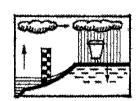
OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER


Mission de NIAMEY

BANQUE AFRICAINE DE DÉVELOPPEMENT

LE GOULBI DE MARADI ET LE LAC DE MADAROUNFA

Données hydrologiques de base

DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

e O.R.S.T.O.M. de NIAMEY (NIGER)

บบทะAU CENTRAL HYDROLOGIQUE - PARIS

Office de la Recherche Scientifique et Technique Outre-Mer

Mission de NIAMEY

Banque Africaine de Développement

LE GOULBI DE MARADI ET LE LAC DE MADAROUNFA

(Données Hydrologiques de Base)

Par

P. CARRE

Collaboration Technique J. ROBIN

D8 CAR

PARIS 1973

11896

SOMMAIRE

			Page
INTRODUCT	ION		
CHAPITRE	<u>I - R</u>	ESULTATS DE LA CAMPAGNE 1972	- 5
I.1	Pluviomé	trie	5
.:		Equipement Observations	5 5
I.2	Evaporat	ion and the state of the state	6
		Equipment Observations	6 6
1.3	Hydromét	rie	7
	I.3.1 I.3.2 I.3.3 I.3.4 I.3.5 I.3.6	Station de MADAROUNFA - Pont (GOULBI de MARADI) Station de MADAROUNFA - Amont (GOULBI de MARADI) Station de BARGAYA (GOULBI de GABI) Station de MADAROUNFA - Lac	7 9 14 16 19 21
CHAPITRE	II - T	ERMES DE L'ALIMENTATION DES AMENAGEMENTS DE MADA-	
	R	OUNFA	27
II.1	Pluviomé	trie	27
	II.1.1 II.1.2 II.1.3	KATSINA	27 28
	##### <i>(</i>	MADAROUNFA	28
II.2	Apports	du GOULBI de GABI	30
	II.2.1 II.2.2 II.2.3	Distribution fréquentielle des débits mensuels Eventualité des modules annuels Années caractéristiques	30 32 32
II.3	Apports	du GOULBI de MARADI à MADAROUNFA - Pont	33
	_	Distribution fréquentielle des modules mensuels Eventualité des modules annuels Années caractéristiques	33 34 35
	II.3.4	Cotes à la prise d'alimentation de MADAROUNFA- Amont	35
II.4	Evaporat	ion et bilan du Lac	35
		Evaporation sur Bac Colorado enterré (1 m x 1 m) Bilan du Lac de MADAROUNFA	35 37

			Page
		•	
CHAPITRE	<u> </u>	DEBITS DE CRUE	41
III.1	Crues du	GOULBI de GABI	41
		Débits maximaux annuels observés à BARGAYA Eventualité d'un maximum annuel	41 41
III.2	Crues du	GOULBI de MARADI	42
	III.2.2	Débits maximaux annuels observés à MADAROUNF? Pont Eventualité d'un maximum annuel La crue de 1961	42 42 43
CHAPITRE	IV - C	CONCLUSION	47
BIBLICGRA	PHIE		
ANNEXES			, , , , , , , , , , , , , , , , , , ,

I. CADRE GEOGRAPHIQUE (Graphiques 1 et 2)

Le GOULBI de MARADI prend naissance à une altitude voisine de 650 m au NIGERIA, à 75 km environ dans l'ouest-nord-ouest de KANO.

A NIELLOUA, première station d'observation en territoire Nigérien, les sols des 4 800 km² du bassin versant supérieur sont dérivés des roches éruptives et métamorphiques calco-alcalines de l'antécambrien. Le réseau hydrographique est orienté vers le nord-ouest ; à la frontière la pente est d'environ 0,09 %.

Après NTELLOUA, le GOULBI abandonne le socle et construit son lit sur des terrains sédimentaires : grès bariolés du Continental Hamadien recouverts d'alluvions anciennes et caillouteuses et d'alluvions plus récentes argilo-sableuses. Le GOULBI prend une direction plus proche du nord alors que le réseau devient moins dense, qu'apparaissent les méandres (pente : 0,05 % au niveau du Pont de MADAROUNFA) et les zones de débordements. C'est juste en aval de MADAROUNFA, rive gauche, qu'il reçoit les apports de son principal affluent, drainant 700 km2 environ, le GOULBI de GABI, par l'intermédiaire du lac naturel de MADAROUNFA (100 à 700 ha). Ce dernier s'est créé à l'ancien confluent des deux rivières, derrière les alluvions du bourrelet de berge du GOULBI de MARADI. Celui-ci est relié au lac par une dépression, le Canal de MADAROUNFA. Le GOULBI alimente le lac par ce canal en début d'hivernage, ainsi que par de larges débordements au cours des plus fortes crues. En fin de saison des pluies, le canal écoule le trop plein du lac.

Après MARADI, le lit majeur boisé du GOULBI, large d'un km, se dirige vers l'ouest. A 80 km de MARADI, il pénètre de nouveau au NICERIA, où ses eaux rejoignent celles de la RIMA-SOKOTO, affluent de rive gauche du NICER.

La région est soumise à l'alternance d'une saison sèche d'abord fraîche (novembre-février), puis chaude (mars-mai) et d'une saison humide (juin-octobre). Le bassin est limité au nord et au sud par les isohyètes 650 (MARADI) et 860 mm. L'écoulement a lieu de juin à octobre d'abord intermittent, puis généralement continu. Le régime du GOULBI de MARADI, dans la portion Nigérienne de son cours, est du type tropical à tendance sahélienne bien marquée.

Les apports annuels moyens du GOULBI de MARADI au Pont de MADA-ROUNFA et du GOULBI de GABI sont respectivement proches de 200 et 14 millions de m³. La relative importance de ces ressources en eau dans le contexte régional aussi bien que les dégâts causés par la violence de certaines crues du GOULBI de MARADI ont suscité, dès 1956, des projets d'aménagements régularisateurs et à usage hydro-agricole.

II. LES PROJETS D'AMENAGEMENT (Graphique 3)

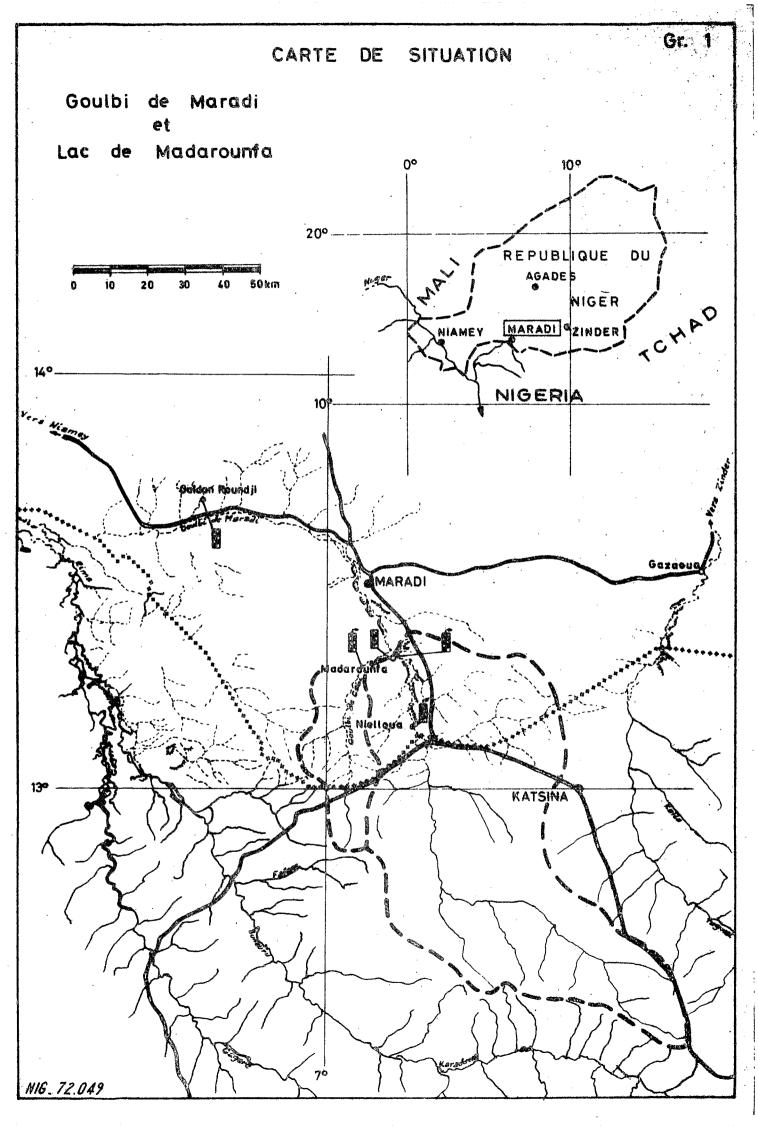
(Document : aménagement hydro-agricole de la vallée du GOULBI de MARADI - Région de MADAROUNFA - SOGETHA 1963).

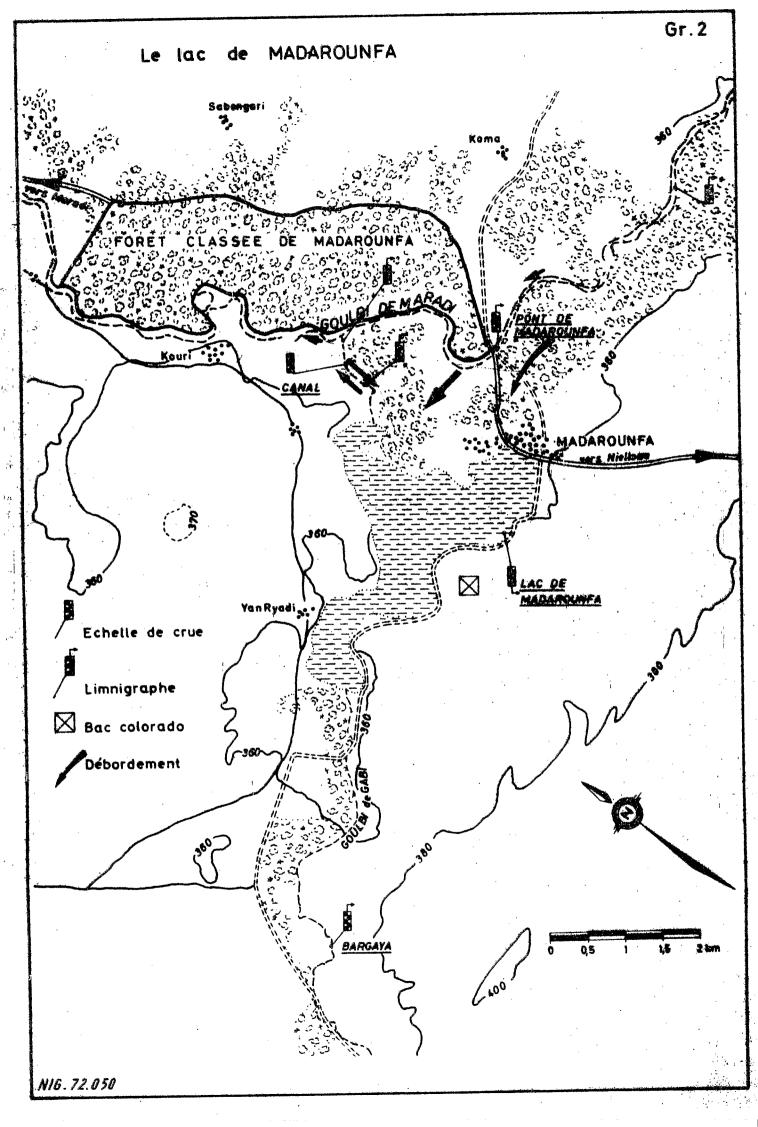
a Calebra (1965) e de la fille de la f La fille de la Les dispositions du projet sont les suivantes

a) il est créé un bassin d'amortissement des crues par la construction d'une digue insubmersible barrant transversalement la vallée entre la dune de DANTOUDOU et celle située à l'Est de GALAMAGAGI : cette digue est équipée d'ouvrages restituant à partir d'une certaine cote un débit constant à l'aval et d'évacuateurs de crues exceptionnelles.

Oet ensemble assure ainsi:

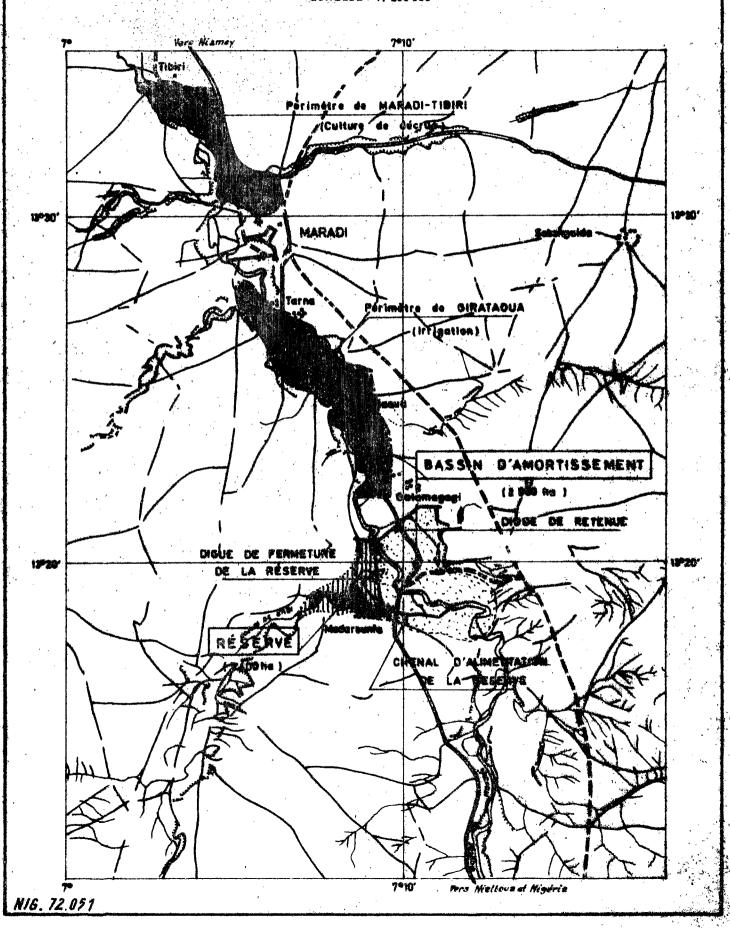
- la protection d'un périmètre à GIRATAOUA contre les débordements du GOULBI en années normales,
 - la création d'une zone submergée destinée à la culture de décrue,
- la quasi disparition des dégâts subis par l'aval pour les années de crues exceptionnelles (1961).
- b) Une réserve est réalisée par la construction d'une digue de fermeture du lac de MADAROUNFA; cette digue submersible relie la dune de MADA-ROUNFA et le pied de la dune de DANTOUDOU. Ses cotes d'arrasement sont fixées à 360,00 m pendant la traversée du village de MADAROUNFA et à 359,50 m pour le reste du tracé, afin d'y localiser les déversements éventuels. Le volume maximum retenu pourra atteindre 45 millions de m³.


Un barrage submersible en enrochement, arrasé à la cote 359,50 m, prolongé d'un chenal, amène à un ouvrage d'alimentation, équipé de vannes à clapet et situé à l'extrémité sud de la réserve, les débits du lit mineur du GOULBI de MARADI qui sont destinés en priorité au remplissage de cette réserve.


c) Les débits emmagasinés tant dans la réserve que dans le bassin d'amortissement sont acheminés vers le périmètre irrigué de GIRATAOUA par l'intermédiaire d'un ouvrage de prise approprié situé à la jonction des digues de la réserve et du bassin d'amortissement.

III. L'HYDROLOGIE DU PROJET

Les recommandations d'un premier avant projet, établi en 1956 par la SOGETIM, soulignaient déjà la nécessité d'obtenir en priorité des données hydrologiques sérieuses de façon à dimensionner au mieux les caractéristiques hydrauliques des ouvrages : crues et cotes exceptionnelles, apports annuels, autant d'inconnues fondamentales dont la simple estimation pouvait coûter très cher à l'économie du projet. Il n'est pas sans intérêt de rappeler que, à cette époque et après une seule année d'observations en 1956, au Pont de MADAROUNFA, les évaluations proposées pour les apports annuels moyens respectifs des GOULBI de MARADI et de GABI étaient alors de 500 et 50 millions de m3, soit 3 fois trop fortes en regard des données d'observation en notre possession maintenant.


Depuis cette époque, la Subdivision d'Etudes des Vallées Sèches du NIGER, puis 1'O.R.S.T.O.M. pour le compte du Service du Génie Rural depuis

AMENAGEMENTS PROPOSES

ECHELLE: 1/ 200 000

1961, dans le cadre de l'exploitation du Réseau Hydrologique du NIGER, ont consacré des soins particuliers aux stations hydrométriques de la zone du projet :

- NIELLOUA (GOULBI de MARADI) 07°13° E 13°09° N (B.V. 4 800 km²),
- MADAROUNFA Pont (GOULBI de MARADI) 07°10' E 13°19' N (B.V. 5 400 km²),
- BARGAYA (GOULBI de GABI) 07°05° E 13°17° N (B.V. 700 km²).

La station de base de MADAROUNFA - Pont présente aujourd'hui quinze années d'observations.

En 1971, sur la demande de la République du NIGER, la Banque Africaine de Développement a accepté le principe du financement d'une campagne hydrologique dans la zone du projet pendant l'hivernage 1972. La réalisation de cette campagne et la récapitulation des observations hydrologiques ont été confiées à 1º0.R.S.T.O.M.. Le texte de Convention signé le 28 juillet 1972 prévoyait (II - CONSISTANCE DES ETUDES):

- . "l'étude devra être complétée par des précisions sur :
- les débits de hautes eaux du GOUIBI à NIELLOUA : enregistrement continu par limnigraphe et mesures de débits,
- les débits de hautes eaux à la station de MADAROUNFA Pont. Une échelle limnimétrique sera installée au site de déversement et les lectures permettront d'établir la corrélation entre les miveaux d'eau au site d'ancrage du barrage de la digue d'alimentation de la réserve et la station hydrométrique de MADAROUNFA - Pont,
- l'alimentation du lac de MADAROUNFA: contrôle et tarage du canal de MADAROUNFA. Mesure des débits apportés par le GOULBI au cours de ses débordements en rive gauche,
- les hydrogrammes de crues typiques du GOULBI de GABI sous forme de courbes de comparaison avec indication de fréquence,
- la mesure de l'évaporation. " ...

..."L'O.R.S.T.O.M. remettra à la B.A.D. un rapport de synthèse sur le régime du GOUIBI de MARADI et le bilan hydrique du lac de MADAROUNFA, en tenant compte des résultats de l'étude présente et d'estimation des modules et des débits de crues de fréquence rare obtenus par corrélation hydro-pluviométriques à l'aide des observations climatologiques de longue durée des stations Nigériannes du bassin".

Le devis prévoit au total (rapport et terrain) la participation de personnel expatrié à raison de deux mois d'ingénieur et deux mois d'assistant technique.

IV. PRESTATIONS DE L'O.R.S.T.O.M.

Une "Note Hydrologique sur le GOULBI de MARADI et le lac de MADA-ROUNFA" a été établie dès début 1972 par P. CHAPERON qui fait le point des connaissances à cette époque et notamment présente :

- des études statistiques des crues et des modules annuels aux stations de NIELLOUA, MADAROUNFA Pont, (GOULBI de MARADI), BARGAYA (GOULBI de GABI),
- des estimations, année par année, du bilan hydrique du lac de MADA-ROUNFA depuis 1961 jusqu'en 1970.

Une note établie en novembre 1972 et résumant les "Activités de la Mission O.R.S.T.O.M. au NICER dans le cadre de la convention d'étude hydrologique du GOULBI de MARADI" rend compte du déroulement de la campagne de terrain de 1972 et des principaux résultats que l'on peut en attendre. Les travaux de terrain ont été effectués par J ROBIN (du 2 au 27 mai et du 7 juin au 22 septembre) et les installations contrôlées par P CARRE (14 au 25 juillet). Une mission a été effectuée du 4 au 9 décembre à KANO, KADUNA, KATSINA, auprès des Services Nigérians, pour réunir des renseignements pluviométriques intéressant la portion sud du bassin.

La présente note complète les résultats de P. CHAPERON en fonction des récentes données hydrométriques et pluviométriques.

CHAPITRE I

RESULTATS DE LA CAMPAGNE 1972

I.1 Pluviométrie.

I.1.1 Equipment.

La pluviométrie journalière 1972 sur le lac (358 m - 7°9° E - 13°19° N) est connue grâce à l'implantation de trois appareils de type Association à bague de 400 cm².

Le pluviomètre de "MADAROUNFA - village", à l'extrème Est du plan d'eau, celui de "MADAROUNFA - canal" au nord, indiquent la pluviométrie à 1,50 m du sol.

Le pluviomètre de "MADAROUNFA - évapo." enregistre la pluviométrie au sol, au sud du lac.

A une vingtaine de km au nord et au sud du lac, les relevés pluviométriques effectués aux stations suivantes précisent la pluviométrie régionale.

- MARADI Météorologie Nationale (368 m 07°05° E 13°28° N),
- NIEILOUA ORSTOM (403 m 07°13° E 13°09° N).

Enfin, les données de deux stations Nigériannes nous renseignent sur la tendance pluviométrique dans le haut bassin du GOULBI:

- KATSINA (... - 07°37' E - 13°00' N).

I.1.2 Observations.

Les résultats sont présentés en annexe, tableaux 1 à 5 et résumés mois par mois ci-après en mm et dixième de mm :

See continue con contract consistent	· ·	•	NIELLOUA	evapo.	MFA village:	MFA canal	• •
Avril Mai Juin Juillet	55,4 118,0 45,0	97,5 118,0	23,1 28,3 86,4	32,4 52,3 44,1	57,6 69,9	- 42,8	4,4 15,8 23,8 87,2

	KANO	KATSINA	NIELLOUA	MFA évapo.	MFA Village	MFA canal	MARADI
•	•	•	•	113,1 52,5	•	•	-
AN	•	•		1	·		288,5

- non observé.

Le déficit est catastrophique dans la région de MARADI où la pluie est inférieure de 100 mm à la centenaire sèche estimée à 380 mm environ.

En affectant à chacun des pluviomètres de MADAROUNFA un coefficient d'influence équivalent, la pluviométrie 1972 sur le lac peut être estimée de 305 à 310 mm, soit moins de la moitié de la pluviométrie moyenne interannuelle ; la répartition des pluies est la suivante :

> 55 mm en juin, en juillet, 52 mm 114 mm en août, 50 mm en septembre.

I.2 Evaporation.

Dans le cadre de la campagne de terrain, un bac évaporométrique Colorado enterré et un pluviomètre au sol ont été installés à proximité du lac de MADAROUNFA et fonctionnent depuis août 1971.

Un dispositif de mesures analogue fonctionnait également depuis 1965 à la station d'essai de l'IRAT à TARNA près de MARADI.

I.2.2 Observations.

Les moyennes respectives d'évaporation journalière (en dixièmes de mm/j) sont les suivantes sur la période commune d'observation :

-				* * <u>.</u> * .	2				:	:	:		•	
•		J	F	М.,	A	М	į J	jt	. A	្ន	0	N	D:	AN.
	MFA	and the extent	que entre entires	dan school ean		CONTROL CASE AND		e Decision	52	48	44	53	53	
•	TARŅA	65	75	88 :	107:	100:	80	62	39	65	104	85	81	7,9

Année 1972

٠	·		' '		· · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				
9		J	: F	M	A	M :	J	: Jt	: A :	S :	. 0	N :	D	AN.:
4 94 94	MFA	<i>5</i> 7	42	51	54	93	92	83	56	56	79	97	79	
40 44 44	TARNA		101											79

I.3 Hydrométrie.

I.3.1 Station de NIELLOUA (GOULBI de MARADI).

Coordonnées : 07°13' E - 13°09' N

Altitude : 378 m environ

Bassin versant : 4 800 km² environ.

I.3.1.1 Equipment.

Installée en 1957, à proximité de l'ancien campement de NIELLOUA, l'échelle est composée :

- d'un élément (000 100 cm), rive droite, calé à la cote 378,30 m (nivellement SOGETEC),
- de cinq éléments (100 600 cm) en rive gauche dont le calage, depuis juillet 1972, est analogue au précédent.

Les installations sont complétées par un enregistreur de niveau placé en rive droite.

I.3.1.2 Tarage.

Les quelques kilomètres des gorges de NIELLOUA fourmissent un contrôle rocheux intéressant à l'aval duquel le lit se manifeste très instable.

Cependant, les fortes pentes locales (3 m au km à la traversée des gorges), les turbulences créées par les rochers, les corps flottants, ne facilitent pas la tâche de l'hydrométriste.

Les mesures effectuées permettent un tarage très satisfaisant pour les traductions hauteurs d'eau-débits. Les trente-cinq mesures effectuées (tableau A 6) sont illustrées graphique 4 et déterminent le barème d'éta-lonnage jusqu'à H = 310 cm, cote maximum de l'année.

L'amélioration des conditions de tarage obtenues à partir des mesures de 1972 ne nous permettra pas de préciser sensiblement les débits en très hautes eaux. Rappelons qu'en 1961 la cote avait atteint 660 cm à l'échelle.

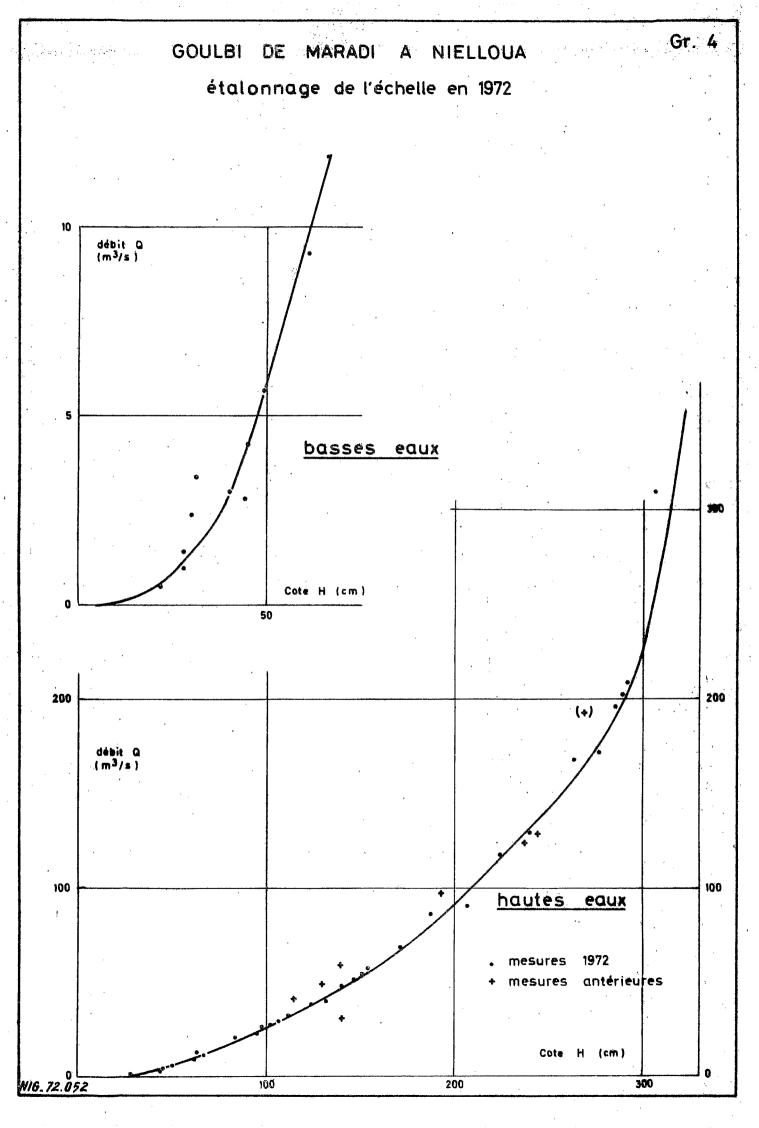
٠,	*		<u> </u>	<u> </u>	<u>:</u>			<u> </u>		
** ** ** *	H (cm)	0	20	40	60	80	100	120	140	160
40 40 40	Q (m ³ /s)	0	0,40	3,00	9,50	17,5	27,0	37,0	48,0	60,0
					,		,			
* ** ** ** *	H (cm)	180	200	220	240	260	280	300	310	

Les principaux éléments du barème 1972 :

En 1972, l'exploration complète des vitesses dans la section a été pratiquée jusqu'à 2,50 m à l'échelle ; plus haut, les mesures ont été effectuées en surface (3,60 m/s maximum enregistré pour 310 cm).

I.3.1.3 Hauteurs d'eau.

Les relevés sont complets sur la période d'écoulement, du 29 mai au 11 octobre.


L'exploitation des limnigrammes a été faite en utilisant jusqu'à six relevés par jour, convenablement répartis sur l'intervalle de 24 h pour obtenir le débit moyen journalier :

- 1 relevé, c'est celui de 12 h,
- 2 relevés, ce sont ceux de 6 h et 18 h,
- 3 relevés, ce sont ceux de 4 h, 12 h et 20 h,
- 4 relevés, ce sont ceux de 3 h, 9 h, 15 h et 21 h,
- 6 relevés, ce sont ceux de 2 h, 6 h, 10 h, 14 h, 18 h et 22 h.

Pour les basses eaux, les observations biquotidiennes du lecteur sont souvent utilisées.

On a jugé préférable de ne pas alourdir le rapport avec les tableaux de hauteurs d'eau.

Les maximums X et les minimums $\mathbb N$ (cm) rencontrés mois par mois sont les suivants :

*		Mai				: :Septembre:	
* * * *	X (cm)	173	165		304	130	16
	N (cm)	sec	sec	19	31.	16	sec

I.3.1.4 Débits.

Les débits moyens journaliers sont calculés à partir des moyennes arithmétiques des débits instantanés (1 à 6 répartis suivant I.3.1.3).

L'hydrogramme figure en Annexe A 7 pour le mois d'août, le plus abondant.

Le tableau 1 présente les débits moyens journaliers.

Le débit maximal instantané est de 276 m3/s le 29 juillet à 6 h.

Le module annuel est des plus faibles : 3,14 m3/s contre 3,06, soit 96 millions de m3, record précédent de sécheresse en 1968.

I.3.2 Station de MADAROUNFA - Pont (GOULBI de MARADI).

Coordonnées : 07°10' E - 13°19' N

Altitude : 355 m environ

Bassin versant: 5 400 km² environ.

I.3.2.1 Equipment.

La première échelle a été installée en mai 1956, le zéro était à

Une seconde échelle a été installée en 1965 après l'allongement du pont, le zéro étant à la même cote.

Cette échelle a été descendue de 1 m en juillet 1972, pour tenir compte du creusement du lit mineur. Un mivellement effectué en décembre 1972, par rapport à la borne SOGETEC n° 82 cotée 356,40 m près de l'échelle débordement rive gauche, place le zéro de l'échelle 1972 à 354,31 m, au lieu de 354,20 m : cette différence pourrait s'expliquer par un déplacement de la borne O.R.S.T.O.M. avant une réfection d'échelle.

Le zéro d'échelle débordement rive gauche est lui-même à la cote 356,11 m, mesure effectuée par rapport à la borne SOGETEC n° 82 citée cidessus.

TABLEAU 1

DEBITS MOYENS JOURNALIERS en m3/s

NIELLOUA (GOULBI de MARADI)

1972-1973

٠	·						
**	Jours	Mai	Juin	Juillet	Août	: Septembre	Octobre
* ** ** ** **	_	0,00	6,70 9,30 3,30 0,00	2,04 2,35 4,35 1,56 6,32	8,28 · 19,7	20,8 7,53 3,60 2,36 1,56	0,28 0,28 0,25 0,25 0,34
68 64 64 64 64 64	6 7 8 9 10	0,00 0,00 0,00 0,00 0,00	4,50 0,00 9,50 5,27 0,00	5,88 27,6 9,48 3,12 1,10	100 27,4 4,58 44,6 32,2	4,15 8,15 9,05 3,00 1,72	0,34 0,28 0,22 0,10 0,05
30 30 50 50 50		0,00	3,82	0,50 4,02 33,8 0,80 1,31	6,13 4,50	1,88 1,20	0,02 0,00 0,00 0,00 0,00
	16 17 18 19 20	0,00 0,00 0,00 0,00 0,00	0,60 0,16 0,08 0,05 0,02	8,80 2,20 1,56 18,6 11,4	3,60 2,25 2,68 2,35 61,4	2,04 2,30 3,60 3,00 1,40	0,00 0,00 0,00 0,00 0,00
** ** ** ** **	22 23	0,00 0,00 0,00 0,00	0,00 31,2 5,70 5,40 1,72			1,10 0,80 0,80 0,70 0,70	0,00 0,00 0,00 0,00 0,00
** ** ** ** ** **	26 27 28 29 30 31	0,00 0,00 0,00 45,2 8,62 6,35	0,80 0,40 0,80 20,1 5,10	0,17 9,41 19,4 93,9 18,0 7,08	2,36 1,56 1,10 0,80 1,00	0,96 1,40 1,00 0,34 0,31	0,00 0,00 0,00 0,00 0,00 0,00
**	от и равосим и по при всех уст сто Т	1,94	4,09.	9,72	18,2	3,15	0,08

Module annuel : 3,14 m³/s

Débit maximal : 276 m3/s, le 29 juillet à 6 h.

Deux limnigraphes doublaient les deux échelles ci-dessus.

1.3.2.2 Tarage.

Les ouvrages de franchissement du pont permettent une relative stabilité du lit, au moins latérale, ce qui présente un gros intérêt par rapport aux divagations habituelles du GOULBI dans cette portion du cours.

Cependant, les fortes vitesses de crue qui modifient le fond du lit, la présence d'un échafaudage métallique soutien de travée et piège à corps flottants, nécessitent des mesures nombreuses assez délicates en hautes eaux.

En 1972, l'exploration complète du champ de vitesse au moulinet a été assurée jusqu'à 235 cm (échelle 72); des mesures de surface furent effectuées jusqu'à 265 cm (3,50 m/s maximum à cette cote).

Les trente-trois mesures de débit sont présentées au tableau A 8 et illustrées au graphique 5. Ont été reportées également les mesures de 1971.

Le phénomène pourtant habituel de débordement n'a pu être observé à MADAROUNFA cette année, sauf au cours d'une mesure le 31 août 1972 où 0,35 m³/s ont été mesurés en rive gauche.

Les traductions hauteur-débit en 1972 se feront suivant le barème ci-après :

: H : (cm)	65	80	100	120	140	160
(m ³ /s)	ు ామెక్టిం ర ్ ఎ ఇమ్ వర్యాకర్వాలు	∴ 6 0,20 -3. ed⊅arios,	1,00	30.4,30	11,0	19,7
, No. 233 (1)	inganika galaan		an orași de o			
_ =====================================						
: H		%), 200 j (al.,		240	260	265

I.3.2.3 Hauteurs d'eau.

Les relevés sont complets sur la période d'écoulement du 19 mai au 30 septembre, exception faite de certains faibles débits de juin non enregistrés.

L'exploitation des limnigrammes a été assurée en utilisant jusqu'à six relevés par jour, convenablement répartis sur l'intervalle de 0 à 24 h pour obtenir le débit moyen journalier (voir paragraphe I.3.1.3).

Pour les basses eaux, les observations biquotidiennes du lecteur sont souvent utilisées.

Les tableaux en annexe A 9, A 10, A 11 présentent les hauteurs d'eau.

Les maximums X et les minimums N (cm) rencontrés sont les suivants, par mois:

** ** *		Mai	4			:Septembre:	
	X (cm)	224	•	*		210	sec
** ** ** **	N (cm)	sec		71	98	66	sec

- Non enregistré, sans doute lit à sec.

L'échelle de rive gauche n'a pas été atteinte par le débordement du 31 août.

I.3.2.4 Débits.

Les débits moyens journaliers sont calculés à partir des moyennes arithmétiques des débits instantanés (1 à 6 répartis suivant le paragraphe I.3.1.3).

L'hydrogramme figure en annexe A 12 pour le mois d'août, mois du maximum et le plus abondant.

Le tableau 2 présente les débits moyens journaliers.

Le débit maximal instantané est de 115 m3/s, le 31 août à 15 h.

Le module annuel est de 2,65 m3/s, le plus faible après la sécheresse record de 1968 (module 2,45 m3/s, soit 77 millions de m3).

Pendant la crue du 31 août, <u>un volume estimé de 10 à 30 000 m3</u> a été apporté au lac de MADAROUNFA à la suite des débordements rive gauche, entre le 31 août à 20 h 40 et le 1er septembre à 20 h.

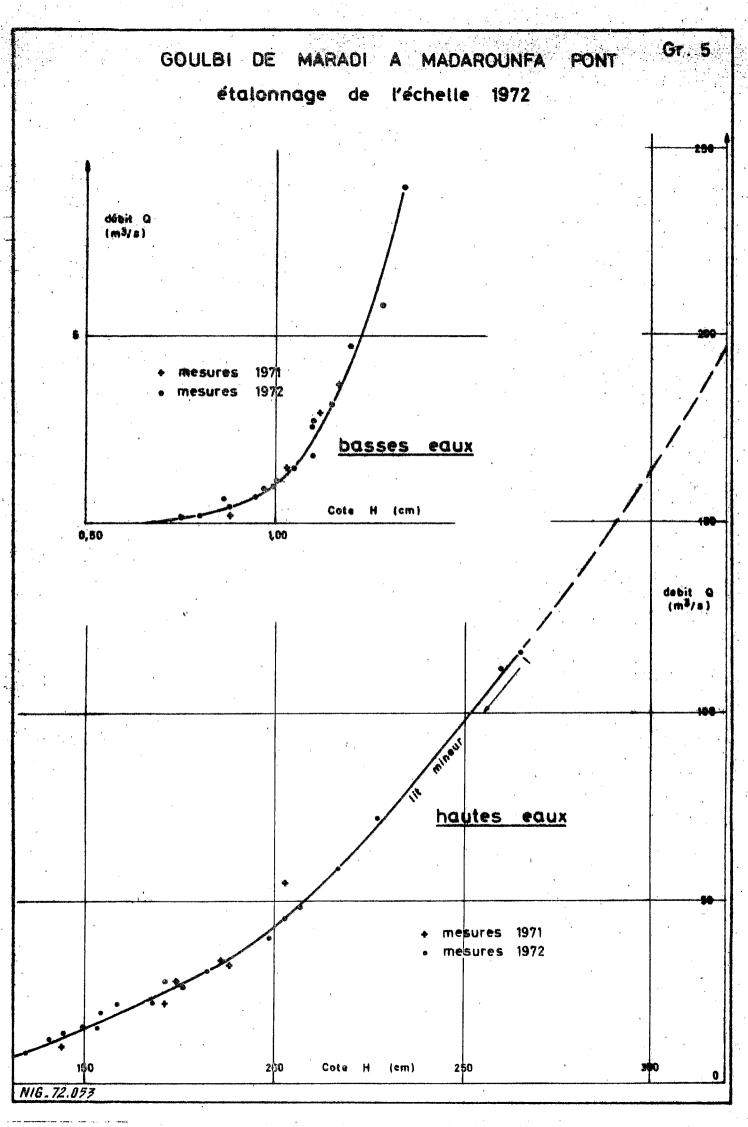


TABLEAU 2

DEBITS MOYENS JOURNALIERS en m3/s

MADAROUNFA-Pont (GOULBI de MARADI) 1972-1973

Jours	Mai	Juin	Jüllet	Août	:Septembre	Octobre
1 2 3 4 5	0,00 0,00 0,00 0,00 0,00	14,8 9,00 2,30 1,52 2,17	1,91 0,57 1,00 1,60 2,22	5,95 3,16 14,4 7,60 5,08	31,7 14,4 7,91 5,23 3,43	0,00 0,00 0,00 0,00 0,00
6 7 8 9 10	0,00 0,00 0,00 0,00 0,00	2,22 6,30 6,58 0,90	3,94 11,8 10,7 3,50 0,42	51,4 33,0 12,2 28,9 17,8	2,23 11,2 9,55 5,13 2,26	0,00 0,00 0,00 0,00 0,00
11 12 13 14 15	0,00 0,00 0,00 0,00	3,50 3,90 0,62	1,66 29,5 5,27 1,00 0,36	9,08 4,58 5,95 3,31 12,4	1,45 0,85 3,59 1,52 1,71	0,00 0,00 0,00 0,00
16 17 18 19	0,00 0,00 0,00 0,48		3,13 8,84 1,02 10,7 11,5	6,68 2,50 2,83 2,34 51,0	2,59 2,48 2,08 1,73 0,75	0,00 0,00 0,00 0,00 0,00
21 22 23 24 25		6,50 8,60 3,90 3,80	2,21 0,55 0,23 0,20 0,06	17,2 34,9 25,5 19,5 8,97	0,50 0,34 0,24 0,18	0,00 0,00 0,00 0,00
26 27 28 29 30 31	25,9 17,0 15,2	0,66 2,17 14,5 9,25	0,02 7,76 15,9 59,6 24,4 11,5	4,89 3,10 2,28 1,65 1,01 59,2	0,30 0,49 0,26 0,10 0,02	0,00 0,00 0,00 0,00 0,00
	1,89	3,44	7,52	14,8	3,81	0,00

- Non observé, négligé en mai et juin Module annuel: 2,65 m3/s Débit maximal: 115 m3/s, le 31 août à 15h.

I.3.3 Station de MADAROUNFA - Amont (GOUIBI de MARADI).

Coordonnées : 13°18°45" N - 07°11°32" E

Altitude : 358 m environ

Bassin versant: 4 800 km² environ.

A trois km en amont de MADAROUNFA-Pont, l'objet des observations est de connaître, pour différents débits, les cotes naturelles du plan d'eau à l'origine du projet (Dossier SOGETHA - pièce B4 - 1); celle-ci se situe à l'extrémité rive droite du barrage en enrochement submersible qui, par l'intermédiaire d'un chenal, àlimenters en priorité la réserve de MADAROUNFA à partir des débits du GOULBI de MARADI. Le chenal d'alimentation doit permettre un écoulement de 130 m3/s.

Les équipements ont été installés à 200 m en amont du point zéro dans une partie rectiligne du cours, afin d'assurer un minimum de sécurité aux équipements. Néanmoins, l'élément du lit mineur a été tordu et la rive érodée sur 10 m au niveau de la station.

I.3.3.1 Equipment.

Un promier ensemble (échelle plus limnigraphe) avait été installé en début de saison à deux kilomètres environ en amont de l'emplacement défini ci-dessus.

Le 24 juillet 1972 étaient installés en rive gauche :

- un élément 0 1 dans le lit mineur. Le zéro est à quelques centimètres près au niveau du fond du lit,
- un limnigraphe sensiblement à l'écart du lit mineur pour les débits les plus importants. Un élément 100 à 300 est fixé contre la gaine.

Nivelée par rapport à la borne SOGETEC n° 110 cotée 360,46 m, l'altitude du zéro de l'échelle se trouve à 357,67 m.

I.3.3.2 Hauteur d'eau.

Les hauteurs d'eau relevées permettent l'établissement de la courbe de corrélation des niveaux entre la station H_{MA} et le Pont de MADA-ROUNFA H_{MP} .

Le 29 juillet 1972 (limnigraphes):

٠ _		. ,	4	• - :		2	٠,	·			,	-
4	٠, ٠	: ':		*		. '1':		':	···	1		:
4	à	*	$^{ m H}_{ m MA}$	1	$^{ m H}_{ m MP}$:::	à	:	$^{ m H}_{ m MA}$	*	$^{ m H}_{ m MP}$:
*		. '\$ '8 -:	(cm)		(cm)	'0'0 8 # named * '0' com			(cm)	um'# possii	(cm)	measi y
'	9 h	· ·	124	·•	238	**	14. h	. *	138	:	256	
*	10 h	**	137	*	256	**	15 h	*	134	*	251	*
	11 h	':	141	* '	260	*:	15 h50) ·• · ·	129	:	244	*
	12 h	1	142	*	261		17 h	*	118	*	232	•
•	13 h	;	141	:	259	::		;		:		:

Le 31 août 1972 (limnigraphes)

	H _{MA} (cm)	H _{MP} (cm)	à	H _{MA} (cm)	H _{MP} (cm)
7 h 8 h 9 h 10 h 11 h 12 h 13 h 14 h 15 h	121 136 141 145 147 149 150 150	. 5550	// n	148 146 143 139 135 129 121 114	265 264 263 259 254 246 239 230

Le 6 août 1972 (limnigraphes):

Maximum $H_{MA} = 142 \text{ cm}$ $H_{MP} = 259 \text{ cm}$

Le 20 août 1972 (limnigraphes) :

 $H_{MA} = 138 \text{ cm} \qquad H_{MP} = 259 \text{ cm}$

Autres relevés (échelle) :

le	H _{MA} (cm)	H _{MP} (cm)
14- 8-72 18- 8-72 21- 8-72 22- 8-72 24- 8-72 29- 8-72 ? 1- 9-72 4- 9-72 5- 9-72	14 9 59 (69) 50 12 143 77 38 26 19	117 112 161 (200) 162 105 258 190 144 123 116

La courbe de corrélation (graphique 6) est tracée dans sa partie haute à partir des maximums respectifs aux deux stations et des hauteurs

aux mêmes heures pour les relevés limnigraphiques de décrue. Alors en effet, les gradients de hauteur sont suffisamment faibles pour qu'il soit fait abstraction des temps de propagation sur quelques kilomètres.

La courbe a été graduée en m3/s, à partir du tarage de MADA-ROUNFA - Pont.

I.3.4 Station de BARGAYA (GOULBI de GABI).

Goordonnées : 07°05° E - 13°17° N

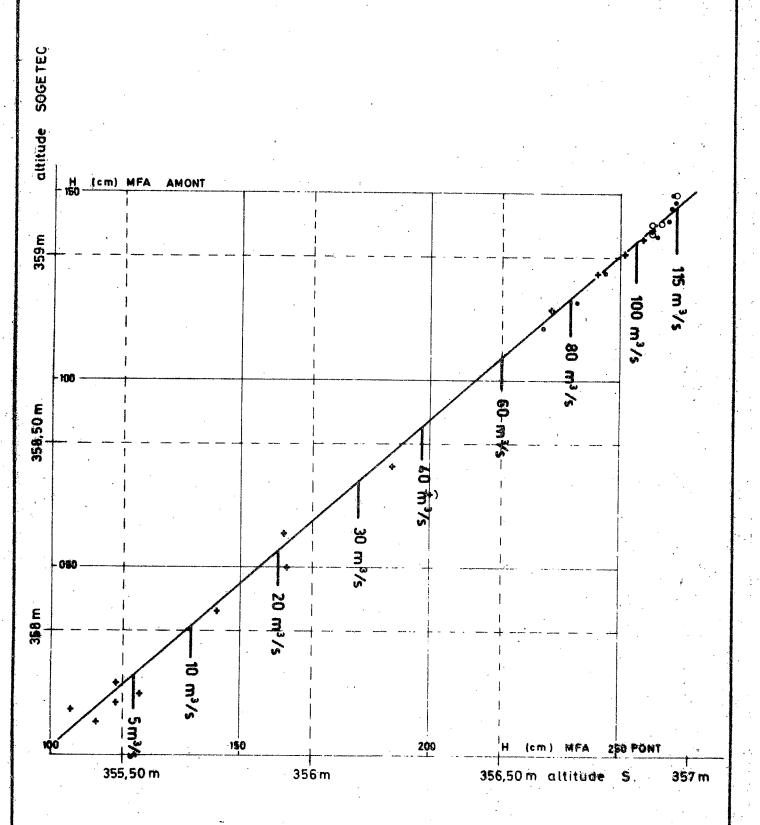
Altitude : 358 m environ

Bassin versant : 700 km² environ.

Les premières mesures d'écoulement du GOULBI de GABI datent de 1961, mais ont été effectuées trop près du lac (tarage non univoque). Aussi cette première section de mesure soumise à l'influence du lac at-elle été abandonnée fin 1961 au profit de l'actuelle station proche du village de BARGAYA.

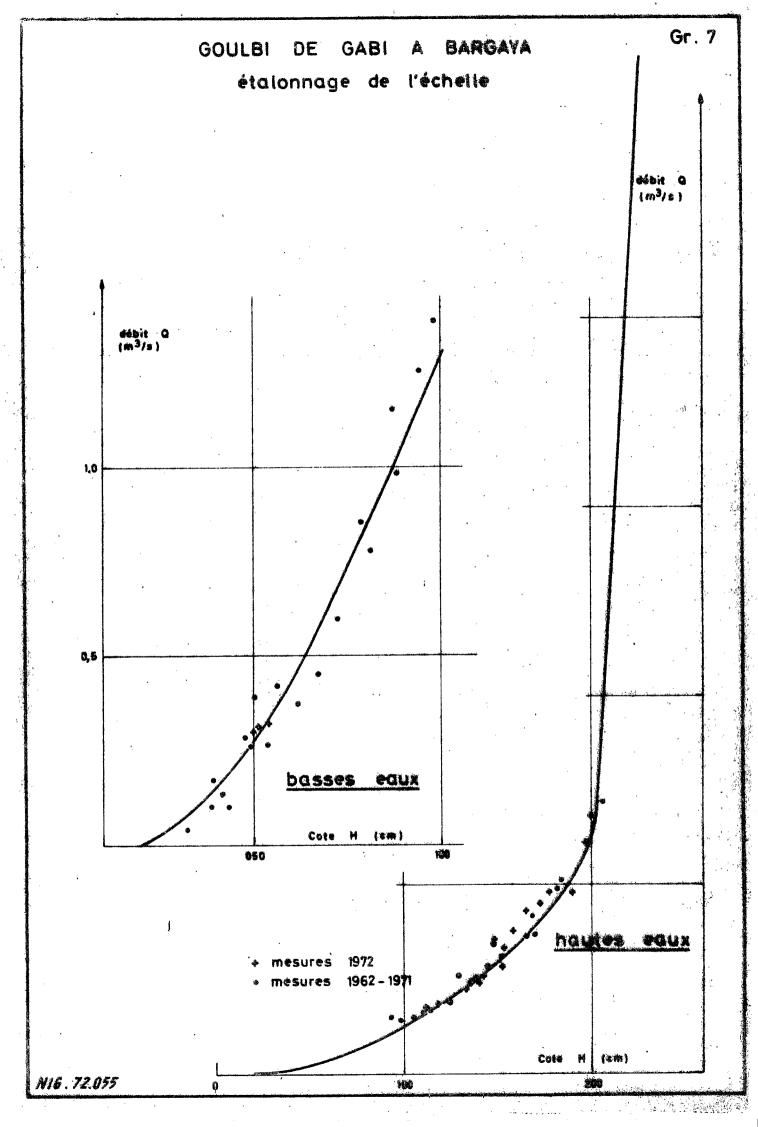
I.3.4.1 Equipment

La station est composée de trois éléments d'échelle centimétrique (000 à 300 cm). L'échelle est doublée d'un limnigraphe OTT type X.


Le zéro de l'échelle est coté à l'altitude 357,46 m (rattachement au RN 14 près des échelles du lac : 356,09 m).

I.3.4.2 Tarage

Les mesures de débit effectuées sont au nombre de vingt et permettent le contrôle de l'étalonnage de la station.


No	Date	: H :(cm)	: Débit :(m3/s)	No	Date	H (cm)	Débit (m3/s)
41 42 43 44 45 46 47 48 49 50	22- 8-72 22- 8-72 22- 8-72 23- 8-72 23- 8-72 23- 8-72 23- 8-72 23- 8-72 23- 8-72	165	4,80 6,11 6,83 2,48 2,52 2,57 3,56 3,30 4,30 3,74	51 52 53 54 55 56 57 58 59 60	23- 8-72 23- 8-72 1- 9-72 1- 9-72 1- 9-72 1- 9-72 2- 9-72 2- 9-72 2- 9-72	170 177 152 140 134 118 111 54 51	4,50 4,80 2,80 2,39 2,24 1,87 1,75 0,33 0,31 0,30

GOULBI DE MARADI
Corrélation des niveaux entre
MADAROUNFA PONT ET MADAROUNFA
AMONT

- Maximum de crue
- Décrue du 29-07-72
- Décrue du 31-08-72

HIG. 72.054

Le barème d'étalonnage retenu est le suivant (graphique 7) :

		,											***************************************
:	H (cm)	2	0	40	60	80	100	120	140	160	180	200	220
	Q. (m3/s)	• ()	0,15	0,43	0,84	1,29	1,88	2,55	3,37	4 ,5 3	6,20	22,5:

I.3.4.3 Hauteurs d'eau.

La période d'écoulement s'étend du 22 juin au 12 septembre. Les relevés sont complets et proviennent:

- soit des observations biquotidiennes du lecteur pour les basses eaux,

- soit du dépouillement de l'enregistreur d'où ont été extraites au maximum huit informations sur l'intervalle 0 - 24 h (1 h 30 - 4 h 30 - 7 h 30 - 10 h 30 - 13 h 30 - 16 h 30 - 19 h 30 - 22 h 30).

Les extrêmes (cm) rencontrés sont les suivants :

	. Mai	: Juin	: Juillet :	Août	Septembre	
X (cm)	sec	186	228	216	186	sec
N (cm)	sec.	sec	sec	sec	sec	sec

X = maximum.

N = minimum.

I.3.4.4 Débits.

Les débits moyens journaliers sont calculés à partir de la moyenne arithmétique des débits instantanés convenablement répartis sur l'intervalle de 24 h (1 à 8).

L'hydrogramme figure en annexe A 13 pour le mois de juillet, mois du maximum.

Le tableau 3 présente les débits moyens journaliers.

TABLEAU 3

DEBITS MOYENS JOURNALIERS en m3/s

BARGAYA (GOULBI de GABI)

--- 1972-1973

: : : :	: '	<u> </u>				
Jours	Mai	Juin '	Juillet:	Août.	:Septembre	Octobre:
1 2 3 4 5 6 7 8 9	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,21 0,11 0,00 0,00 0,00 0,00 1,41 2,30 0,21 0,07	0,15 0,02 0,00 0,28 0,10 3,83 3,90 0,71 0,55 4,45	3,15 0,60 0,14 0,09 0,02 0,00 0,00 0,00 0,29 0,92 0,14	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
11 12 13 14 15 16 17 18 19 20	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 1,01 1,58 0,19 0,06 0,00 0,00 0,00 0,00 0,00	0,86 0,33 0,49 0,48 0,36 0,27 0,15 1,03 1,62 6,72	0,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
21 22 23 24 25 26 27 28 29 30 31	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 2,13 0,64	0,05 0,09 0,04 0,00 0,00 0,00 2,79 6,80 10,2 13,1 0,84	8,18 5,79 4,12 1,37 0,33 0,11 0,08 0,00 0,00 0,02 0,15	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
У Х	0,00	0,21	1,32	1,66	0,18	0,00

Module annuel : 0,28 m3/s

Débit maximal : 30,5 m3/s, le 29 juillet à 19 h 30

Pas d'écoulement en avril, ni après le mois d'octobre.

Le débit maximal instantané est de 30,5 m3/s le 29 juillet, à 19 h 30.

Le module annuel est de 0,28 m³/s, soit 8,8 milliards de mètres cubes, dépassé sans doute environ quatre années sur cinq.

I.3.5 Station de MADAROUNFA - Lac.

Coordonnées : 07°09° E - 13°18° N

Altitude : 353 m environ. --

Le graphique 8 présente les caractéristiques hauteur-superficievolume de la réserve de MADAROUNFA, c'est-à-dire de la fraction du lac naturel limité par les ouvrages de retenue côté GOULBI (source : document SOCETHA, pièce C1 - 1, graphique n° 1).

I.3.5.1 Equipment.

L'échelle de contrôle du lac est installée depuis 1956 sur la rive sud. L'altitude de son zéro est de 352,60 m rattachée à celle du repère RN 14 proche coté 356,09 m.

Un limnigraphe doublant l'échelle a fonctionné pendant la campagne 1972.

I.3.5.2 Hauteurs d'eau.

Le tableau 4 présente les hauteurs d'eau biquotidiennes en juillet et août et quotidiennes les autres mois.

En l'absence de débordements importants du GOULBI cette année, les faibles variations limnimétriques journalières ne justifient pas une exploitation plus poussée des limnigrammes.

La cote minimum est enregistrée le 21 juin avec 44 cm, soit 353,04 m.

Les 24-25 août, la cote a atteint 225 cm, soit 354,85 m.

Les cotes (cm) au 15 de chaque mois sont respectivement :

												N			;]	F	:
*	H: (cm)	•	61	*	•	 1	A -	1	*	′	•	157	2 1	z '	•	,	

TABLEAU 4

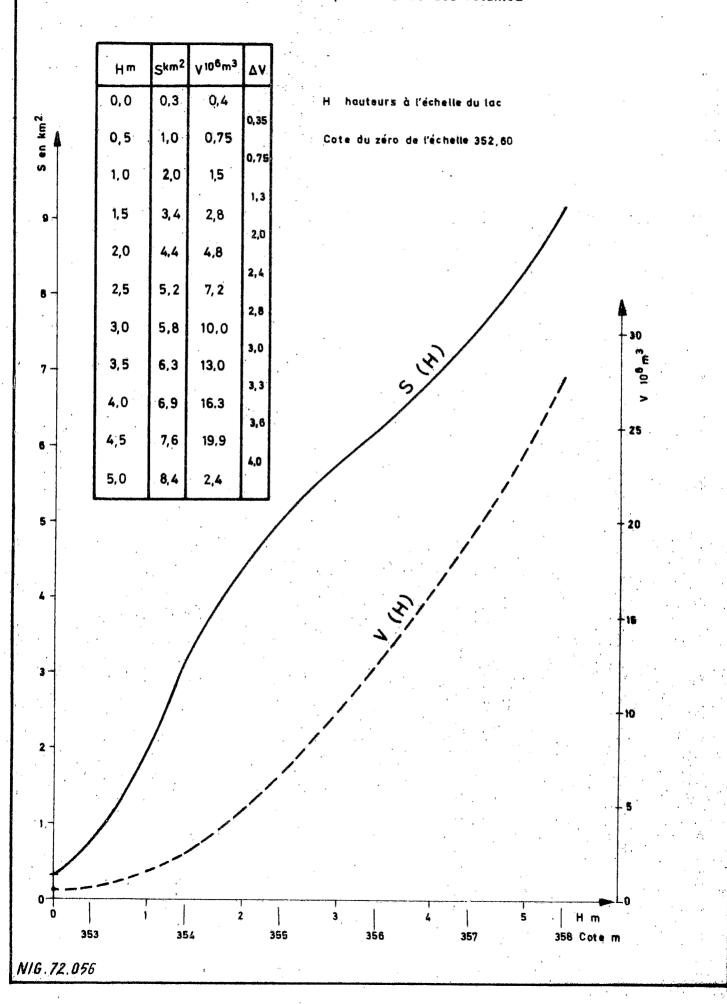
HAUTEURS LIMNIMETRIQUES en cm

Lac de MADAROUNFA

1972-1973

Altitude du zéro : 352,60 m /RN 14 à 356,09 m

•	,	,					 .					
-		Juin:	Jui	1	Aot	it :	Sept	Oct	Nov '	Déc	Janv	Févr
Jours's	·	М	М	S	M	S	M	M	M	M	M	M
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 24 25 26 27 28 29 31 22 23 24 25 26 27 28 29 31	70 69 68 67 66 65 63 63 61 61			56 55 54 68 70 69 70 71 80 79 81 77 76 76 76 76 76 76 76 76 76 76 76 76	152 152 152 153 160 174 176 177 185 187 188 188 188 188 188 191 201 213 220 225	152 152 152 154 170 175 175 182	222 220 219 217 215 213 216 216 216 216 216 216 217 210 209 209 208 205 203 200 200 199 199 198	192 192 191 190 189 188 187 186 185 184 183 182 180 179 178 177 176 175	166 166 165 164 163 163 160 169 159 158 157 155 155 155 155 155 155 155 155 155	146 145 145 144 144 144 140 140 140 140 140 140 140		


M : Matin

S : Soir

Hauteur maximale: 225 cm.

LAC DE MADAROUNFA

Courbes des superficies et des volumes

I.3.6 Station de MADAROUNFA - Canal (exutoire du lac).

Coordonnées : 07°09 E - 13°20 N

Altitude : 354 m environ.

Le canal de MADAROUNFA relie le lac au GOULBI de MARADI.

Un profil en long effectué par la SOGETEC montre une pente irrégulière et la présence d'un point haut à l'altitude de 354,27 m à 800 m du lit mineur du GOULBI. L'échelle en est elle-même à 500 m et les seuils y sont à peu près du même ordre, soit 354,20 m environ.

Proche du village de DANTOUDOU, la station est implantée au droit de la borne SOGETEC B14, à quelque 120 m du point I en direction du lac ; ce point est défini comme jonction de la digue de fermeture de la réserve et de la digue de retenue du bassin d'amortissement (dossier SOCETHA - pièce B3 - 1).

I.3.6.1 Equipment.

L'altitude du zéro de l'échelle, mesurée par rapport à la borne SOGETEC B 14 cotée 355,90 m, est de 354,06 m.

La pente des lignes d'eau dans le canal est très variable et susceptible de s'inverser ; aussi, dans le but de connaître à tout instant le paramètre pente, deux limnigraphes ont-ils été implantés en 1972, à 500 m de part et d'autre de l'échelle. Les zéros des deux appareils étaient à 354,51 m dans le même système de référence que celui de l'échelle.

L'établissement du programme d'observation avait au départ été effectué en vue de la détermination du plan de tarage :

Q = f(H, p)avec Q = debit

H = hauteur à l'échelle

p = pente locale de ligne d'eau.

Si la détermination de H ne pose pas de problème, celle de p s'avère en fait très délicate par suite des constructions et destructions incontrôlables de barrages à poissons entre les deux enregistreurs, sans parler de la croissance naturelle de la végétation au cours de la saison des

Les écoulements du GOULBI de MARADI vers le lac ont pu être assez facilement étalonnes en roncoron rant la saison des pluies en deux : facilement étalonnés en fonction de la seule cote à l'échelle et en sépa-

- sur la première période jusqu'en juillet, la pente ne dépend en effet pratiquement que de la rugosité du lit, le miveau du lac étant trop bas pour influencer la courbe de remous,
- en août (crue du 6 au 21), la cote du lac n'est pas encore très élevée, inférieure à 354,60 m, à comparer avec celle des seuils naturels, mais l'édification de barrages de pêche augmente la rugosité et le seuil d'écoulement.

Les écoulements du lac vers le GOULBI ont commencé le 10 août, pour une cote du lac atteignant 354,40 m. Dans ce sens d'écoulement, le débit Q est calculé comme fonction de la hauteur d'eau et de la vitesse Vsp en un point P de surface toujours le même.

$$Q = G (H, Vsp)$$

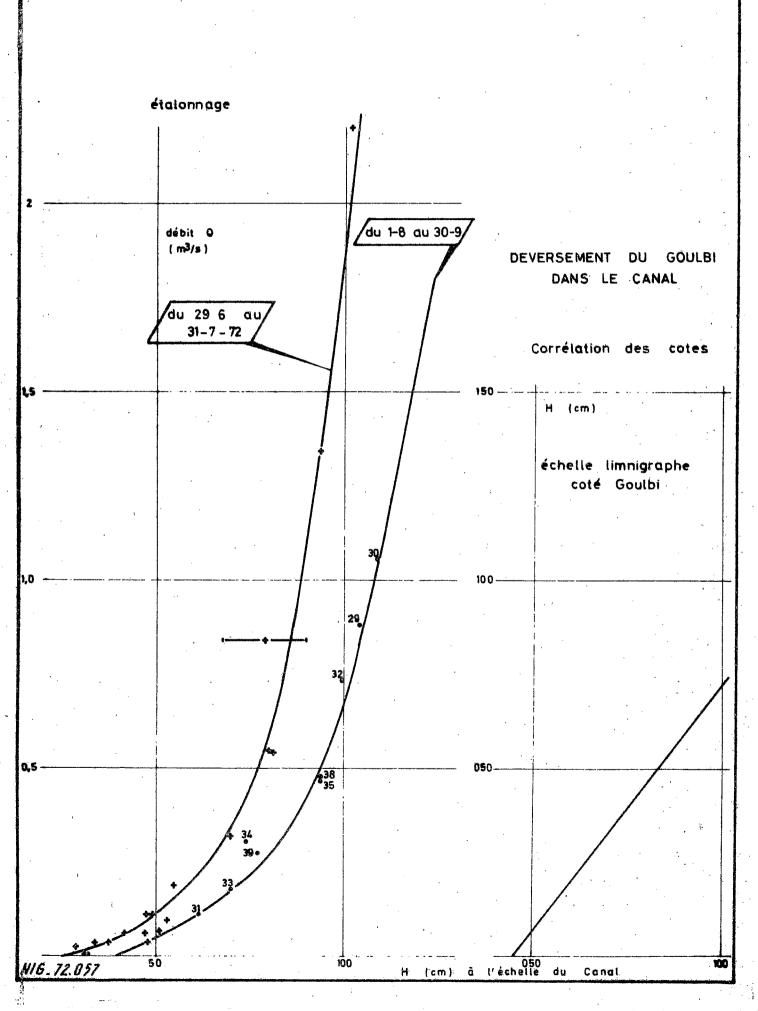
Si on trace la courbe G_o (H, $Vsp = V_o$) on admettra, dans la mesure où la section présente des conditions de rugosité homogènes et constantes dans le temps (nettoyage de la section),

$$Q = G (H, V_{sp}) = G_{o} (H, V_{o}) \times \frac{V_{sp}}{V_{o}}$$

L'observation de la vitesse Vsp et de la cote H, la construction de la courbe G (H, Vo) nous permettront des estimations suffisamment précises des débits.

Les cinquante mesures effectuées sont présentées en Annexe A 14.

Pour le déversement du GOULBI dans le canal les barèmes A et B de H en Q, utilisables respectivement du 29 juin au 31 juillet 1972 et du 1er août au 30 septembre 1972 sont figurés graphique 9.


Barème A: 29 juin au 31 juillet 1972 écoulement vers le lac:

	H (cm)	25	30	40	50	60	70	80	90	100	110
**	Q (m ³ /s)	0	0,012	0,050	0,110	0,200	0,340	0,580	1,10	1,87	2,70

Barème B: 1er août au 30 septembre 1972, écoulement vers le lac:

40 54 54 5	H (cm)	A	o.	50	***	60	70	*	80	90	***	100	110	120	
**	Q (m ³ /s)	•	0 1	0,05	* ** **	0,10	0,18		0,27	0,42		0,67	1,08	1,60	

DEVERSEMENT DU GOULBI DE MARADI DANS LE CANAL DE MADAROUNFA

hauteur

0,50

0,25

NIG. 72.058

H (cm)

Dans le sens d'écoulement opposé, correspondant à la vidange du lac, le barème s'appuiera sur la courbe G (H, V = 0,45 m/s) définie plus haut et illustrée graphique 10.

	H (cm)	25	30	40	50	60	
** ** **	<u> </u>	0,04	0,104	0,240	0,370	0,50	

Sans optimisme, on peut estimer meilleure que 20 % la précision de la détermination des volumes annuels transités par le canal de MADA-ROUNFA.

I.3.6.3 Hauteurs d'eau.

En cas d'écoulement du GOULBI vers le lac, les limnigrammes enregistrés sur le canal côté GOULBI et la courbe de corrélation de déversement (graphique 9) permettent la détermination des hauteurs d'eau à l'échelle du canal à des intervalles de temps convenables pour la détermination du débit journalier (jusqu'à 12 relevés par jour).

En cas de déversement du lac, l'observation de 12 h, effectuée en même temps qu'une mesure de vitesse en un point déterminé, sera seule retenue comme représentative de la valeur journalière.

Lors du déversement du GOULBI dans le canal, le 31 août vers 15 à 16 h, le plan d'eau a atteint sa cote maximum de l'année : - de 110 à 115 cm à l'échelle.

I.3.6.4 Débits.

Le tableau 5 présente les débits moyens journaliers de 1972-73.

Les débits sont considérés comme positifs dans le sens normal d'écoulement du lac vers le GOULBI.

Les débits rencontrés du GOULBI vers le lac sont définis comme négatifs.

Les distributions mensuelles et annuelles des bilans entrée-sortie s'établissent comme suit (en 103 m3):

ಆ ಕಾರ್ಯಾಕ್ ಕಾರ್ಣಕ್ಕ			-	Année
 (103 m ³)	 			+ 468

TABLEAU 5

DEBITS MOYENS JOURNALIERS en m3/s

MADAROUNFA-Canal (Exutoire du Lac) 1972-1973

•	·			· · ·	,	· · ·	:,	<u> </u>			•
:	Towns	Me	3 i. 'i	Jui	n .	Jui]	let	Aoi	ût :	Septe	mbre
* ** **	Jours	+	_	+	,	+	•	+		+	2.0
t de	1 2 3 4 5 6 7 8 9 1 0 11 2 13 4 5 6 7 8 9 1 1 12 13 4 15 16 17 18 19 20 21 22 3 24 25 26 27 28 9 30 31	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,31 0,33 0,29 0,25 0,19 0,06 0,30 0,30 0,24 0,24 0,24 0,24 0,17 0,22 0,00 0,16 0,00 0,00 0,00 0,00								
**	Y	0,00	_	.0,00	0,003	0,00		0,107	0,049	0,170	0,00

Module annuel : + 0,0229 m3/s (720 000 m3)

- 0,0081 m³/s (255 000 m³)

Le bilan 1972 des échanges entre le lac et le GOULBI de MARADI par l'intermédiaire du canal s'effectue donc aux dépens du lac pour environ 470 000 m3.

CHAPITRE II

TERMES DE L'ALIMENTATION DES AMENAGEMENTS. DE MADAROUNFA

II.1 Pluviométrie.

Les données interannuelles de MARADI et KATSINA, situées immédiatement au nord et au sud de la zone d'étude, ont été utilisées.

kulikir**ii.1**010 <mark>maradi</mark> sedike, objektores es er erendekteige meg eterri

Coordonnées : 07°05° E - 13°28° N

Altitude : 358 m environ:

Moyennes interannuelles (mm) sur 38 ans

***	:	*	: ':	:			D AN
		*				'	0 624

Eventualité d'un total annuel (mm)

***	Dépassement :	0,99	0,90	0,80	0,50	0,20	0,10 و	0,01	
	Total annuel (mm)								

Hauteurs maximales journalières

	Récurrence					
:	-	-	•	•	124,2	

II.1.2 KATSINA.

Coordonnées : 07°37° E - 13°00° N

Moyennes interannuelles sur 39 ans (mm) :

Période 1932 à 1970 (Cf Tableau 6).

					0	: D	: AN	:
						•	76:	

II.1.3 Caractéristiques estimées de la pluviométrie à MADAROUNFA.

Coordonnées : 7°09 E - 13°19 N

Altitude : 358 m.

En admettant une décroissance linéaire de la pluviométrie avec la latitude, le total annuel moyen est de 670 mm environ à MADAROUNFA, répartis en moyenne de la façon suivante :

	: :	: i		. : <u>M</u> c	ye:	nn	es	i	nte	rai	nnu	e1	Les	à	MAD	AR	OUNF	A :	·	el el			•				
, t	:	p .		- 5		,	ť	,		•			,		1			,	*	•	•	٠:		: ;			
	J	*		F 1.	М	•		•	М	•		•		•	A	•	,,	•		:	N	•	ī	*;)	·:	AN	•
.4	٠	-			satet	 ‡ :	CONTRACTOR O		est er same	-:	***		- T	- 	4mi (1) poř 419)		i ing ang ang ang ang ang ang ang ang ang a		: 7 (300 page C2) 4				الجارة من اعد		.; .	, no cat parents	-:
'R	1	0 ;	0		0		5	1	35	*	75	. 1	17	75:	252	.	115		11		. 0		()	:	668	*

:	Eventual	ité d'un	total a	innuel a	MADARO	DUNFA:		· / :
; ;;		e, ", ej. e.	ر خور		·	5		
	Dépassement							
* **		•		•	•	•	•	*

TABLEAU 6

PLUVIOMETRIE A KATSINA (mm)

(Coordonnées : 07°37° E - 13°00! N)

						•, •		,		
. *			·*	•	:	: ;			1	
	Année	Avril:	Mai :	Juin:	Juil:	Août:	Sept:	Oct ·	: Nov	: AN :
' ; •	-	community and \$		**************************************	::::::::::::::::::::::::::::::::::::::		-		i i i manazaran aran aran aran aran aran aran a	है कारणकारणकारणकारण है
*	'		*	'‡		':	' \$		·•	•
	1932	;	76,4:	130,3:	248,6:	209,0:	268,2:	25,1	*	957,6
":	1933	4,5	142,7:	219,4:	166,3:	297,6:	104,6:		*	: 935,1 :
*	1934	:	179,0:	43,1:	175,2:	320,8:	55,3:	3,0	'	776,4
	1935	3	33,0:	123,4:	145,2:	346,2:	206,2:	5,3	(w.	895,4
•	1936	7,1:	30,2:	69,3:	152,4:	307,5:	202,6:		'	769,1:
*	1937	1,0:	47,2:	36,0:	174,7:	285,2:	98,5:		'	642,6
`\$	1938	:	36,0:	35,3:	234,9:	384,8:	115,8:		:	: 806,8
*	1939	: 13,9 :	85,8 :	131,0:	171,1:	226,8:	176,7:	5,8		811,0
1	1940	· **	84,8:	76,4:	166,6:	240,0:	62,4:	16,0	•	646,2
٠.	1941 :	20,8:	76,9:	93,2:	229,8:	125,4:	18,5:		1	564,6
*	1942		62,4	16,5:	205,9:	205,9:	32,7:	5,5		528,9
*	1943		16,0:	157,2:	84,3:	226,3:	195,3:	5,0		684,1
*		10,1 :		62,7:	121,4:	159,2:	104,3:	23,6	:	: 481,3
	1945	6,3	41,9:	113,0:	236,4:	369,8:	127,5:	9,9	•	904,8
•	1946		75,9:	45,2:	241,0;	160,2:	189,9:	18,0	•	730,2
	1947		17,0:	58,4:	209,2:	240,0:	105,1:	14,9	•	644,6
*	1948	21,5	28,7:	140,2:	187,1:	307,0:	77,9:		:	762,4:
:	1949		30,7:	51,8:	192,2:	131,0:	55,6:		*	461,3:
	1950			35,5:			95,2:		•	620,3
•	1951:			48,0:			112,2:	1		613,9
.3	1952		58,1	34,5:		284,7:		65,2		871,4:
'ŧ	1953	;	58,4:	85,3:	199,3:	180,5:	96,5:	1,7	•	: 621,7;
	1954		70,3:	62,2:	256,5:	260,0:	94,2:		•	743,2
*	1955		12,7:	34,5	149,6:	256,5:	153,4:		•	606,7
*	1956		•	27,4:	311,1:	234,1:	122,1:		1	694,7
	1957		72,1:	102,6:	185,4:	307,0:	178,5:	12,1	•	857,7
*	1958		*			313,1:			•	741,6
	1959		61,2:	52,5;	163,0:	312,6:	163,5:		•	752,8
*	1960		16,0:	91,6:	199,3:	309,6:	90,6:		•	707,1
	1961		0,7:	114,5:	175,2:	461,7:	128,7:		•	880,8
:	1962 :	*	12,7:	178,3:	274,0:	199,6:	95,7:	22,0	: 31,7	814,0
	1963	1	11,4:	130,3: 154,4:	293,1:	361,1:	104,1:	36,5	•	936,5
1	1964 :	:	53,8:	154,4	386,8:	430,5:	148,8:		3	1 174
:	1965	54,3:	38,3	203,4:	151,1:	414,1:	109,4:	4,3	•	920,6
' : .	1966	54,3	41,4:	67,5:	183,1:	199,3:	251,7:	14,2		811,5
*	1967:	•	21.0:	153.9:	188.9:	336.2:	195.0:		* 3	895,0:
	1968	46,7	152,1 :	154,6:	226,3:	217;6:	5,0:			802,2
*	1969	21,0 :	21,3:	70,3:	121,9:	263,6:	104,3:	22,8		625,2
*	1970		-6,8	24,8	440,1:	406,1:	144,2:		•	1 022
:	1971 :		· '*		121,1:	199,6:	325,1:			
	1972		97,5	· · · · · · · · · · · · · · · · · · ·	117,8:	139,4:	135,00		•	
:	:			· •	•	• 1	•		1	

Moyennes interannuelles sur le bassin du GOULBI de GABI:

Latitude de NIELLOUA: 13°19' N.

=																										=
*	•	:	. ,							*		*		:		*		*								1
' ‡	J '	•	F	4	M	4	A	•	M	*	J	' •	Jt	•	A	*	S	4	0	*	\mathbf{N}	•	D		AN	*
7 -		:-	P-0 (2.7) H	÷;	ECCIO (CIR.)	~/¢ .	C# C# (4	404 ap i cal 12				100 ma car c:					~'; ~		≕'ੂੰ				-: ţ .		-:
:	0	•	0		.0	'	6	' :	41	4	83	*	191	•	265	T	120	·:	11	.:	0	*	0	:	717	**

II.2 Apports du GOULBI de GABI.

Altitude de 480 m à 358 m 700 km² sous 720 mm de pluie.

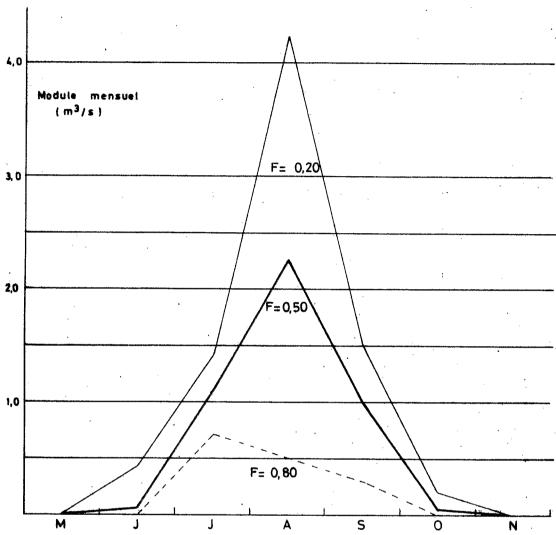
II.2.1 Distribution fréquentielle des débits mensuels.

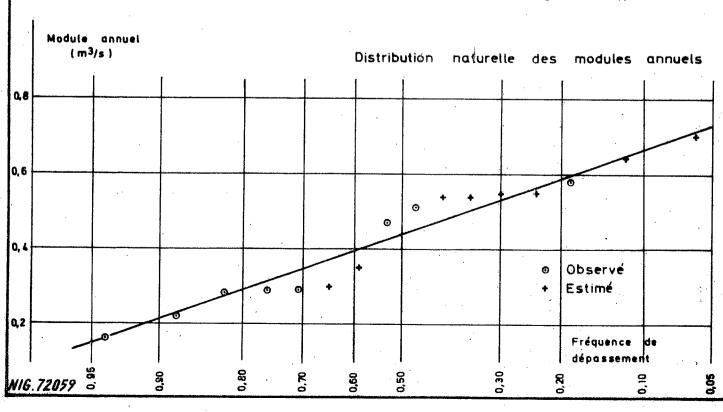
Les débits (ou modules) mensuels observés ou estimés, ces derniers entre parenthèses, sont présentés dans le tableau 7.

Les estimations ont été effectuées par P. CHAPERON (décembre 1971) à partir de la liaison entre le module annuel du GOULBI de GABI et le gain maximal en volume du lac, liaison qui traduit naturellement l'importance prépondérante des apports du GOULBI de GABI dans l'alimentation du lac.

Les observations ou estimations de 1962 à 1972, à l'exception de l'année 1967, ont été utilisées pour tracer (graphique 11) les courbes des débits mensuels de fréquences caractéristiques de dépassement :

$$F = 0.20$$
 , $F = 0.50$, $F = 0.80$


Il convient de remarquer que durant la dernière décennie les années réputées fortes sont très souvent estimées, alors que les années faibles ont toutes fait l'objet d'observations.


Les courbes de fréquence 0,80 et 0,50 apparaîssent donc plus sûres que la courbe de fréquence 0,20.

	Fréquence de	** /				Débits men (m3/s)	suels		
	dépassement		Mai	•	Juin	: : Juillet		_ ,	
· · · · · · · · · · · · · · · · · · ·	2/10	***	0		0,4	•,	4,2	1,5	0,2
**************************************	5/10	1	0	· ·	0,06.	1,1	2,2	1,0	0,05
•-	8/10	:	.0	:	o ·	0,7	0,5	0,3	0

LES MODULES A LA STATION DE BARGAYA

Distribution fréquentielle des modules mensuels (période de dix ans)

APPORTS en m3/s

en m3/s											
: 11.2	** L	S	OUIBI DE	GABI A BA	IRGAYA	, 1					
,	,	,		,	ាស់ស្គែលវិក្សា	•	• .				
Période	Mai	Juin	Juillet	Août	Septembre	Octobre	AN.				
end water out of the scale plan scale scale scale	cas un concentrativo con (enterementementement	 sum uni enerm uni entrem uni ' de la compani enerm uni ' 	ananones en en antes	संस्थापात स्थान द्वार व्यवस्थाप क्ष्या द्वार द्वार द्वार व्यवस्था ,		namena era era diagnia era ante era O				
1956-57	e le la company	-		-	ES	in the second se	((0,54))				
1957-58	essi essi			ay da W Taran			((0,30))				
1958-59	-				· · · · · ·		((0,64))				
1959-60	' , <u>,</u>				i com						
1960-61	1 · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	n i estima	ing the second of the second o	· · · · · · · · · · · · · · · · · · ·	: ((0,54))				
1961-62			· ·	<u>-</u>	-		((0,70))				
1962-63	0	0,01	1,33	0,78	1,39	0	0,29				
1963-64	0	0,31	1,46	4,02	0,77	0,23	0,58				
1964-65	0 2/5	0	0,52	4,41	12 - 1,12	O _{. 1} . V	0,51				
1965-66	0	(0,58)	(0,71)	1,76	1,12	Ó	(0,35)				
1966-67	0.0	142 0	1,37	0,35	14.20 13.77 346	://* 0,	0,29				
1967-68	, es	* ************************************					(0,54)				
1968-69	0 6 19	0,04	1,20 🖖	0,33	0 ;31 ,		0,16				
1969-70	0	0,44	1,07	0,68	0,34	0,04	0,22				
1970-71	0	0	1,09	((4,0))	((1,4))	· (0 ,) (1	;;((0,55))				
1971-72	0.	0,05	0,56	3,85	1,11	0	0,47				
1972-73	0	0,21	1,32	1,66	0,18	0	. 0,28				
** ** ********************************		en entre because en entre	e en monte de la company								
Moyenne	7 · ·	Ò 14	1 04	33 0.40	0.05	0.02	0.12				
interannu-' elle	0	0,16	1,00	2,18	0,95	0,03	0,43				
	p. 4. 1	4. 1	, in	ing with the system		install r					

((....)) : Valeurs estimées.

II.2.2 Eventualité des modules annuels.

A l'intérieur de l'échantillon global des seize modules, celui des neuf valeurs observées est assez mal réparti :

- sur les cinq valeurs les plus sèches, cinq ont été observées,
- sur les cinq valeurs les plus humides, deux seulement ont été observées (rang 3 et 4).

On peut donc s'attendre à une bonne précision sur la détermination des quantiles sec et médian.

La distribution naturelle des modules annuels observés ou estimés possède un comportement gaussique entre les fréquences décennales (graphique 11).

•		 " :	• ;	 <u> </u>	
	Dépassement				
	Module annuel (m ³ /s)				

La relative régularité des apports (déc. humide #3), met en évidence le caractère déjà tropical des conditions d'alimentation.

L'apport annuel médian de 13,9 millions de m³ correspond à une lame écoulée annuelle de 19,9 mm.

Le coefficient d'écoulement s'élèvera à 2,8 % environ de la pluie moyenne (720 mm).

Le module spécifique interannuel est de 0,61 l/s:km2.

II.2.3 Années caractéristiques.

Les tableaux A 15, A 16, A 17, A 18 en annexe récapitulent les apports journaliers à BARGAYA pour :

- l'année proche de la quinquennale humide : 1964,
- l'année proche de la médiane : 1971,
- l'année proche de la quinquennale sèche : 1962,
- l'année la plus sèche observée : 1968.

II.3 Apports du GOULBI de MARADI à MADAROUNFA-Pont.

Altitude

: 355 m

Bassin versant: 5 400 km2 sous 760 mm.

II.3.1 Distribution fréquentielle des modules mensuels.

Quinze années d'observations sont disponibles (1956 à 1958), (1961 à 1972). Les débits moyens mensuels et annuels du GOULBI de MARADI sont récapitulés ci-dessous en m3/s:

Période	Mai .	Juin	Juil.	Août	Sept.	Oct.	Nov.	Année
1956-57			17,4	45,0	24,4	0,13	0,00	(7,30)
1957-58	0,61	0,00	3,47	21,8	12,1	1,80	0,00	3,34
1958-59	0,00	0,00	6,60	57,5	8,44	0,19	0,00	6,16
1959-60	• • = :	-	-	-		• • •• •	- :	***
1960-61		-		- 1		-		_
1961-62	0,00	2,50	10,8	87,0	61,0	1,20	0,03	13,6
1962-63	0,00	0,80	11,1	11,6	15,1	0,34	0,00	3,30
1963-64	0,00	2,00	11,1	38,3	3,70	0,47	0,00	4,70
1964-65	0,00	1,32	20,0	55,6	42,9	0,40	0,00	10,1
1965-66	0,00	0,00	7,75	29,1	13,8	0,33	0,00	4,29
1966-67	0,00	0,13	7,16	12,9	28,6	1,62	0,00	4,20
1967-68	0,00	9,10	19,1	43,3	29,1	1,01	0,00	8,52
1968-69	0,00	1,92	14,7	10,1	2,33	0,00	0,00	2,45
1969-70	0,00	6,74	11,9	17,8	8,61	1,58	0,00	3,92
1970-71	0,00	0,00	34,2	60,8	33,6	0,16	0,00	10,8
1971-72	0,00	0,11	12,2	33,3	13,4	-0,12	0,00	4,97
1972-73	1,89	3,44	7,52	14,8	3,81	0,00	0,00	2,65
Moyenne	: 0,18	2,00	13,0	35,9	20,0	0,62	0,00	6,02

L'échantillon, composé notamment de douze années d'observations sans interruption, apparaît assez bien réparti de part et d'autre de la médiane avec à la fois des années notoirement fortes (1961, 1970) et faibles (1968, 1972).

Les courbes des débits mensuels de fréquence caractéristiques sont tracées (graphique 12).

**			Débits mensuels (m3/s)									
:rrequence	de dépassement	'Mai'	Juin :		Août	:Septembre:	· Octobre					
4	2/10	0,00	4,00	18,0	.57,0	36,0	1,20					
*	5/10	70,00	1,00	11,0	32,0	14,0	0,35					
: :	8/10	0,00	0,00	7,00	13,0	6,00	0,10					

II.3.2 Eventualité des modules annuels.

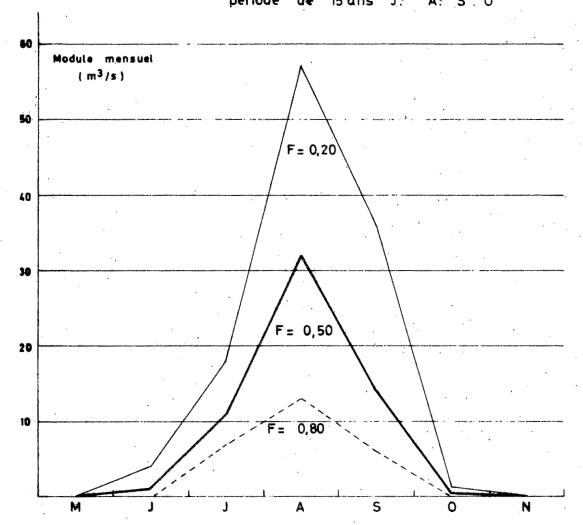
Les relevés pluviométriques de longue durée du NICERIA ne permettent pas d'envisager une extension de l'échantillon observé : la station de KATSINA, la plus proche, est malheureusement située à la périphérie du haut bassin et est insuffisamment représentative.

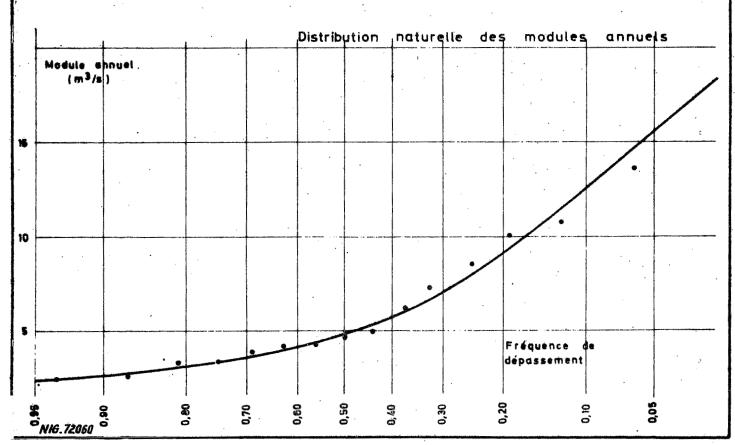
Un examen sommaire des données pluviométriques à cette station établit cependant :

- que cinq totaux mensuels supérieurs à 400 mm (462 en août 1961) ont été observés entre 1961 et 1970. Ce total n'avait jamais été atteint depuis 1932,
- que des extrèmes secs ont également été observés (500 mm environ en 1972).

Par suite, l'échantillon des modules annuels observés permettra sans doute d'approcher de façon correcte les quantiles médian et sec. Les quantiles très humides seront peut-être, eux, sensiblement surestimés.

La distribution naturelle des modules annuels observés est représentée au graphique 12.


Quantiles:


Dépassement	• .	5/10	7	•	=
Module annuel (m3/s)	3 , 1	•	(9,2)	•	

Gr. 12

LES MODULES A LA STATION DE MADAROUNFA-PONT

Distribution fréquentielle des modules mensuels période de 14 ans Mi J $\bar{\nu}$ période de 15 ans J t A t S . O

La dissymétrie de la distribution est peut-être accusée par la composition de l'échantillon examinée plus haut.

Les valeurs de 12,5 à 10,5 m3/s pour la décennale humide, et 9,2 à 8,2 m3/s pour la valeur quinquennale humide, nous semblent vraisemblables.

La valeur médiane du module annuel, 4,8 m3/s, est très sensiblement inférieure à la moyenne interannuelle de 6,03 m3/s.

Les écoulements, annuel médian (150.10⁶ m³) et moyen interannuel (190.10⁶ m³) correspondent respectivement à des lames écoulées de 27,8 et 35,2 mm.

Les coefficients d'écoulement médian et moyen interannuel sont respectivement de 3,7 % et 4,6 % de 760 mm, pluie moyenne sur le bassin.

Les modules spécifiques médian et moyen interannuels sont l'un de 0,89 1/s.km², l'autre de 1,12 1/s.km².

II.3.3 Années caractéristiques.

Les tableaux A 19, A 20, A 21, A 22 en Annexe récapitulent les apports journaliers pour :

- l'année proche de la quinquennale humide : 1964,
- l'année proche de la médiane : 1971
- l'année proche de la quinquennale sèche : 1962,
- l'année la plus sèche observée : 1968.

II.3.4 Cotes à la prise d'alimentation de MADAROUNFA-Amont.

Le projet d'alimentation de la réserve de MADAROUNFA par l'intermédiaire d'un chenal de prise prélevant les basses et moyennes eaux du GOULBI de MARADI en amont du pont de MADAROUNFA est sommairement défini en introduction (II.b) et sur la figure 3.

La courbe de corrélation (graphique 6) présentée au paragraphe I.3.3 d'une part, et les tableaux de hauteurs d'eau 1972 A 9, A 10, A 11 d'autre part, permettent de préciser, pour une année très défavorable les conditions du fonctionnement hydraulique d'une prise d'alimentation située au niveau de la station de MADAROUNFA-Amont.

II.4 Evaporation et bilan du lac.

II.4.1 Evaporation sur Bac Colorado enterré (1 m x 1 m).

Les évaporations mensuelles à la stations IRAT de TARNA sur la période 1966 - 1972 sont les suivantes, en mm et mm/j entre parenthèses :

EVAPORATION

en mm et mm/j

•	Janv	Févr	: Mars	Avril:	Mai	Juin	Juil	Août	Sept :	Oct :	Nov	Déc
1966	301 (9,7)	258 (9,2)	461 (14,9)	423 (14,1)	347 (11,2)	180 (6,0)	105 (3,4)	71 (2,3)		177 (5,7)		254 (8,1)
1967		235 (8,4)	295 (9,5)		329 (10,6)		170 (5,5)	115 (3,7)	114 (3,8)		219 (7,3)	180 (5,8)
1968	220 (7,1)	241 (8,3)	304 (9,8)	234 (7,8)	248 (8 , 0)	216 (7,2)	143 (4,6)	152 (4,9)	159 (5,3)		252 (8,4)	232 (7,5)
	254 (8,2)	263 (9,4)	329 (10,6)	318 (10,6)	288 (9,3)		164 (5 , 3)	130 (4,2)			237 (7,9)	223 (7,2)
1970		255 (9,1)	341 (11)	336 (11 , 2)	298 (9,6)	318 (10,6)	263 (8,5)	139 (4,5)	138 (4,6)	220 (7 , 1)		192 (6,2)
1971	201 (6,5)	210 (7,5)		321 (10,7)	310 (10 , 0)	240 (8,0)	192 (6,2)	121 (3,9)	195 (6,5)	322 (10,4)	255 (8,5)	251 (8,1)
1972		293 (10,1)	298 (9,6)	279 (9,3)	288 (9,3)	231 (7,7)	239 (7,7)	158 (5,1)	180 (6,0)		240 (8,0)	205
Inter- annuel (1966- 1972)	(8,0)	249 (8,9)	329 (10,6)	315 (10,5)			183 (5,9)	127 (4,1)	147 (4,9)	229 (7,4)	240 (8,0)	220 (7,1)

36

La variation interannuelle est la suivante en mm et mm/j:

Année	1966	1967	1968	1969	1970	1971	1972	Inter- annuel
Evaporation								

En 1972, à la station O.R.S.T.O.M. de MADAROUNFA, l'évaporation (I.2.2) a atteint 2 555 mm (7,0 mm/j).

Le coefficient de réduction annuel d'évaporation observé en 1972 pour passer de la station de TARNA à celle de MADAROUNFA est de 0,88.

L'évaporation interannuelle sur bac Colorado à la station de MADA-ROUNFA peut être estimée à 2 500 mm en utilisant ce coefficient et les données interannuelles à TARNA.

L'évaporation interannuelle sur nappe d'eau libre est estimée inférieure de 10 %.

II.4.2 Bilan du lac de MADAROUNFA.

Le tableau 8 présente les hauteurs d'eau au 15 de chaque mois et schématise les variations du lac de 1956 à 1972. Il figure l'évolution d'une réserve maturelle sans exutoire ni apports de surface au cours de la longue saison sèche, dans le contexte local : l'arrêt de l'écoulement du canal est effectif à partir de la cote 200 cm à l'échelle environ, ce qui est généralement acquis au 15 novembre.

La variation du plan d'eau est donc uniquement, à cette époque, le résultat de l'évaporation et des échanges souterrains. Ces derniers ne semblent pas négligeables avec les formations sableuses encaissantes où les eaux s'infiltrent et sont probablement ensuite en partie restituées : le phénomène se traduit par une baisse mensuelle du lac, de 20 à 23 cm, très sensiblement analogue en décembre-janvier, (faible évaporation, forte infiltration), à ce qu'elle sera en avril-mai (forte évaporation, restitution souterraine).

L'état des observations en notre possession, arrêté au 31 décembre en ce qui concerne les données d'évaporation et de hauteurs du lac, ne nous permet pas pour l'instant d'établir le bilan de l'année hydrologique 1972 - 1973.

Il est cependant intéressant de comparer les ordres de grandeur respectifs de l'évaporation sur le lac (estimée à partir de celle du bac) et des échanges souterrains.

TABLEAU 8

HAUTEUR à L'ECHELLE au 15 du mois en cm

Altitude du zéro : 352,60 m

LAC de MADARCUNFA

·						· · · · · · · · · · · · · · · · · · ·							
: Anné	e :	Juin	Juil	Août	Sept'	Oct	Nov	Déc	Janv '	Févr	Mars	Avril:	Mai
1956-1	957		27	303	258	220	190	168	145	123	103	81 :	59 :
1957-1	958	58	63	211	275	239	200	174	153	128	109	86	61
: 1958-1	959	43	: 39	238	257	208	175	154	(136):	(116)	(96)	(76):	(56):
1959-1	960		•				•	•		· ·			
1960-1	961	•	•	298	230	(200)	189	178	(158)	(136)	(115)	(90):	
1961-1	962	49	142	385	308	223	194	173	153	133	113	91	69
1962-1	.963	49	57	206	238	225	200	182	161	140	116	96	72
1963-1	964	79	100	238	270	240	207	188	168	149	127	105	83
: 1964-1	965	66	81	266	325	235	200	180	: 162	143	123	100	78 :
1965-1	.966	77	128	209	268	224	(205)	(180)	153	133	113	93	(73)
1966-1	967	56	83	194	252	234	203	182	: 163	143	: 122	101	81
1967-1	.968	59	245	258	301	234	207	190	175	155	136	113	98
: 1968-1	969	. 84	: 137	: 192	204	: 180	158	: 139	: 122	: 105	89	: 66	45
1969-1	1970	26	99	196	216	199	176	155	137	117	100	78	56
1970-1	1971	37	27	269	268	214	193	: 173	: 155	135	117	95	73
1971-1	1972	57	. 85	278	258	208	183	166	145	125	107	85	61
: 1972-1	1973 °	48	: 80	: 188	209	182	: 157	: 137	:	•	•	• 1	3
:		:	•	:	:	:	:	:	;	: 	: 		

On supposera que le bac Colorado est parfaitement représentatif de l'évaporation sur le lac en ce qui concerne les totaux mensuels et leur répartition (c'est probablement une estimation par excès de 10 % environ). Le bilan des échanges souterrains est l'inconnue.

Le bilan hydrologique pour une période quelconque, s'écrit:

$$(Agg + Agm + Acm + Ap) - (Pcm + Pe) + i = dv$$

avec : . Agg : apport du GOULBI de GABI

Agm : apport de débordement du GOULBI de MARADI

Acm, Pcm : apports ou pertes par le canal de MADAROUNFA

Ap : apport pluviométrique

Pe : perte par évaporation

i : participation des échanges souterrains, quantité algé-

brique

dv : stockage du lac (quantité algébrique).

Essai de bilan hydrique du 1er janvier au 31 décembre 1972 :

Evaporation mensuelle (I.2.2) et superficie du lac au 15 de chaque mois (tableau 4 et Gr. 8):

		: F	M :	A :	M :	J	Jt :	A 1	S :		N	
•	(3,30)	•	•	_	•		•	-		4,08	3,54	3,06
e (mm)	177	122	158	162	288	276	257	174	168	245.	291.	245

Agg : 8,830.106 m³ (I.3.4.4)

Agm : 0,020.10⁶ m³ (I.3.2.4)

Acm - Pcm : - 0,468.106 m3 (I.3.6.4)

Ap : 0,883.106 m3 (I.1.2)

Pe : 6,844.106 m3

dv : - 0,800.10⁶ m³

Si I est le bilan des échanges souterrains sur la période :

$$I_{(10^6 \text{ m}^3)} = -3,221$$

Même en tenant compte de l'imprécision sur les courbes bathymétriques du lac, l'importance de cette valeur des pertes par infiltration, comparée à celle de l'évaporation, paraît significative.

En l'absence de données hydrogéologiques, il est impossible de préciser plus exactement les parts de l'évaporation estimée plus haut, pensons-nous, à 10 % près, et des échanges souterrains.

The state of the s

ر با الموراث الأولى والموراث المورات ا المورات المورات

CHAPITRE III

DEBITS DE CRUE

III.1 Crues du GOULBI de GABI.

TII.1.1 Débits maximaux annuels observés à BARGAYA.

Les débits maximaux annuels observés sont les suivants, au nombre de neuf :

*	C	**	
1962 :	$22,5 \text{ m}^3/\text{s}$	1968	26,5 m ³ /s
1963 :		1969 :	32.5 m3/s
1964		1970	non observé
1965	and the second s	:: 1971 :	32,5 m ³ /s
1966		1972	$30.5 \text{ m}^3/\text{s}$
1967		** 13.5 m *	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		54.

Le graphique 13 présente l'hydrogramme de crue du 22-23 août 1963.

III.1.2 Eventualité d'un maximum annuel.

L'échantillon défini ci-dessus est de taille modeste, mais peu dispersé.

La distribution naturelle des valeurs est figurée graphique 13 et a un comportement presque gaussique.

Le débit maximal médian de cette distribution doit être assez représentatif.

Les débits maximaux de 1967 et 1970 n'ont pas été observés et l'échantillon tend probablement à sous-estimer les crues de fréquence rare.

The figure is the first of the

Company with the confirmation of the contraction of

Nous admettrons :

at the first form

ľ	**************************************				٠.	
		maximal		4	27	m^3/s
•	Débit	maximal	décennal	:	40 à	45 m3/s:
,		* * *	AP 1	لي د ديده	* * ., * * -	

III.2 Crues du GOULBI de MARADI.

Malgré, d'une part la proximité des deux stations, et d'autre part la faible partie du bassin complémentaire, les maximaux à MADA-ROUNFA ne sont pas liés à la seule pointe observée à NIELLOUA: l'importance des zones d'épandage à l'aval de cette dernière station fait jouer au volume de la crue et au régime d'écoulement antérieur un rôle important.

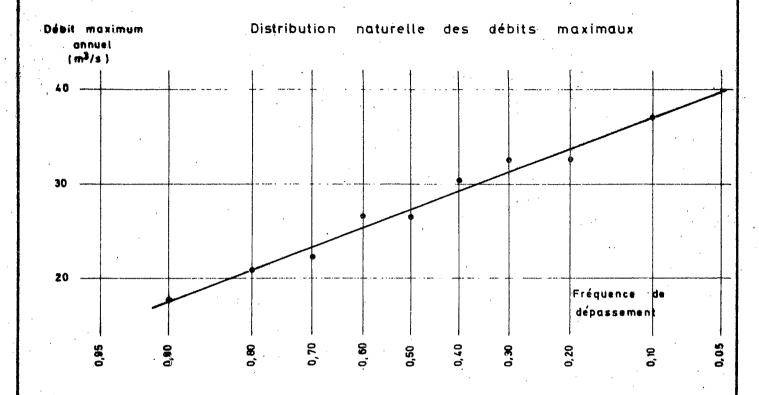
III.2.1 Débits maximaux annuels observés à MADAROUNFA-Pont.

Les débits maximaux annuels de crue à MADAROUNFA sont connus depuis 1956 à l'exception de l'année 1959. Les relevés antérieurs à 1961 sont moins sûrs. Le fonctionnement d'un limnigraphe à partir de cette époque garantit la qualité des données limnimétriques.

£	. : <u></u>											
;	*		':	L.	\	: :	::	*	₹		:	:
*	*	1956	: 🔭	110	m3/s	* 4	2.3	1965 :	104	m3/s		•
;	*	1957		95	m3/s	= >	4.	1966 :	105	m3/s	•	*
•	*	1958	· 14	220	m3/s	7.)	44	1967 :	200	m3/s	;	':
	' •	1959		:	•	; :		1968 :	117	m3/s		*
5	':	1960		80	m3/s		***	1969	:158	m3/s		*
	':	1961	*	450	m3/s	•	4.	1970 :	(413)	m3/s		
7	'	1962	'	195	m3/s	2	***	1971 :	.270	m3/s	ż	•
	٠,	1963	* 4 · •	350	m3/s		**	1972	115	m3/s		'
	*	1964	*	254	m3/s		*:	:		-		*
•	•		* 1		· , * ⁷ .	٠,٠,	::			• '		•
	-											==

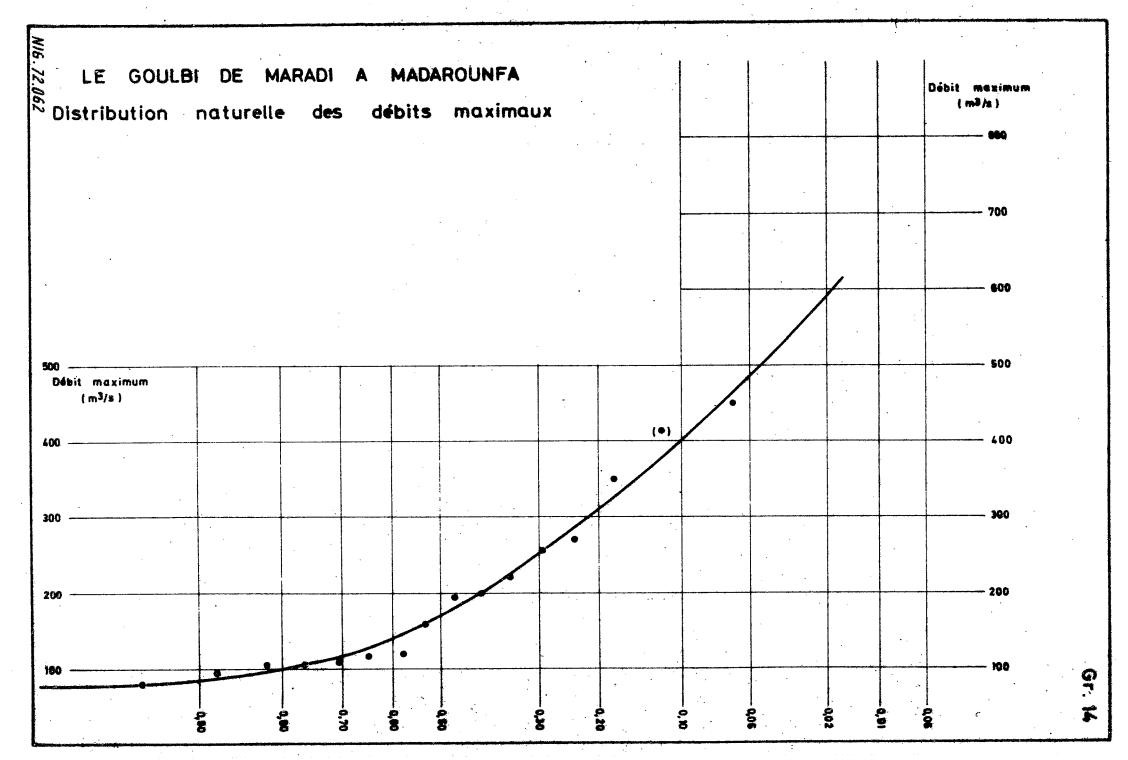
La valeur de 1970 est sans doute surestimée (tarage des débordements douteux).

Marie Land California Control


III.2.2 Eventualité d'un maximum annuel.

En l'absence de données pluviométriques longue durée sur le bassin autres que celles de la périphérie à KATSINA, il est impossible d'envisager une extension hydropluviométrique des observations hydrométriques. Nous retiendrons seulement, cela a été vu pour les modules, que certaines années de la décade 1961-70 ont connu une abondance pluviométrique mensuelle jamais vue depuis 1932 au voisinage de KATSINA.

D'autre part, aucune crue analogue à celle de 1961 n'a été observée par les anciens du village de MADAROUNFA. Ce renseignement confirme l'analyse sommaire de la pluviométrie à KATSINA et peut être considéré comme sûr : tout phénomène exceptionnel, menaçant par ailleurs le village de MADAROUNFA, présenterait une durée suffisante pour être reconnu.


La distribution naturelle des maximums observés est illustrée graphique 14. Les caractéristiques en sont :

LES DEBITS MAXIMAUX Goulbi de GABI à BARGAYA

Crue du 22/23-08-1963 Pluie (mm) date М 14 08 13,9 15 7,0 16 17 8,7 18 6,3 19 20 2,8 21 6,9 22 72,5 39,1 M = Madarounfa N= Nielloud 22-08 23-08 24-08

NIG. 72.061

Dépassement 50/100 10/100 5/100 2/100 1/100 Maximum annuel 170 400 480 590 670 (m3/s)	·	·	·			
Maximum : 170 : 400 : 480 : 590 : 670 :						
: annuel : 170 : 400 : 480 : 590 : 670 :			n 🖁 em mácas can gancia can musmán.	entracement control control control control	, terminal meson se, g	
		170	400	480	590	670

Si la valeur du débit maximal médian-semble pouvoir être retenue, les quantiles rares calculés à partir de l'échantillon semblent plutôt surestimés à la lumière des renseignements complémentaires exposés ci-dessus.

Nous retiendrons finalement les valeurs suivantes :

	Débit maximal	médian	155 à 185 m ³ /s
•	Débit maximal		350 à 400 m3/s
,		cinquantenaire	450 à 600 m3/s
	Débit maximal		500 à 700 m ³ /s
~		THE RESERVE AND ADDRESS OF THE PERSON OF THE	
		C.C. S. N. N. S. S.	Control of the second of the second

III.2.3 La crue de 1961.

~ , **;**

Les tableaux 9 et 10 récapitulent les données limnimétriques et les hydrogrammes des mois d'août et de septembre 1961, dont nous avons souligné le caractère exceptionnel.

· 中国 (1) (1)

I SANT SOME SOMETHING

TABLEAU 9

CRUE de 1961:

à MADAROUNFA-Pont

Mois d'août :

Altitude du zéro d'échelle : 355,20 m

		6 h 12 l		1.	2 h	18 h		24	h
			. Q :(m3/s)		Q (m3/s)				Q (m3/s)
14 to 10 to 10 to 10	1 2 3 4	98 74 65	4,50: 3,60:	91 71 63	5,90 4,00 18,0	83 69 61 84	5,40 3,60 9,60	77 68 60	19,0 7,50 5,10 3,40 7,80
	8 :	59 60	6,10: 3,20: 3,40: 58,0	68 58 70 132	5,10 3,10 5,60 34,0 92,0	57 100 116	4,30:	61 56 140 176	3,60 2,70 39,0 72,0 50,0
* ** ** ** ** *	12 13 14 15	226 226 220 213	42,0 222 222 180 142	244 225 218 211	79,0 352 215 169 131	248 226 214 211	384 222 148 131	230 222 216 210	44,0 250 194 158 126
* ** ** ** ** **	16: 17: 18: 19:	210 192 172 215	126 92,0 68,0 153	210 186 166 213	126 84,0 62,0 142 117	206 : 181 : 162 : 214 :	78,0 58,0 148	200 178 185 212	103 75,0 83,0
* * * * * * * *	22 23 24 25	193 190 172 200	103 93,0 89,0 68,0	189 186 168 202	100 88,0 84,0 64,0	192 : 182 : 190 : 200 :	•	194 177 196 182	87,0 95,0 74,0 96,0 79,0
	26 : 27 : 28 : 29 : 30 :	188 211 210 204 164	87,0 131 126 112 60,0	184 210 209 198 160	124 :	190 : 213 : 207 : 190 :	89,0 :	204 212 3 206 3 178 3 232 3	137 117 75,0

Maximum enregistré le 12 août à 16 h H = 256 cm Q estimé à 450 m 3 /s

TABLEAU 10

CRUE de 1961

à MADAROUNFA-Pont

Mois de septembre

Altitude du zéro d'échelle 355,20 m

	,	h	12	2 h	18	h :	2	4 h
		Q (m3/s)		Q (m3/s)		Q (m3/s)		Q (m3/s)
: 2 : 3 : 4 : 4 : 4 : 4 : 4 : 1	237 220 187	194 299 180 77,0	239 212 170	222 313 194 66,0 68,0	236 200 190	:292	229 190 184	257 243 89,0 82,0 60,0
7 : 8 : 9 : 10 :	148 186 150 212	57,0 45,0 84,0 47,0	148 ; 178 ; 147 ;	54,0 45,0 75,0 45,0	148 168 146	50,0 45,0 64,0 44,0 201	148 158 197	47,0 45,0 54,0 99,0
	223 200 160 159	201 :103 : 56,0 : 55,0 : 32,0	188 : 153 : 150 :	208 87,0 50,0 47,0	179 150 143	215 76,0 47,0 42,0 26,0	170 164 136	169 66,0 60,0 36,0
: 17 : 18 : 19 : 20 :	116 132 102 92	23,0 23,0 34,0 16,0	116 ; 124 ; 98 ;	22,0 23,0 28,0 14,0 11,0	128 · 115 · 97 ·	23,0 31,0 22,0 14,0	: 136 : 107 : 94	24,0 36,0 18,0 13,0
: 23 : 24 :	86 140 106 108	10,0 39,0 18,0 19,0	125 107 100	25,0 29,0 18,0 15,0	114 111 100	30,0 22,0 20,0 15,0	: 109 : 114 : 104 : 89	39,0 19,0 22,0 17,0
26 27 28 29 30	89 80 74 69	11,0 8,40 6,70 5,40 4,70	78 72 68	7,80: 6,10: 5,10:	76 70 67	7,30: 5,60: 4,90:	84 75 69 67	10,0 7,00 5,40 4,90 3,80

CHAPITRE IV

CONCLUSION

L'étude présente a été l'occasion de récapituler les données de base d'aménagements du régime du GOULBI de MARADI à MADAROUNFA en vue de la protection contre les crues comme de l'utilisation des apports en vue de l'irrigation.

Avec une série d'une quinzaine d'années d'observations hydrométriques sans interruption, dont une année réputée très forte, le projeteur possède, dans la zone d'étude, des références hydrologiques assez consistantes.

Cependant, quelque peu en marge de l'étude fréquentielle des apports et des crues, très directement liée à l'économie des aménagements, le problème du bilan hydrique du lac naturel de MADAROUNFA a pu être abordé sérieusement en 1972. Le bilan a fait apparaître, pour cette année calendaire très sèche, l'importance relative des pertes souterraines par rapport à l'évaporation estimée. La poursuite de certaines mesures effectuées en 1972, notamment le contrôle continu du canal de MADAROUNFA, pourraît être recommandée en même temps que l'observation des nappes locales pour préciser si possible la séparation des pertes par infiltration et par évaporation pour différentes hydraulicités.

L'exploitation du limnigraphe de MADAROUNFA-Amont, implanté en 1972, pourrait par ailleurs être poursuivie pendant la campagne 1973, dans le but de préciser l'évolution des lignes d'eau au site du barrage d'alimentation de la réserve au-delà d'un débit de 115 m3/s.

BIBLIOGRAPHIE

- "Bilan sommaire des Etudes d'Hydrologie de Surface effectuées sur le Territoire de la République du NIGER" - 1964 - ORSTOM, Service Hydrologique, PARIS, 57 p. + annexes + graph. (ronéo). -
- "Observations et Mesures Hydrologiques dans les "Vallées Sèches" Résultats de la Campagne 1961" 1962 ORSTOM, S.H., PARIS, 32 p. + graph. (ronéo). -
- "LEFEVRE (R.), PERRET (A.) Mars 1963 Observations et Mesures Hydrologiques dans les Vallées Sèches - Campagne 1962" - ORSTOM, S.H., PARIS, 71 p. + graph. (ronéo). -
- "PERRET (A.) Mai 1964 Observations et Mesures Hydrologiques dans les Vallées Sèches - Campagne 1963" - ORSTOM, S.H., PARIS, 84 p. + graph. (ronéo). -
- WUILLAUME (G.), DUBEE (G.) 1966 Observations et Mesures Hydrologiques dans les Vallées Sèches Rapport de la Campagne 1964" ORSTOM, S.H., PARIS, 90 p. + graph. (ronéo). -
- "Mission de l'ORSTOM au NIGER 1966 Observations et Mesures Hydrologiques dans les Vallées Sèches - Rapport de la Campagne 1965" -ORSTOM, S.H., PARIS, 90 p. + graph. (ronéo). -
- "Annuaire Hydrologique du NIGER Année 1966" 1967 ORSTOM, S.H., PARIS, 81 p., 43 graph., 95 tabl. (ronéo). -
- "Annuaire Hydrologique du NIGER Année 1967" Janvier 1968 ORSTOM, S.H., NIAMEY, 87 p. (ronéo). -
- "Mission Hydrologique de l'ORSTOM au NIGER Août 1969 Annuaire Hydrologique du NIGER - Année 1968" - ORSTOM, S.H., PARIS, 139 p., 26 fig. (ronéo). -
- "Annuaire Hydrologique du NIGER Année 1969" Août 1970 ORSTOM, S.H., NIAMEY, 111 p. (ronéo). -
- "Annuaire Hydrologique du NIGER Année 1970" Septembre 1971 ORSTOM, Mission Hydrologique, PARIS, (ronéo). -
- "Annuaire Hydrologique du NIGER Année 1971" Septembre 1972 ORSTOM, Mission Hydrologique, 119 p. (ronéo). -
- "CHAPERON (P.) 1971 Note Hydrologique sur le GOULBI de MARADI et le Lac de MADAROUNFA (NIGER)" - ORSTOM, S.H., PARIS, (ronéo). -

(ANNEXES)

TABLEAU A1

PLUVIOMETRIE JOURNALIERE (mm.)

Mei 1972

	Date	KANO	KATSINA	NIELLOUA	: MADA : météo	MADA village	: MADA : canal	MARADI
	1 2 3 4 5	:	:			:	:	
	6 7 8 9	:				:	:	10,6
	11 12 13 14 15				7,7	: : :		9,8
	16 17 18 19			1,5	7,0			
:	21 22 23 24 25			0,3	1,1			4,2 TR
	26 27 28 29 30 31	:		0,6 : 20,7 :	8,0 8,6			0,7
: :	Total :	55,4		23,1	 ;		_	15,8

TABLEAU A2

PLUVIOMETRIE JOURNALIERE (mmm)

Juin 1972

Date	KANO	: KATSINA	NIELLOUA	MADA m été o	: : MADA :village	: MADA : canal	MARADI
1 : 2 : 3	: :	: :		16,0	16,7		0,1
: 4 : 5		•	:		•	•	6,3
6 7 8 9							
11 12 13 14			3,3	30,0	37 , 5		0,6 5,8 0,2
16 17 18 19 20		i					
21 22 23 24 25			11,3	21,0 0,7	19 , 3		9,2 TR 0,4
26 27 28 29 10	Service Acceptance of the Control of		7,8 5,9	٠ ٥,6			1,2 TR
Total :	118,0		28,3	52,3	57 , 6		23,8

TABLEAU A3

PLUVIOMETRIE JOURNALIERE (mma)

Juillet 1972

Date	KANO	KATSINA	NIELLOUA	MADA météo	: MADA :village	: MADA : canal	MARADI
: 1 : 2 : 3		:	4,4				
: 4 : 5	:	:	: :		0,3	:	
: 6 : 7 : 8	:	•	4,5		:	:	4,8
9 10		•			•	:	TR
: 11 : 12 : 13	•		15,2	3,2 10,0	5,3 13,1		0,2
14							
16 17 18							io 4
19 20			0,3	3,0	3,5		13,6 18,4
21 22			1,5	11,5 0,4	14,2 0,7		0,2
23 24 25			:				2,0
26 27 28			21,5	16,0	15,0	12,8	23,5 0,5
29 30		, ;	39 , 0 :	:	17,8	30,0	24,0
31 Total		***************************************	***************************************	 :			
mensuel:	45,0	118,0	86,4	44,1	69,9	42,8	87,2

TABLEAU A4

PLUVIOMETRIE JOURNALIERE (mm)

Août 1972

Date	KANO	: KATSINA	NIELLOUA	: MADA : météo	: MADA : village	: MADA : canal	MARADI
: 1 : 2 : 3	•	:	8,5	*	•	•	
. 4 : 5	:	•	25,2	9,0	5,0	3,7	17,6
6	•	•	•	24,8	21,2	23,1	0,1
: 8 : 9 : 10	:		16,7 6,4	10,1 11,2	11,3 12,1	14,3 8,2	25,3 1,0
: 11 : 12 : 13 : 14 : 15			2,2 18,7	2,2 8,7	2,5 7,9	3,1 1,7 8,5	29,5 25,4
: 16	; ;						
: 17 : 18 : 19 : 20			12,0	1,3 15,0	1,0	14,1	9,1
21 22 23 24 25	5		11,9 18,9	6,2	6,7	7,1	1,7
26 27 28						,	
29 30 31		9	28,8	24,6	25,7	38,5	28,4
Total :		139,5	149,3	113,1	106,8	122,8	138,1

TABLEAU A5

PLUVICMETRIE JOURNALIERE (mm)

Septembre 1972

Date	KANO	KATSINA	NIELLOUA	MADA météo	: MADA :village	MADA canal	MARADI
1 2 3 4 5		:			:		
6 7 8 9		* * * * * * * * * * * * * * * * * * *	2,5 7,3	12,0 29,6	14,0 32,9	5,5 24,9	11,0
11 12 13 14 15			4,2 4,0	10,9	14,7	2,5	0,8
16 17 18 19 20			1,1 3,2			3,2	TR
21 : 22 : 23 : 24 : 25 :							7,2
26 27 28 29 30			:				
Total:	47,3	135,7	22,3	52,5	61,6	36,1	19,0

TABLEAU A6

JAUGEAGES 1972

Station de NIELLOUA (GOULBI de MARADI)

N.	Date	: : Début : :H (m)(1):	Fin H (m)	Q(2) (m3/s)	v _{ms} (3) (m/s)	V m(4)
378 39 40 40 40 40 40 40 40 40 40 40 40 40 40	20-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72 22-6-72	0,02 1,51 1,44 1,35 1,26 1,15 0,63 0,69 0,97 0,87 1,00 1,04 1,10 1,56 0,45 1,53	0,02 1,44 1,35 1,29 1,21 1,10 0,60 0,66 0,91 0,79 0,97 1,01 1,05 1,05 1,49	0,017 52,0 48,0 40,0 38,0 32,0 9,30 11,9 22,5 21,0 26,5 28,0 30,0 58,0 4,25 54,0	1,297 1,285 1,071 1,187 1,163 0,762 0,718 1,014 0,902 1,127 1,177 1,131 1,240 0,696 1,312	1,209 1,142 1,111 1,117 1,103 0,845 0,772 1,022 0,840 1,039 1,076 1,034 1,234 0,615 1,200
53 54 55 56 57 58 59 60 61	4-7-72 5-7-72 6-7-72 10-7-72 11-7-72 29-7-72 29-7-72 29-7-72	0,28 0,50 0,45 0,28 0,22 3,10 2,94 2,87 2,67	0,28 0,49 0,44 0,28 0,22 3,05 2,90 2,85 2,61	1,45 5,70 2,78 0,995 0,455 310 209 197 168	0,441 0,704 0,616 0,506 0,407 3,013 2,101 2,004 1,955	0,570 0,619 0,464 0,497 0,406
62 63 64 65 66 67 68 70 71	6-8-72 6-8-72 6-8-72 6-8-72 6-8-72 9-8-72 9-8-72 24-8-72 28-8-72	2,88 2,79 2,46 2,10 1,75 2,25 1,91 0,65 0,32 0,30	2,91 2,75 2,35 1,95 1,68 2,25 1,85 0,62 0,31 0,30	4 /161	2,156 2,025 1,504 1,250 1,170 1,554 1,512 0,758 0,549 0,635	1,428 1,280 1,095 1,404 1,343 0,767 0,551 0,674

⁽¹⁾ H = note du plan d'eau
(2) Q = débit
(3) Vias = vitesse moyenne de surface
(4) Via = vitesse moyenne de l'écoulement.

HYDROGRAMME 1972 Station de NIELLOUA

Mois d'Août

	Débits instantanés (m³/s)							
: 3	3,90: 2,20: 36,4: 6,00: 2,68:	15,2 11,2	20,6 7,40 4,80				3,29 8,28 19,7 7,33 1,74	
: 7 : 8 : 9	18,4 44,4 6,70: 2,36: 37,0	52,0 4,20 16,6	142 28,6 2,84 104 29,4	17,5 77,4	35,2 12,3 42,0	9,50	27,4 4,58	
: 12 : 13 : 14	8,45: 4,20: 4,50: 3,90: 20,6	. 8,80 : 3 ,0 0 :	2,04	1,72	1,72	17,5	5,41 6,13 4,50 4,98 13,4	
: 17 : 18 : 19	: 2.68:	1,72 : 1,72 :	3 ,00 1,56 64,2	1,56	1,40 20,2	6,00 14,8	3,60 2,25 2,68 2,35 61,4	
: 22 : : 23 : : 24 :	11,6: 42,0: 24,0: 14,8: 3,90:	64,9 15,7 9,15	7,75 60,0 27,0 6,35	38,5 : 30,2 :	6,00 26,0 22,0	17,5 :	41,5	
: 27 : : 28 :	2,36: 1,56: 1,10: 0,80: 1,00:	193	196	130	83,0	: :	2,36 1,56 1,10 0,80 1,00	
			X = 245 $N = 1$	m ³ /s 56m ³ /s			Y = 11,2	

JAUGEAGES 1972 Station PONT de MADAROUNFA (GOULBI de MARADI)

. N.	Date	Début H (m)(1)	Fin H (m)	/ ^ / \	ν ms(3) (m/s)	V m(4) (m/s)
: 43	22 - 6-72 22 - 6-72	1,75 1,60		27,4 26,0	0,955 0,915	,0,825 0,815
45 46 47 48 49 50 51 52 53 54 55 55 57 57 58 59 60 61 61 62 63 64 64 65 66 67 69 69 69 69 69 69 69 69 69 69 69 69 69	7-7-72 7-7-72 7-7-72 8-7-72 8-7-72 8-7-72 9-7-72 9-7-72 11-7-72 12-7-72 12-7-72 12-7-72 12-7-72 12-7-72 12-7-72 12-7-72 12-7-72 12-7-72 14-7-72 14-7-72 24-7-72 29-7-72	1,59 1,55 1,50 1,45 1,45 1,45 1,45 1,10 0,88 2,35 2,20 2,09 2,09 2,09 2,09 1,88 1,78 1,70 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,53 1,48 1,39 1,34 1,43 1,20 1,15 1,10 0,88 2,20 1,15 2,05 2,00 1,97 1,81 1,75 1,67 1,00 0,95 1,95 1,05 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0	21,5 18,8 15,3 12,3 8,00 14,2 4,80 3,20 2,60 0,482 71,0 57,0 46,8 44,2 39,0 32,5 30,0 25,4 21,4 1,00 0,660 1,47 5,80 0,186 111	0,967 0,960 0,803 0,853 0,627 0,923 0,467 0,401 0,390 0,414 1,672 1,470 1,362 1,417 1,202 1,179 1,136 1,022 0,262 0,262 0,262 0,282 0,477	0,884 1,050 0,683 0,740 0,512 0,830 0,406 0,390 0,361 0,408 1,443 1,228 1,147 1,178 1,095 1,009 0,974 0,940 0,849 0,245 0,245 0,208 0,278 0,432 lit mineur
: 71a	31-8-72	2,65	2,65	114	2,200	lit mineur
: 74 : 75	6-9-72 7-9-72 11-9-72 12-9-72 31-8-72	1,56 1,00 0,97	1,50 1,00 0,97	1,80 14,88 1,16 0,96 0,347	débordem	ent R.G

⁽¹⁾ H = cote du plan d'eau
(2) Q = débit en volume
(3) Vms = vitesse moyenne de surface
(4) Vm = vitesse moyenne de l'écoulement.

HAUTEURS D'EAU en cm

Station MADAROUNFA-Pont

1972

(Zéro 354,31 m/ N° 82 SOGETEC à 356,40 m)

Répartition homogène sur les 24 h de 1 à 6 relevés

: :Jours	MAI	JUIN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 12 0	pas d'écoulement avant le 19-5 82: 94: - peut-être faible écoulement	122 148 156 138 165 160 147 138 132 132 131 125 110 104 109 ** 112 112 102 89 132 138 130 134 116 98 - 116 118 92 - peut-être faible écoulement
21 22 23 24 25 26 27 28 29 30 31	- peut-être faible écoulement - 150 : 214 : 194 : 174 : 164 - 156 : 154 : 152 : : : : : : : : : : : : : : : : : : :	- peut-être faible écoulement - 190 150 134 134 132 118 121 116 116 93 : pas d'élément 0-1 107 : 112 : 107 : 93 : 93 : 182 : 174 143 : 133 : 129 :
:	X = 224 cm N = sec	X = 196 cm

^{* -} valeurs non enregistrées.

HAUTEURS D'EAU en cm

Station MADAROUNFA-Pont

1972

(Zéro 354,31 m/ N° 82 SOGETEC à 356,40 m) Répartition homogène sur 24 h de 1 à 6 relevés

Jours			JUIL	LET			: AOÛT	
1 2 3 4 5	107 91 100 102 106	106 106	106			•	130 125 121	7
: 6: 7: 8: 9:	104 150 116	152 136			9 6 5 9 9		: 111 : 111 : 250 : 258 : 222 : 191 : 200 : 196 : 200 : 180 : 166 : 168 : 153 : 147 : 145 : 140 : 137 : 131 : 131 : 132 : 129 : 206 : 224 : 194 : 176 : 164 : 155 : 151 : 146 : 141	+
11 12 13 14 15	81 112 132 100 85	81 240 121	81 200 114	81 165	81 150	134 141	138 138 140 138 130 123 118 113 112 111 130 132 128 124 128 126 124 122 119 118 117 115 112 109 110 132 160 156 149 142	
: 16 : 17 : 18 : 19 : 20 :	85 : 149 : 103 : 85 : 147 :	132 93 85	184				: 138 : 134 : 129 : 124 : 121 : 117 : 114 : 111 : 107 :	:
21 22 23 24 25	115 93 83 75 71	102 88 78 83					172 164 156 150 144 139 138 192 210 210 188 176 170 169 166 168 184 178 168 164 162 167 150 146 140 134 129	:
26 : 27 : 28 : 29 : 30 : 31 :	67 : 62 : 150 : 142 : 188 : 145 :	150 : 172 :	163 : 256 : 154 :		224	206	: 125 : 122 : 118 : : : : : : : : : : : : : : : : :	: : : : :
:			X = N =	261 cm 71 cm		**************************************	X = 265 cm le 31 Août 15 h N = 98 cm	-: :

HAUTEURS D'EAU

en cm

Station MADAROUNFA-Pont

1972

(Zéro 354,31 m/ N° 82 SOGETEC à 356,40 m)
Répartition homogène sur les 24 h de 1 à 6 relevés

Jours:	SEPTEMBRE	OCTOBRE
1 2 3 4 5	210 193 184 174 168 16 156 148 140 135 131 128 126 123 120 118 116 113	fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement
6 : 7 : 8 : 9 : 10 :	111 : 109 : 108 : : : : : : : : : : : : : : : : : : :	I
11 12 13 14 15	106 101 97 122 117 109 104 97 96 116	fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement
: 16 : 17 : 18 : 19 : 20 :	116:111:106:::: 102:113:115::: 112:108:104:::: 108:106:103::: 96:94::::	fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement
21 22 23 24 25	90 89 85 84 82 81 79	fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement
26 : 27 : 28 : 29 : 30 : 31 :	73 : 90 : : : : : : : : : : : : : : : : :	fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement fin d'écoulement
:	X = 210 cm N = 66 cm	

HYDROGRAMME 1972

Station de MADAROUNFA-Pont

Mois d'Août

			Déb	its instar (m3/s				Débit (m3/s)
:	1 2 3 4 5 5	3,90: 2,30: 9,56:	3,10 8,48 7 ,0 9	4,61 2,50 18,8 6,16 2,70	24 , 2	18,8	13,9	5,95 3,16 14,4 7,60 5,08
: 8	6 7 8 9	42,0 : 16,5 :	39,2 13,9 8,12	96,5 42,0 13,1 7,09 17,4	106 29,2 11,0 47,4 15,6	22,4 9,92 65,4	37,8 23,3 8,84 37,8 11,4	: 33,0 : 12,2 : 28,9
: 13 : 13	1 : 2 : 3 : : 5	3,90: 6,78: 4,10:	2,90 5,54 3,90	2,70	2,50 6,16		8,12: 4,92: 2,17:	4,58 5,95 3,31
: 17 : 18 : 19	6 : 7 : 8 : 9 :	1,91: 2,70:	2,50 : 3,50 : 2,30 :	7,09 1,91 3,10 2,04		4,61 37,8		2,50 : 2,83 : 2,34 :
: 22 : 23 : 24	2:	10,3 : 24,2 : 23,3 :	36,4 : 23,7 : 21,5 :	17,9 51,0 22,4 20,6 7,09	51,0 : 23,3 :	12,6 33,8 31,5 15,2	27,2 : 28,2 :	34,9 25,5
: 27 : 28 : 29 : 30	5 : 7 : 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3	1,13:	3,10 : 2,30 : 1,65 : 1,00 :	3,90 2,70 2,04 1,39 0,90	:	:	82,8	4,89 3,10 2,28 1,65 1,01 51,2
:	:			X = 115 $N = 0,$	m3/s 90 m3/s		3	Y = 14,8

HYDROGRAMME 1972 Station de BARGAYA Mois de Juillet

:	Débits instantanés (m³/s)								: Débit (m ³ /s)
-	: 0,25: : 0,13: : 0,00: : 0,00:	0,10		:	:	:	:	:	: 0,21 : 0,11 : 0,00 : 0,00 : 0,00
6 7 8 9 10	: 0,00: : 0,00: : 2,52: : 0,59: : 0,09:	0,00: 2,48: 0,21:	2,45 0,15	: 2,45 : 0,13	: 2,41 : 0,11	2,34 2,41 0,10 0,04	: 2,20	2,38 1,49	0,00 1,41 2,30 0,21 0,07
: 11 : 12 : 13 : 14 : 15	3,79: 0,31:	2,86 0,20	1,88 0,15	1,38 0,12	0,99	0,76	3,95 0,57	4,15 0,43	0,00 1,01 1,58 0,19 0,06
: 16 : 17 : 18 : 19 : 20	: 0,00: : 0,00: : 0,00:	:					altiration can grade	gene adhagan yaptami Agai	0,00 0,00 0,00 0,00 0,00
21 22 23 24 25	0,10:	0,09:	0,10 0,12 0,04	: 0 ,0 6 :					0,05 0,09 0,04 0,00 0,00
28 29 30	0,00: 13,0: 1,67: 24,5:	2,10: 21,7:	8,24 2,20 20,6	6,20 1,88 14.9	5,96 4,53 11,6	4,70 10,3 5,85	3,20 : 30,5 : 3,20 :	2,14 : 28,5 : 2.14 :	0,00 2,79 6,80 10,2 13,1 0,84
		1		X = 30, $N = 0,$	5 m3/	័ន 'ន			Y = 1,32

JAUGEAGES 1972 Station Canal de MADAROUNFA

N.	Date	Début : H (cm)(1):	Fin H (cm):	ൂ (2) (m3/s)	V ms (3):	Observations
	29-6-72 29-6-72		0,33 : 0,32 :	0,0023 0,0017		écoulement vers lac écoulement vers lac
: 18 : 19 : 20 : 21 : 22 : 23 : 24 : 25 : 26 : 27 :	12-7-72 12-7-72 12-7-72 12-7-72 12-7-72 12-7-72 27-7-72 27-7-72 29-7-72 29-7-72 29-7-72 29-7-72 29-7-72	0,37 : 0,34 : 0,47 : 0,55 : 0,76 : 0,85 : 0,43 : 0,51 : 0,42 : 1,00 : 0,97 : 0,68 : 0,51 : 0,46 :	0,29 : 0,38 : 0,58 : 0,65 : 0,78 : 0,51 : 0,47 : 0,40 : 1,05 : 0,92 : 0,90 : 0,54 : 0,50 :	0,102 0,037 0,029 0,040 0,195 0,325 0,545 0,065 0,112 0,064 2,200 1,340 0,845 0,039	0,082 0,098 0,149 0,261 0,261	écoulement vers lac
28 : 29 : 30 : 31 : 32 : 33 : 34 : 35 : 36 : 37 : 38 : 40 : 42 : 43 : 44 :	30-7-72 6-8-72 6-8-72 6-8-72 6-8-72 6-8-72 7-8-72 9-8-72 18-8-72 19-8-72 21-8-72 21-8-72 23-8-72 23-8-72 29-8-72 29-8-72	0,47 : 1,01 : 1,09 : 0,63 : 0,88 : 0,71 : 0,66 : 0,94 : 0,36 : 0,97 : 0,47 : 0,47 : 0,66 : 0,59 : 0,54 : 0,52 :	0,46 : 1,06 : 1,08 : 0,60 : 1,01 : 0,69 : 0,83 : 0,94 : 0,35 : 0,30 : 0,91 : 0,78 : 0,47 : 0,66 : 0,61 : 0,58 : 0,54 : 0,52 :	0,051 0,880 1,052 0,109 0,735 0,180 0,308 0,468 0,100 0,065 0,460 0,276 0,240 0,420 0,460 0,460 0,460	0,147: 0,184: 0,143: 0,269: 0,118: 0,182: 0,176: 0,181: 0,273: 0,323: 0,328: 0,272:	écoulement vers lac écoulement vers GOULBI :
47 : 48 : 49 : 50 : 51 : 52 : 53 : 54 : 55 : 56 : 57 : 58 : 59 : 60	1-9-72: 1-9-72: 2-9-72: 2-9-72: 3-9-72: 3-9-72: 5-9-72: 9-9-72:	0,74 : 0,69 : 0,64 : 0,60 : 0,56 : 0,56 : 0,52 : 0,49 :	0,73 : 0,68 : 0,64 : 0,60 : 0,56 : 0,56 : 0,52 : 0,49 :	0,248 0,244 0,445 0,442 0,414 0,440 0,310		écoulement vers GOULBI :

⁽²⁾ Q = debit

⁽¹⁾ H = cote du plan d°cau à l°échelle
(3) Vms = vitesse mayerne de aurface.

DEBITS MOYENS JOURNALIERS en m3/s

GOULBI de GABI à BARGAYA 1964-1965

: Jours	: : Juin	Juillet:	Août	:Septembre:	Octobre:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Sec	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	1,75 0,89 0,56 10,4 4,15 2,61 3,55 1,39 10,4 3,77 2,64 7,95 2,33 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0	5,86 : 7,16 : 5,65 : 3,11 : 0,88 : 0,19 : 0,40 : 0,40 : 0,04 : 0,00 : 0,00 : 1,84 : 5,22 : 1,23 : 0,21 : 1,12 : 0,24 : 0,04 : 0,00 : 0,	Sec
20 27 28 29 30 31		0,09 0,02 0,00 0,00 0,00	4,48 0,54 1,27 11,2 18,7 10,4	0,00 0,00 0,00 0,00	Control of the Contro
Y	0,00	0,52	4,41	1,12	0,00

Module annuel: 0,51 m3/s

TABLEAU A16

DEBITS MOYENS JOURNALIERS en m3/s

GOULBI de GABI à BARGAYA 1971-1972

Jours	: Juin	: Juillet:	tîcl	: :Septembre:	Octobre
1	•	0,00 :	0,00	: 0,00 :	Sec
2		0,00		: 0,00 :	
3	•	: 0,39 :	0,00	: 0,00 :	·
4	4	: 0,18 :	4,49	: 0,00 :	,
5	•	: 0,66 :	8,09	: 0,00 :	` ;
6	:	4,07	15,8	: 0.00 :	;
7	:	1,03	8,48	• 0.00 •	- ;
8	*	' 0.89 '	1,35	1 22 *	;
9	3	1.76	9,79	° 12.2 °	;
10		° 0.41 °	6,38	1,32	
11	•	0,38	2,70	: 0,16 :	
12	8	0,08	7,01	: 0,03 :	. ,
13	•	: 0,10 :	1,18	: 0,89 :	
14	:	0,87 :	1,96	: 15,3 :	•
15	•	: 1,06 :	4, CL	: 1,05 :	
16	*	a to :	3,82	: 0.08 :	
17	3	6.13	2,13	0.00	
18	:	' 0.14 °	0,26	0,00	
19	\$ -	0,07	0,15	0,00	
20	• •	0,02	0,33	0,00	
21	2	1,34 :	2,59	: 0,00 :	,
22	•	3,85	0,41	: 0,00 :	
23	<u>.</u>	: 0,38 :	5,27	: 0.16 :	;
24	•	: 0,08 :	1,45	: 0,78 :	3
25	:	0,04 :	2, 25	: 0,15:	;
26	Sec	0,00	4,98	0,06	- 1
27	1,19	'n an '	18,4	. 0.00	•
28	° 0.46 '	0.00	5,46	. 0.00	;
29	0.07	' 0.00 '	0,47	0,00	
30	0,11	0,00	0,12	. 0.00 .	
31	* ·	0,00	0,04		•
Y	0,05	0,56	3,85	1,11	0,00

Module annual : 0,47 m3/s

Débit maximal :32,5 m3/s

TABLEAU A17

DEBITS MOYENS JOURNALIERS on m3/s

GOULBI de GABI à BARGAYA 1962-1963

Jours	. Juln	: Juillet	Août	:Septembre:	Octobre
1 2 3 4 5 5	Sec	Sec	2,60 1,10 0,60 0,10 0,02	: 1,60 : 0,20 : 0,10 : 3,80 : 1,90 :	Sec
6 7 8 9		0,30 1,00 1,40	0,00 0,00 0,10 0,50 0,10	2,80 2,20 1,20 0,80 0,20	
: 11 : 12 : 13 : 14 : 15		0,40 : 0,04 : 1,30 : 0,70 : 0,50 :	0,01 0,00	: 0,01 : 0,00 : 0,70 : 1,60 : 0,50 :	
16 17 18 19 20	0,20 0,20	0,70 0,10 0,01 0,00 0,00	0,20 0,30 1,30 3,30 0,70	0,40 3,40 8,60 4,20 1,90	: : :
21 22 23 24 25	0,006 Sec	0,00 : 0,00 : 0,00 : 2,20 : 2,50 :	0,30 0,60 0,20 0,01 0,10	: 1,20 : 3,40 : 0,80 : 0,20 : 0,05 :	:
26 27 28 29 30 31		6,50 6,60 5,90 3,50 1,20 6,40	0,20 0,50 0,10 0,03 1,70 2,30	0,01 0,00 0,00 0,00 0,00 0,00	:
atula diabiCSM audio essissimani/olea asina	0,014	1. , 33	0,78	1,39	0,00

Module annuel: $0,30 \text{ m}^3/\text{s}$

TABLEAU A18

DEBITS MOYENS JOURNALIERS on m3/s

GOULBI de GABI A BARGAYA 1968-1969

Jours	Juin	Juillet	Août	Septembre:	Octobre
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Sec	1,19 : 0,11 : 0,04 : 0,04 : 0,02 : 0,12 : 4,88 : 0,98 : 0,17 : 1,70 : 1,70 : 4,15 : 0,61 : 0,14 :	1,16 0,19 0,10 0,08 0,05 0,61 0,21 0,21 0,14 0,04	0,17 : 2,41 : 0,75 : 0,04 : 0,03 : 0,02 : 0,00 : 0,00 : 0,00 : 0,00 : 0,00 : 0,00 : 0,00 : 0,00 : 0,00	Sec
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,05 0,03 0,03 0,03 2,01 2,82 2,75 9,60	0,00 0,09 0,09 0,05 0,61 0,61 0,34 1,06 0,51 2,17 0,61 0,72 0,61	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	
V Company	O _B ØA	1,20	0,33	0,31	0,00

Module annuel : 0,16 m3/s Débit maximal :25,5 m3/s

DEBITS MOYENS JOURNALIERS en m3/s

GOULBI de MARADI à MADAROUNFA-Pont 1964-1965

: Jours	; ; Juin	: Juillet	. Août	: :Septembre:	Octobre
		*			
: 1 : 2 : 3 : 4	: 0,00 : 0,00 : 0,00 : 0,00	7,52 0,00 0,00 0,00	41,8 21,8 86,1 45,8 26,4	174 86,3 70,5 67,1 41,6	1,73 1,28 0,71 0,54 0,90
6 7 8 9	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	70,6 43,1 24,1 106 174	53,3 52,6 31,1 22,1 17,9	0,71 1,96 1,39 1,22 0,67
: 11 : 12 : 13 : 14 : 15	: 0,00 : 0,00 : 0,00 : 0,00 : 0,00	0,00 0,00 1,38 0,42 0,00	40,6 25,0 17,2 102 42,3	23,0 240 94,8 44,9 44,7	0,34 0,30 0,23 0,21 0,17
16 17 18 19 20	0,00 17,3 8,82 7,21 1,45	6,90 8,58 7,35 77,1 48,0	24,3 18,4 14,4 41,1 38,0	20,5 13,6 25,3 56,9 27,8	0,15 0,12 0,09 0,06 0,00
: 21 : 22 : 23 : 24 : 25	: 0,21 : 0,00 : 0,00 : 0,00 : 0,00	41,4 23,6 8,16 114 30,4	58,9 22,7 21,0 145 87,2	15,5 10,5 7,72 7,01 9,14	0,00 0,00 0,00 0,00
26 27 28 29 30 31	0,00 0,00 2,52 1,37 1,00	15,7 9,93 7,11 23,3 15,0	29,5 41,8 51,2 103 80,0 79,2	11,3 6,82 4,85 3,22 2,53	0,00 0,00 0,00 0,00 0,00 0,00
Ā	1,32	20,0	55,6	42,9	0,41

Medule annuel: 10,1 m3/s

DEBITS MOYENS JOURNALIERS on m3/s

GOULBI de MARADI à MADAROUNFA-Pont 1971-1972

Jours	: Juin	Juillet	Août	: :Septembre:	Octobre:
1 2 3 4 5	Sec	0,00 (3,60 (: 11,8 : 9,96	7,09 4,02 3,17 2,46 12,3	(1,07) (0,84) (0,61) 0,39 0,30
6 7 8 9		10.5	17,1	22,4 11,5 58,2 39,9 15,4	0,22 0,14 0,06 0,03 0,00
11 12 13 14 15		42,6 14,6 6,20	54,2 : 39,3 : 26,0	9,31 6,94 49,4 54,9 24,5	0,03 0,00 0,00 0,00 0,00
16 17 18 19 20		3 . (C38.)	44,0 19,5 14,8 25,1	10,4 8,50 8,58 10,4 9,29	0,00 0,00 0,00 0,00 0,00
21 22 23 24 25		51,3 41,5 14,1	37,8 : 17,2 : 44,3 : 28,0	5,40 4,31 6,78 4,22 3,17	0,00 0,00 0,00 0,00 0,00
26 27 28 29 30 31	3,39 0,00	4,02	45,2 43,4 19.6	2,65 2,04 1,76 (1,53) (1,30)	0,00 0,00 0,00 0,00 0,00 0,00
Y	0,11	12,2	33,3	13,4	0,12

Module annual: 4,97 m3/s

Débit maximal :270 m3/s

DEBITS MOYENS JOURNALIERS on m3/s

GOULBI de MARADI à MADAROUNFA-Pont 1962-1963

:	Jours	: : Juin	· Juillet:	Août	:Septembre:	Octobre:
* * * * * * * * *	1 2 3 4 5	• • •	2,00 : 4,20 : 1,00 : 0,40 : 0,30 : 3,10	4,70 1,80 0,80 0,70	14,7 : 14,1 : 23,6 : 22,1 : 34,2 : 24,8	1,20 0,70 0,60 0,50 0,50
** ** ** **	7 8 9 10	; :	0,70 7,70 9,60 5,10	1,10 27,3 11,4 6,60 4,10	13.7 15,2 11,2 9,40 9,20	0,70 0,40 0,80 2,80 0,60
** ** ** ** **	12 13 14 15 16 17	: : : :	2,70 : 4,90 : 1,10 : 5,40 : 2,60 :	17,5 9,10 5,20 3,50	: 5,00 : 13,2 : 9,90 : 25,3 : 19,8 : 20,8	0,40 : 0,30 : 0,20 : 0,10
** ** ** ** **	18 19 20 21 22	3 1	1,00 0,60 0,60 0,20 0,10	12,6 9,00 14,6	39,8 13,9 11,2 13,9 34,4 33,1	0,10 0,05 0,01 0,00 0,00
: : : :	23 24 25 26 27	8,40	9,60 : : 12,7 : : 14,0 :	9,80 5,10 15,4 26,0	: 15,5 : : 8,50 : : 4,60 :	0,00 : 0,00 : 0,00 :
*** ** ** ** ***	28 29 30 31	10,4 3,10 1,20 0,60	47,2 20,8 8,30 52,0 19,5	17,5 29,0	3,10 2,50 2,60 1,50	0,00 0,00 0,00 0,00 0,00
:	Y	0,80	11,1	11,6	15,1	0,34

Module annual: 3,30 m3/s

DEBITS MOYENS JOURNALIERS on m3/s

GOULEI de MARADI à MADAROUNFA-Port 1968-1969

Jours	: Juin	Jullet	Août	: :Septembre:	Octobre:
1 2 3 4 5	: 0,00	1,68 0,24 0,00 3,43 25,6	18,7 13,1 4,90	11,1 : 21,7 : 7,14 : 3,85 : 2,64 :	Sec
6 7 8 9	0,00	9,80 3,85 1,20 6,86 4,90	4,90 2, 8 0 1,84	2,32 1,68 1,20 1,36 1,04	: : : :
11 12 13 14 15		30,2 114,3 14,69 124,8 112,5	1,04 0,80 0,56 0,96	: 0,72 : 0,72 : 1,04 : 1,84 : 1,68 :	: : :
16 17 18 19 20	U. 23	4,90 4,90 5,18 13,1 64,9	4,48 6,30	1,12 0,64 2,80 1,04 0,64	
21 22 23 24 25	0,00	24,8 29,4 19,4 35,6 20,2	9,60	: 0,32 : 0,16 : 0,20 : 0,40 : 1,52 :	
26 27 28 29 30 31	1.84	15,5 7,14 9,80 27,9 14,3 15,5	25,6 19,2 9,80 9,80 7,14 5,74	0,56 0,20 0,20 0,12 0,00	
Y	1,92	14,72	11,15	2,33	0,00

Module annuel: 2,45 m³/s

Débit maximal : 117

m3/s