.9, 3.0
4	$2.97 \mathrm{dq} \mathrm{7.2}$,	2.79 dq 8.9, 6.9
10	3.90 dq 6.9,9.2	3.95 dq 6.8, 9.6
11	$5.59 \mathrm{dq} 1.1,9.2$	5.84 dq 1.2, 9.6
13	$4.05 \mathrm{~d}, 7.4$	$4.03 \mathrm{~d}, 3.3$
14	$1.92 \mathrm{ddq}, 7.4,7.0,1.9$	$1.90 \mathrm{ddq}, 7.0,2.0,3.3$
15	$4.12 \mathrm{dd}, 9.4,1.9$	3.68 dd, 9.7, 2.0
16	$3.13 \mathrm{dq}, 9.4,6.9$	$3.08 \mathrm{dq}, 9.7,7.1$
22	2.56 m	$2.55 \mathrm{~m} ; 2.24 \mathrm{~m}$
23	1.15 t, 7.5	$0.98 \mathrm{t}, 7.5$
24	$1.26 \mathrm{~d}, 7.0$	1.14 d, 6.9
25	1.98s*	$1.85 \mathrm{~s}^{*}$
26	1.97 s*	1.87 s*
27	1.26, d 7.0	1.31, d 7.1
28	1.70 d, 1.1	$1.63 \mathrm{~d}, 1.2$
29	$0.92 \mathrm{~d}, 7.0$	$1.15 \mathrm{~d}, 7.1$
30	$1.14 \mathrm{~d}, 6.9$	$1.02 \mathrm{~d}, 7.1$
31	$1.95 \mathrm{~s}^{*}$	1.93 s*
32	1.92 s *	$2.04 \mathrm{~s}^{*}$

${ }^{\text {a }} 250 \mathrm{MHz}, \mathrm{Cl}_{3} \mathrm{CD}$. Resonances with * may be interchanged.
the 13,15 diacetate, was converted to the corresponding $(+)$ - and (-)- $-3-0-\mathrm{MPA}$ esters ($\mathbf{1 5}$ and 16, respectively). The ${ }^{1} \mathrm{H}$ NMR data show that in the (R)-3-O-mandelate 16 the Cl methyl protons resonate at higher field than in the (S)-3-O-mandelate, the opposite effect being observed for H 4 which is shielded in 15 . These shifts implied the presence of a S configuration at C3 and hence at C4 (see relative stereochemistry).
To characterize the rest of the skeleton, 4 was converted into its S and $R 3,13,15$-trimandelates 17 and 18, respectively (see Figure 4). Comparison of NMR spectra showed that in the $3,13,15-(R)$-trimandelate the C 1 methyl group resonates at higher field and H 13 and H 15 at lower field indicating a $3 S, 13 R, 15 R$ configuration. The relative stereochemistry of the remaining centers with respect to the hydroxylated ones, and the perfect agreement between

Chart IV

Onchitriol 14
$[\alpha]_{D}=-20.0^{\circ}$

$17 \mathrm{~S}(+)$ trimandelate of 4
$18 \mathrm{R}(-)$ trimandelate of 4

$20 \mathrm{~S}(+)$ dimandelate of 10
$21 R(-)$ dimandelate of 10
Figure 4. Selected ${ }^{1} \mathrm{H}$ NMR data of chiral bis- and tris(mandelates).
the NMR data for the C10-C16 fragments of 4 and 1, now imply that compound 4 has the configuration $3 S, 4 S, 10 S, 13 R, 14 R, 15 R, 16 R$.

Similarly, compound 10, the 15-monoacetate derived from onchitriol II (9), was converted to the corresponding (S)- and (R)-3,13-bis(mandelates) 20 and 21, respectively. NMR analysis showed that the configuration of 10 is $3 S, 4 S, 13 S, 14 R, 15 R, 16 R$. In contrast to the agreement between 1 and 4 as regards to their NMR data for the C10-C16 skeletal fragment, the chemical shift of C10 in 9 as compared to that in 2 suggests that the C10 substituents of 2 and 9 are differently oriented. Since 9 $(3 S, 4 S, 13 S, 14 R, 15 R, 16 R)$ and $2\left(3 R^{*}, 4 R^{*}, 10 R^{*}, 13 R^{*}, 1-\right.$ $4 S^{*}, 15 S^{*}, 16 S^{*}$) have the same relative stereochemistry at $3,4,13,14,15$, and 16 and they are not enantiomers but diastereomers $\left([\alpha]_{D}=+224.8\right.$ for 2 and $[\alpha]_{D}=-33.0$ for 9), the configuration at C 10 must be $10 R$ in 9 .

This is the first time that hydroxylated polypropionates of marine origin have been isolated in their natural ester form; previous work was performed on saponified material due to the complexity of the mixture, and although the presence of propionates was clearly established, no acetates were ever identified.

The number and positions of the ester groups in structures 5-8 and 10-13 do not appear to exhibit any
particular pattern. Onchitriol I (4) and onchitriol II (9) have different configurations at C10 and C13, and are diastereomers of the known peroniatriol I (1) and peroniatriol II (2). Chart IV shows the stereochemical features (fragments with the same relative stereochemistry are shown framed) and the corresponding α values. These results seems to indicate that diversity at the assymetric centers is a characteristic of this class of metabolites.

Biological Activity. The esters isolated from Onchidium sp. were found to be active in vitro against KB human epidermoid carcinoma cells, 90-98\% growth inhibition being observed at dosages of $1-10 \mu \mathrm{~g} / \mathrm{mL}$. Compounds 4 and 9 were also tested against P388, A-549, and HT-29 cell lines. IC_{50} values around $10 \mu \mathrm{~g} / \mathrm{mL}$ were observed for compound 4 and $20 \mu \mathrm{~g} / \mathrm{mL}$ for 9 ; both these compounds were also found to possess antiviral activity against type 1 Herpes simplex virus (HSV-1) at $10 \mu \mathrm{~g} / \mathrm{mL}$ and against Vesicular stomatitis virus (VSV) at $20 \mu \mathrm{~g} / \mathrm{mL}$.

From a structural point of view, it is worth noting that onchitriol I and peroniatriol I are both more active than their counterparts onchitriol II and peroniatriol II, which may mean that the central part of the molecules requires a trans 1,3 diol system for maximum activity.

Experimental Section

General Methods. IR and UV spectra were obtained on Perkin-Elmer Model 1420 and Uvikon Model 930 spectrophotometers, respectively, and optical rotations on a Perkin-Elmer Model 141 polarimeter. NMR spectra were recorded on Varian XL500 and Bruker WM250 spectrometers using CDCl_{3} and $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvent and internal standard.

The HMQC and HMBC sequences were acquired with a 2 K $\times 128$ matrix (zero filled to 512 in 512 in F1) and 128 scans per increment. The delay for polarization transfer was set for an assumed ${ }^{1} J_{\mathrm{CH}}$ of 140 Hz (HMQC) and J_{CH} of 9 Hz (HMBC). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra were acquired with a $1 \mathrm{~K} \times 128$ matrix (zero filled in F1) with 16 or 8 scans per increment. In the NOESY, a mixed time of 200 ms was used.

Mass spectra were obtained on Kratos MS-50 and HewletPackard HP 59970 spectrometers. Fast atom bombardment (FAB) mass spectra were run employing Xe atoms at $7-9 \mathrm{keV}$ and 2-hydroxyethyl disulfide matrix. HPLC separation was performed using a Waters Model 6000A

Extraction and Isolation. Onchidium sp. (3 kg) collected in Juyl 1988 from Chesterfield atoll (Mouillage isles, 450 km NW of New Caledonia) was immediately freeze-dried (600 g dry weight) and then extracted with MeOH . The methanol extract was decanted off and concentrated in vacuo. This was repeated four times, and the total extracts were combined and concentrated again in vacuo. The concentrate was partitioned between 400 mL of 10% aqueous methanol and hexane ($2 \times 400 \mathrm{~mL}$), the aqueous portion was made 20% aqueous and extracted with $\mathrm{CCl}_{4}(2 \times 400$ mL), and the aqueous portion was made 40% aqueous and extracted with dichloromethane ($3 \times 400 \mathrm{~mL}$). The extracts were concentrated in vacuo to obtain 2.9 g of hexane extract (extract

A; cytotoxic to Kb cells at $10 \mu \mathrm{~g} / \mathrm{mL}: 15 \%$ inhibition), 1.2 g of CCl_{4} extract (extract B; cytotoxic to Kb cells at $10 \mu \mathrm{~g} / \mathrm{mL} ; 97 \%$ inhibition), and 0.68 g of dichloromethane extract (extract C ; cytotoxic to Kb cells at $10 \mu \mathrm{~g} / \mathrm{mL}: 99 \%$ inhibition). The CCl_{4} extract was flash chromatographed on $\mathrm{SiO}_{2}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}\right.$ with increasing MeOH) giving five main fractions B 1 (inactive), B 2 (cytotoxic to Kb cells at $10 \mu \mathrm{~g} / \mathrm{mL}: 93 \%$ inhibition), B3 (inactive), B4 (cytotoxic to Kb cells at $10 \mu \mathrm{~g} / \mathrm{mL}: 95 \%$ inhibition), and B5 (inactive). Fraction B 4 was rechromatographed on a SiO_{2} flash column ($7: 9 \mathrm{Et}_{2} \mathrm{O} /$ hexane) afford two active subfractions that under HPLC (μ-Bondapack $\mathrm{C}_{18}, 77: 23 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$) furnished 4 mg of onchitriol I D (8), 4 mg of onchitriol II C (12), and 5 mg of onchitriol II D (13). Extract C was run on an SiO_{2} flash column ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with increasing MeOH), giving four fractions: C 1 (inactive), C 2 (cytotoxic to Kb cells at $10 \mu \mathrm{~g} / \mathrm{mL}, 94 \%$ inhibition), C3, and C4 (both inactives). Fraction C2 was purified by HPLC (μ-Bondapack $\mathrm{C}_{18}, 77: 23 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$) affording 8 mg of onchitriol I A (5), 4 mg of onchitriol IB (6), 4 mg of onchitriol I C (7), 6 mg of onchitriol II A (10), and 3 mg of onchitriol ID (9).

Onchitriol I A (5). $[\alpha]_{\mathrm{D}}:-11.5^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, \mathrm{c}=0.02\right)$. UV $(\mathrm{MeOH}) \lambda_{\text {max }}: 259 \mathrm{~nm}$. $\mathrm{IR} \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3300,1730,1700,1660$, 1370. HREIMS: $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{9}$ calcd 628.3611. Found: 628.3613. EIMS $m / z: 628$ (27), 585 (2), 571 (18), 570 (54), 569 (35), 511 (30), 459 (10), 451 (15), 449 (10), 407 (5), 391 (5), 360 (3), 349 (8), 291 (5), 289 (7), 259 (9), 251 (8), 238 (10), 231 (11), 209 (17), 193 (14), 180 (100), 179 (32), 151 (17), 109 (10), 83 (11).

Onchitriol I B (6). $[\alpha]_{\mathrm{D}}:-19.5^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, c=0.01\right)$. UV $(\mathrm{MeOH}) \lambda_{\max }: 260 \mathrm{~nm}$. $\operatorname{IR} \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3350,1725,1700,1660$, 1370. HREIMS: $\mathrm{C}_{37} \mathrm{H}_{54} \mathrm{O}_{9}$ calcd 642.3768. Found: 642.3775. EIMS $m / z: 642$ (27), 585 (20), 584 (41), 569 (34), 525 (5), 511 (36), 451 (22), 405 (8), 260 (9), 238 (14), 209 (20), 191 (14), 180 (100), 179 (41), 151 (22), 149 (29), 103 (71), 83 (24), 75 (38).

Onchitriol I C (7). $[\alpha]_{\mathrm{D}}:-18.0^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, c=0.1\right)$. UV $(\mathrm{MeOH}) \lambda_{\text {max }}: 260 \mathrm{~nm}$. IR $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3300,1730,1660,1370$. HREIMS: $\mathrm{C}_{37} \mathrm{H}_{54} \mathrm{O}_{9}$ calcd 642.3768. Found: 642.3768. EIMS $m / z: 642$ (14), 584 (37), 583 (16), 525 (12), 473 (8), 451 (10), 349 (6), 319 (7), 307 (7), 273 (6), 260 (12), 238 (10), 221 (10), 209 (21), 193 (12), 191 (10), 181 (15), 180 (100), 179 (30), 151 (17), 83 (11).

Onchitriol ID (8). $[\alpha]_{\mathrm{D}}:-25.2^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, c=0.01\right)$. UV $(\mathrm{MeOH}) \gamma_{\text {max }}: 260 \mathrm{~nm}$. IR $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right)_{\text {: }}$ 1735, 1660, 1370. HREIMS: ${ }_{40} \mathrm{C}_{58} \mathrm{O}_{10}$ calcd 698.4030. Found: 698.4004. EIMS $m / z: 698$ (7), 641 (3), 639 (3), 625 (47), 582 (43), 551 (17), 492 (16), 463 (2), 405 (8), 390 (3), 280 (15), 180 (100), 151 (22).

Onchitriol II A (10). $[\alpha]_{\mathrm{D}}:-26.0^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, \mathrm{c}=0.1\right)$. UV (MeOH) $\lambda_{\text {max }}: 260 \mathrm{~nm} . \quad$ IR ${ }^{\prime}{ }_{\text {max }}\left(\mathrm{cm}^{-1}\right)$: $\quad 1733,1664,1365$. HREIMS: $\mathrm{C}_{54} \mathrm{H}_{50} \mathrm{O}_{8}$ calcd 586.3505. Found: 586.3500. EIMS $m / z: 586$ (20), 529 (13), 528 (39), 527 (11), 510 (7), 469 (7), 451 (6), 407 (56), 349 (7), 319 (9), 307 (37), 289 (10), 260 (22), 221 (25), 220 (16), 209 (15), 193 (10), 191 (14), 180 (100), 179 (35), 151 (18), 109 (10), 83 (39).

Onchitriol II B (11). $[\alpha]_{\mathrm{D}}:-25.2^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, c=0.01\right)$. UV (MeOH) $\lambda_{\max }: 260 \mathrm{~nm}$. IR $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 1735,1660,1370$. HREIMS: $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{8}$ calcd 600.3662. Found: 600.3676. FABMS $m / z: 601$ (100), 587 (5), 583 (5), 569 (4), 543 (3), 527 (2), 509 (5), 451 (2), 368 (2), 361 (10), 319 (13), 307 (9), 231 (17), 209 (23), 180 (30), 165 (10), 151 (10).

Onchitriol II C (12). [$\alpha]_{\mathrm{D}}$: $-26.0^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, c=0.01\right.$). UV $(\mathrm{MeOH}) \lambda_{\text {max }}: 260 \mathrm{~nm}$. IR $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 1720,1664,1365$. HREIMS: $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{10}$ calcd 670.3717. Found: 670.3722. FABMS $m / z: 671$ (100), 649 (7), 630 (10), 614 (12), 571 (5), 553 (15), 457 (10), 361 (13), 280 (13), 221 (11), 209 (24), 180 (41), 151 (19).

Onchitriol II D (13). [$\alpha]_{\mathrm{D}} ;-20.0^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, \mathrm{c}=0.1\right)$. UV $(\mathrm{MeOH}) \lambda_{\max }: 260 \mathrm{~nm}$. IR $y_{\text {max }}\left(\mathrm{cm}^{-1}\right): 1730,1660,1370$. HREIMS: $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{9}$ calcd 628.3611. Found: 628.3610. EIMS $m / z: 628$ (10), 611 (4), 569 (7), 449 (5), 349 (70), 289 (23), 221 (64), 209 (10), 205 (32), 193 (12), 191 (28), 181 (23), 180 (100), 179 (57), 151 (21), 83 (13).

Saponification of 5-9. The ester ($1-2 \mathrm{mg}$) was stirred overnight at room temperature in $1 \% \mathrm{KOH} / \mathrm{MeOH}(0.2 \mathrm{~mL})$. Brine $(0.3 \mathrm{~mL})$ was added to the reaction and the mixture extracted with dichloromethane ($4 \times 0.4 \mathrm{~mL}$). Evaporation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purification by HPLC (μ-Bondapack C_{18} column $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (80:20)) gave the corresponding triol (5 mg of onchitriol 1 (4) were obtained from 5-8 and 4 mg of onchitriol II (9) from 10-13).

Onchitriol I (4). $[\alpha]_{\mathrm{n}}:-20.0^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, c=0.01\right)$. UV (MeOH) $\lambda_{\max }: 260 \mathrm{~nm}$. IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 1665,1620$. HREIMS: $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}$
calcd 544.3395. Found: 544.3400. EIMS $m / z: 544$ (7), 515 (2), 486 (6), 459 (4), 365 (10), 319 (7), 307 (23), 248 (34), 219 (13), 191 (16), 180 (100), 179 (54), 151 (20), 123 (16), 97 (17), 83 (34).

Onchitriol II (9). $[\alpha]_{\mathrm{D}}:-33.0^{\circ}\left(\mathrm{Cl}_{2} \mathrm{CH}_{2}, c=0.01\right)$. UV $(\mathrm{MeOH}) \lambda_{\max }: 260 \mathrm{~nm}$. $\mathrm{IR} \nu_{\max }\left(\mathrm{cm}^{-1}\right): 1660,1610$. HREIMS: [544 (5) $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}$ Calcd 544.3395. Found: 544.3399]; [486 (5) $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{6}$ calcd 486.2981 . Found: 486.2981]; [365 (10) $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{5}$ calcd 365.2328. Found: 365.2333]; [347 (3) $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4}$ calcd 347.2222. Found: 347.2215]; [307 (15) $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4}$ calcd 307.1909. Found: 307.1928]; [289 (5) $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}$ calcd 289.1804, found: 289.1861], [248 (10) $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}$ calcd 248.1412. Found: 248.1413]; [180 (100) $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ calcd 180.1150. Found: 180.1154].

Preparation of Dioxolanes 14 and 18 from 4 and 9. 2,2Dimethoxypropane (1 mL) containing a catalytic amount of p TsOH was added to a $2-\mathrm{mg}$ sample of the triol (4 or 9) dissolved in 1 mL of acetone. The reaction mixture was allowed to stand under nitrogen at rt for 24 h . After that, the mixture was neutralized with saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The combined organic layers were concentrated to dryness in vacuo to afford, after HPLC purification (μ-Bondapack C_{18} column $90: 10 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$), the corresponding dioxolanes 14 and 18.

Onchitriol I Dioxolane (14). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Cl}_{3} \mathrm{CD}\right): 5.53$ (dd, $1 \mathrm{H}, J=8.3,1.1 \mathrm{~Hz}, \mathrm{H} 11$) 3.96 (dd, $1 \mathrm{H}, J=10.8$ and 4.6 Hz , H 15), 3.86 (dd, $1 \mathrm{H}, J=8.8$ and $6.9 \mathrm{~Hz}, \mathrm{Hl} 0$), 3.74 (ddd, 1 H , $J=2.7,8.2$, and $7.0 \mathrm{~Hz}, \mathrm{H} 3), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H} 13), 3.09$ (dd, $1 \mathrm{H}, J=10.8,6.8 \mathrm{~Hz}, \mathrm{H} 16$), $2.99(\mathrm{dq}, 1 \mathrm{H}, J=7.0,7.0 \mathrm{~Hz}$), $2.61(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H} 23), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}), 1.95$ $(\mathrm{s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 14), 1.72$ (d, $3 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{Me} 28), 1.57$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 2), 1.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 2), 1.28(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Me} 24)$, $1.26(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Me} 27$), $1.25(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{Me} 23$), $1.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}_{\text {diaxolane }}\right), 1.13$ (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{Me} 30$), 1.07 (s , $3 \mathrm{H}, \mathrm{Me}_{\text {dioxolane }}$), $0.96(\mathrm{t}, 3 \mathrm{H}, 7.3 \mathrm{~Hz}$, Me1), $0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.9$ $\mathrm{Hz}, \mathrm{Me} 29)$. HREIMS: $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{7}$ calcd 584.3713. Found: 584.3720. FABMS (+) m/z: 585 (14), 571 (1), 545 (2), 499 (1), 375 (1), 319 (3), 277 (35), 185 (54), 180 (17), 151 (6).

Onchitriol II Dioxolane (18). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Cl}_{3} \mathrm{CD}$): 5.53 (dd, $1 \mathrm{H}, J=8.3,0.8 \mathrm{~Hz}, \mathrm{H} 11$), 3.95 (dd, $1 \mathrm{H}, J=10.3$ and 4.6 Hz , H 15), 3.83 (dd, $1 \mathrm{H}, J=8.2$ and $7.0 \mathrm{~Hz}, \mathrm{H} 10$), $3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3$), $3.66(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{H} 13), 3.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 16), 3.05(\mathrm{dq}, 1$ $\mathrm{H}, J=7.1$ and 7.0 Hz$), 2.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 22), 2.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 22)$, $2.01(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3$ H), 1.92 (m, $1 \mathrm{H}, \mathrm{H} 14$), 1.64 (d, $3 \mathrm{H}, J=0.8 \mathrm{~Hz}, \mathrm{Me} 28$), 1.60 (m, $1 \mathrm{H}, \mathrm{H} 2), 1.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 2), 1.33(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Me} 24), 1.26$ $(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Me} 27), 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{Me} 23), 1.20$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}_{\text {diosolane }}\right), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{Me} 30), 1.07(\mathrm{~s}, 3 \mathrm{H}$, Me $_{\text {dioscolene }}$), $0.96(\mathrm{t}, 3 \mathrm{H}, 7.3 \mathrm{~Hz}, \mathrm{Me} 1), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, Me29). HREIMS: $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{7}$ calcd 584.3713. Found: 584.3720. EIMS $m / z: 584$ (10), 526 (8), 499 (16), 467 (1), 347 (14), 319 (16), 307 (38), 261 (11), 248 (10), 221 (100), 205 (90), 191 (42), 180 (60), 151 (22).
Standard Procedure for the Preparation of All O Methylmandelate Derivatives. A catalytic amount of 4-(dimethylamino)pyridine was added to a solution of the alcohol, O -methylmandelic acid, and dicyclohexylcarbodiimide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After $24-72 \mathrm{~h}$, the dicyclohexylurea was removed by filtration and the solvent removed in vacuo. The filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$ (three times), and the combined filtrates were washed with cold 1 N HCl (twice), saturated aqueous NaHCO_{3} (twice), and aqueous NaCl (twice). The organic phase was filtered and the solvent removed to afford a crude product which was purified by reversed-phase HPLC in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ mixtures.
(S)-Tris $(O$-methylmandelate) from ($2 R, 4 R$)-(-)-Pentanediol. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Cl}_{3} \mathrm{CD}\right): 7.39(\mathrm{~m}, 10 \mathrm{H}$, arom), $5.00(\mathrm{~m}, 2 \mathrm{H}$, H 2 and H 4$), 4.73$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{s}}$ mandel), 3.41 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}$ mandel), $1.75(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H} 3), 1.06(\mathrm{~d}, 6 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{H} 1$ and H5).
(R)-Tris(O-methylmandelate) from ($2 R, 4 R$)-(-)-Pentanediol. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Cl}_{3} \mathrm{CD}\right): 7.37(\mathrm{~m}, 10 \mathrm{H}$, arom), $4.65(\mathrm{~s}, 2 \mathrm{H}$, H_{c} mandel), 4.64 (m, 2 H, H2 and H4), 3.37 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}$ mandel), $1.62(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H} 3), 1.07(\mathrm{~d}, 6 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{H} 1$ and H5).
(S)-3-O-Methylmandelate from Onchitriol I A (15). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Cl}_{3} \mathrm{CD}$): 7.30 (m, 5 H , arom), 5.59 (bd, $1 \mathrm{H}, ~ J=8.8 \mathrm{~Hz}$, $\mathrm{H} 11), 5.33$ (dd, $1 \mathrm{H}, J=10.2,2.0 \mathrm{~Hz}, \mathrm{H} 15$), 5.13 (ddd, $1 \mathrm{H}, J=$ $4.0,8.3,9.3, \mathrm{H} 3$), 4.79 (s, $1 \mathrm{H}, \mathrm{H}_{a}$ mandel), $4.74(\mathrm{~d}, 1 \mathrm{H}, J=10.7$
$\mathrm{Hz}, \mathrm{H} 13$), 3.76 (dd, $1 \mathrm{H}, \mathrm{J}=8.8,7.0 \mathrm{~Hz}, \mathrm{H} 10$), 3.54 (s, $3 \mathrm{H}, \mathrm{OMe}$ mandel), 3.20 (m, $1 \mathrm{H}, \mathrm{H} 16$), 3.04 (dd, $1 \mathrm{H}, J=9.3,7.0 \mathrm{~Hz}, \mathrm{H} 4$), $2.60(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H} 22), 2.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 14), 1.97(\mathrm{~s}, 6 \mathrm{H})$, 1.96 (s, 6 H), 1.87 (s, 3 H), 1.78 (s, 3 H), $1.62(\mathrm{~d}, 3 \mathrm{H}, J=1.1 \mathrm{~Hz}$, Me28), 1.42 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 2$), 1.28 (d, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Me} 27$), 1.20 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Me} 30$), 0.84 (m, $3 \mathrm{H}, \mathrm{Me} 29$), 0.82 (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{Me} 24), 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Mel})$. HREIMS: $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{O}_{11}$ calcd 776.4135. Found: 776.4153. FABMS (+) $m / z: 777$ (1.00), 749 (5), 717 (9), 657 (6), 551 (6), 491 (8), 301 (9), 225 (39), 209 (9), 193 (14), 180 (20), 179 (9), 155 (30), 121 (58).
(\boldsymbol{R})-3-O-Methylmandelate from Onchitriol I A (16). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Cl}_{3} \mathrm{CD}$): 7.31 (m, 5 H , arom), 5.62 (bd, $1 \mathrm{H}, J=8,8 \mathrm{~Hz}$, H11), 5.34 (dd, $1 \mathrm{H}, J=10.2,2.0 \mathrm{~Hz}, \mathrm{H} 15$), 5.11 (ddd, $1 \mathrm{H}, J=$ $4.0,8.3,9.3 \mathrm{~Hz}, \mathrm{H} 3), 4.78$ (s, $1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$ mandel), $4.76(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.7 \mathrm{~Hz}, \mathrm{H} 13$), 3.81 (dd, $1 \mathrm{H}, J=8.8,7.0 \mathrm{~Hz}, \mathrm{H} 10), 3.54(\mathrm{~s}, 3 \mathrm{H}$, OMe mandel), 3.20 (m, $2 \mathrm{H}, \mathrm{H} 16, \mathrm{H} 4$) , 2.61 ($\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}$, H 22), 2.13 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 14$), 1.97 ($\mathrm{s}, 3 \mathrm{H}$), 1.96 ($\mathrm{s}, 3 \mathrm{H}$), 1.95 ($\mathrm{s}, 3$ $\mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, 3 \mathrm{H}, J=1.1$ $\mathrm{Hz}, \mathrm{Me} 28$), 1.28 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 2$), 1.28 (d, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Me} 27$), 1.20 (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Me} 24$), 1.18 (m, $3 \mathrm{H}, \mathrm{Me} 30$), 0.84 (m, $3 \mathrm{H}, \mathrm{Me} 29), 0.46(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Mel})$. HREIMS: $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{O}_{11}$ calcd 776.4135. Found: 776.4118. FABMS (+) $m / z: 777$ (100), 749 (3), 717 (6), 657 (4), 551 (2), 491 (6), 301 (7), 225 (37), 209 (7), 193 (12), 180 (19), 179 (9), 155 (30), 121 (58).
(\boldsymbol{R})-3,13,15-Tris (O-methylmandelate) from Onchitriol I (18). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{Cl}_{3} \mathrm{CD}\right): 7.30$ (m, arom), 5.55 (bd, $1 \mathrm{H}, J=8.8$ $\mathrm{Hz}, \mathrm{H} 11$), 5.33 (dd, $J=9.9,1.8 \mathrm{~Hz}, \mathrm{H} 15), 5.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3), 4.80$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\alpha}$ mandel), $4.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right.$ mandel), $4.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\alpha}\right.$ mandel), $4.56(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{H} 13), 3.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$ mandel), 3.43 (s, 3 H , OMe mandel), 3.31 (s, 3 H , OMe mandel), 3.18 (m, 1 H, H16), 3.10 (m, 1 H, H4), 2.57 (m, 2 H, H22), 1.97 ($\mathrm{s}, 6 \mathrm{H}$), 1.96 ($\mathrm{s}, 6 \mathrm{H}$), $1.86(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0$, $3 \mathrm{H}, \mathrm{Me} 29), 0.48(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Mel})$. HREIMS: $\mathrm{C}_{59} \mathrm{H}_{72} \mathrm{O}_{13}$: calcd 988.4973. Found: 988.5031. EIMS $m / z: 988$ (1), 823 (2), 657 (1), 577 (1), 491 (2), 251 (5), 221 (4), 180 (5), 151 (3), 121 (100).
(S)-3,13,15-Tris (O-methylmandelate) from Onchitriol I (17). ${ }^{11} \mathrm{H}$ NMR ($\mathrm{Cl}_{3} \mathrm{CD}$): 7.30 (m, arom), 5.57 (bd, $1 \mathrm{H}, J=8.8$ $\mathrm{Hz}, \mathrm{H} 11$), 5.19 (dd, $J=9.9,1.8 \mathrm{~Hz}, \mathrm{H} 15$), 5.07 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 3$), 4.79 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\alpha}$ mandel), 4.69 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\alpha}$ mandel), 4.63 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\alpha}$ mandel), $4.49(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{H} 13), 3.48-3.30(3 \mathrm{~s}, 3 \mathrm{OMe}$ mandel), 2.55 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 22$), 1.98 (s, 3 H), 1.97 ($\mathrm{s}, 3 \mathrm{H}$), 1.96 (s , $3 \mathrm{H}), 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Me} 1), 0.76(\mathrm{~d}, J=7.0,3 \mathrm{H}, \mathrm{Me} 29)$, $0.80(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Me} 1)$. HREIMS: $\mathrm{C}_{59} \mathrm{H}_{72} \mathrm{O}_{13}$ calcd 988.4973. Found: 988.5029.
(S)-3,13-Bis(\boldsymbol{O}-methylmandelate) from Onchitriol II A (20). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Cl}_{3} \mathrm{CD}$): 7.28 ($\mathrm{m}, 10 \mathrm{H}$, arom), 5.38 (bd, $1 \mathrm{H}, J$ $=9.4 \mathrm{~Hz}, \mathrm{H} 11), 5.29(\mathrm{dd}, 1 \mathrm{H}, J=10.2,1.6 \mathrm{~Hz}, \mathrm{H} 15), 5.14(\mathrm{~m}$,
$1 \mathrm{H}, \mathrm{H} 3$), $4.94\left(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{H} 13\right.$), 4.76 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\alpha}$ mandel), 4.65 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\alpha}$ mandel), 3.54 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 10$), 3.25 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 16$), 3.23 (s, $3 \mathrm{H}, 0 \mathrm{Me}$ mandel), 3.15 (m, $1 \mathrm{H}, \mathrm{H} 4$), 2.56 ($\mathrm{q}, 2 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}, \mathrm{H} 22$), 2.25 (m, $1 \mathrm{H}, \mathrm{H} 14$), 1.96 ($\mathrm{s}, 3 \mathrm{H}$), 1.92 ($\mathrm{s}, 3 \mathrm{H}$), 1.82 ($\mathrm{s}, 3 \mathrm{H}$), 1.80 ($\mathrm{s}, 3 \mathrm{H}$), 1.63 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 2$), $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}$, $3 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{Me} 28$), 1.22 (d, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Me} 30$), 1.21 (t , $3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Me} 23$), 1.13 (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Me} 28$), 1.03 (d , $3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Me} 24$), $0.91(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Me} 29$), $0.88(\mathrm{t}$, $3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Me}$). HREIMS: $\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{O}_{12}$ calcd 882.4554. Found: 882.4558. FABMS (+) m/z: 883 (53), 805 (15), 791 (7), 717 (15), 657 (19), 491 (9), 209 (12), 180 (21), 179 (11), 151 (10), 121 (100).
(R)-3,13-Bis(O-methylmandelate) from Onchitriol II A (21). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Cl}_{3} \mathrm{CD}$): 7.28 (m, 10 H , arom), 5.42 (bd, $1 \mathrm{H}, J$ $=9.4 \mathrm{~Hz}, \mathrm{H} 11), 5.22(\mathrm{dd}, 1 \mathrm{H}, J=10.2,1.6 \mathrm{~Hz}, \mathrm{H} 15), 5.07(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H} 3$), 4.85 (d, $1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{H} 11$), 4.79 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} \alpha$ mandel), 4.60 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} \alpha$ mandel), 3.54 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 10$), $3.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$ mandel), $3.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 16), 3.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OMe}$ mandel), 3.04 (m, $1 \mathrm{H}, \mathrm{H} 4), 2.60(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H} 22), 2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 14)$, $1.26(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3$ H), 1.76 (s, 3 H), 1.55 (d, $3 \mathrm{H}, J=1.2 \mathrm{~Hz}$ Me28), $1.54(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H} 2), 1.20(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{Me} 23), 1.15(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{Me} 24, \mathrm{Me} 30$), 1.12 (d, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Me} 27$), 0.85 (d, $3 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}, \mathrm{Me} 29$), 0.63 (t, $3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Me}$). HREIMS: $\mathrm{C}_{52}{ }^{-}$ $\mathrm{H}_{66} \mathrm{O}_{12}$ calcd 882.4554. Found: 882.4561. FABMS (+) $m / z: 883$ (50), 805 (17), 791 (9), 717 (16), 657 (20), 491 (10), 209 (13), 180 (23), 179 (15), 151 (8), 121 (100).

Acknowledgment. This work was supported by grants from the Xunta de Galicia (XUGA 20906B91) and the Plan Nacional de Investigación (FAR 88-0512). J.R. acknowledges a fellowship from the Xunta de Galicia. Thanks are given to Pharmamar (Madrid) for the pharmacological testing.

Registry No. 4, 140924-47-6; 5, 142132-12-5; 6, 142159-63-5; 7, 142132-13-6; 8, 142132-14-7; 9, 140924-48-7; 10, 140849-45-2; 11, 142132-15-8; 12, 142132-16-9; 13, 85589-35-1; 14, 142132-17-0; 15, 142132-18-1; 16, 142186-55-8; 17, 142132-19-2; 18, 142186-56-9; 19, 142186-57-0; 20, 142132-20-5; 21, 142186-58-1; 2,2-dimethoxypropane, 77-76-9.

Supplementary Material Available: All NMR spectra of 4-14 and 19 (28 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: (1) Thompson, T. E. J. Mar. Biol. Ass. UK 1960, 39, 123.
 (2) Kigoshi, H.; Imamura, Y.; Yoshikawa, K.; Yamada, K. Tetrahedron Lett. 1990, 31, 4911.
 (3) Pettit, G. R.; Kamano, Y.; Herald, C. L.; Dufresne, C.; Cerny, R. L.; Herald, D. L.; Schmidt, J. M.; Kizu, H. J. Am. Chem. Soc. 1989, 111, 5015.
 (4) Ireland, C. M.; Faulkner, D. J. J. Bioorg. Chem. 1978, 7, 125.

[^1]: (11) Arimoto, H.; Nishiyama, S.; Yamamura, S. Teirahedron Lett.

[^2]: (12) Bax, A.; Subramanian, S. J. Magn. Res. 1986, 67, 565.
 (13) Bax, A.; Azolos, A.; Dinya, Z.; Sudo, K. J. Am. Chem. Soc. 1986, 108, 8096.
 (14) Breitmaier, E.; Voelter, W. Carbon-13 NMR spectroscopy: High-Resolution Methods and Application in Organic Chemistry and Biochemistry; 3rd ed.; Weinheim: New York, 1987.

[^3]: (15) See refs 8 and 9; peroniatriol I (1): (500 MHz) H3 (ddd, $J=7$, $7,7 \mathrm{~Hz}), J_{\mathrm{H}_{13}-\mathrm{H}_{14}}=7 \mathrm{~Hz}, J_{\mathrm{H}_{14}-\mathrm{H}_{15}}=1 \mathrm{~Hz}, J_{\mathrm{H}_{15}-\mathrm{H}_{16}}=8 \mathrm{~Hz}$; perioniatriol II (2): (500 MHz) H 3 (ddd, $J=7,7,3 \mathrm{~Hz}$); ilikonapyrone (3): (500 MHz) H 3 (ddd, $J=7,7,3 \mathrm{~Hz}$), $J_{\mathrm{H}_{10}-\mathrm{H}_{11}}=8 \mathrm{~Hz}, J_{\mathrm{H}_{11}-\mathrm{H}_{12}}=1 \mathrm{~Hz}, J_{\mathrm{H}_{12}-\mathrm{H}_{13}}=7 \mathrm{~Hz}$; onchitriol I (4): $(250 \mathrm{MHz}) \mathrm{H} 3$ (ddd, $J=8,7,3 \mathrm{~Hz}$), $J_{\mathrm{H}_{3}-\mathrm{H}_{14}}=7 \mathrm{~Hz}$, $J_{\mathrm{H}_{4}-\mathrm{H}_{15}}=2 \mathrm{~Hz}, J_{\mathrm{H}_{15}-\mathrm{H}_{16}}=9 \mathrm{~Hz}$; onchitriol II (9): $(250 \mathrm{MHz}) \mathrm{H} 3$ (ddd, J $=8,8,3 \mathrm{~Hz}), J_{\mathrm{H}_{15}-\mathrm{H}_{14}}=3 \mathrm{~Hz}, J_{\mathrm{H}_{14}-\mathrm{H}_{15}}=2 \mathrm{~Hz}, J_{\mathrm{H}_{15}-\mathrm{H}_{16}}=9 \mathrm{~Hz}$.

[^4]: (16) (a) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370 . (b) Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 4929.
 (17) Recent examples: (a) Adamczeski, M.; Quiñoă, E.; Crews, P. J. Org. Chem. 1990, 55, 240. (b) Kustemi, T.; Ohtami, I.; Inouye, Y.; Kakisawa, H. Tetrahedron Lett. 1988, 29, 4731. (c) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Org. Chem. 1991, 56, 1296. (d) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092. (e) Finamore, E.; Minale, L.; Riccio, R.; Rinaldo, G.; Zollo, F. J. Org. Chem. 1991, 56, 1146.

