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Gabbroic Xenoliths and Host Ferrobasalt From the Southern Juan de Fuca 
Ridge 
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Rare isotropic gabbroic xenoliths occur in sheet and lobate flow fragments of nearly aphyric ferrobas- 
alt collected along a 12-km section of the southern Juan de Fuca Ridge. Xenoliths comprise c< 1% of the 
dredge contents and range in size from 1 cm3 (glomerocryst) to 240 cm3. The xenoliths have ophitic to 
intersertal texture with 5-500/; interstitial glass of ferrobasaltic composition more evolved than the host 
lava. On the basis of texture and mineralogy, the xenoliths have been subdivided into three types: type I. 
plagioclase +- olivine -i- glass; type II, plagioclase + augite + glass k olivine; and type III, plagioclase 
+ augite -t olivine -t glass & pigeonite (partially inverted) + Fe-Ti oxides. Mineral and glass inclusion 
compositions suggest a sequence of evolution for the three xenolith types in which type I is the least 
evolved and type III is the most evolved. Application of a graphical pyroxene geothermometer to augite 
in xenolith types II and III yields crystallization temperatures of 1100”-1200’C and to host-lamellae 
pairs in inverted pigeonite yields subsolidus equilibrium temperatures of 1100’-1150”C. Coexisting 
titanomagnetite-ilmenite pairs in type III xenoliths yield temperature estimates of 1CK!W-1O7O0C and log 
fol = -9.7 to -10.8. We infer that the xenoliths represent the partially crystalline “mush” boundary 
zone of a magma chamber based on the abundance of interstitial glass, zonation of mineral grains in the 
most crystalline samples, and coherence of chemical trends between interstitial glass, glass inclusions, and 
mineral phases. The evolved composition of the xenoliths provides evidence for the presence of melts 
more fractionated than the host ferrobasalt in the magma chamber. The erupted ferrobasalt is a hybrid 
lava formed by mixing these highly evolved melts with more primitive melts. 

INTRODUCTION 
Recent studies of oceanic crust suggest that size and lon- 

gevity of axial magma chambers beneath oceanic spreading 
centers and the petrology of the erupted igneous rocks are 
largely a function of spreading rate. Magma chambers beneath 
slow spreading centers are thought to be small and in some 
places transitory [Stakes et al., 19841, while beneath inter- 
mediate to fast spreading centers they are steady state [Mac- 
donald, 19821. A natural consequence of steady state magma 
chambers undergoing continuous fractionation is mixing be- 
tween batches of primitive magma and residual differentiates. 
Mixing is now recognized as an important petrologic process 
in the generation of mid-oceanic ridge basalt (MQRB) and has 
been invoked by various authors to explain (1) the eruption of 
homogeneous basalt compositions over long time periods 
[Usselniait aiid Hodge, 19781, (2) the presence of anomalous 
phenocrysts and melt inclusions [Durigan and Rhodes, 19781, 
(3) the concentrations of incompatible elements in some mod- 
erately evolved compositions in excess of that predicted by 
simple fractional crystallization models [O’Hara, 1977; Bryan 
aiid Moore, 1977; Bryan et al., 1979; Stakes et al., 19841, (4) a 
reversal in mineral crystallization sequences [Walker et al., 
19791, ( 5 )  magma with chemical and mass balance character- 
istics of plagioclase accumulation even though the lavas con- 
tain few or no plagioclase phenocrysts [Flower, 19821, and (6)  
the homogeneity of isotopic compositions along moderate to 
fast spreading centers [Coheiz and O’Nioiis, 1982; Allegre et al., 
1983; Batiza, 19841. 

The role of mixing in the production of ferrobasalt, how- 
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ever, is less certain. Clague aiid Burieh [1976] used linear least 
squares mixing models of major elements to show that ferro- 
basalt can be produced by shallow level fractionation of 
plagioclase, clinopyroxene, and minor olivine in the average 
proportions of 9.3: 7.7: 1 with up to 74% of the parental 
magma fractionally crystalbing. híat tey  and Muir [1980], on 
the other hand, found that a model for mixing of periodically 
injected batches of primitive magma with residual differ- 
entiates could more closely predict variations in major and 
trace elements in ferrobasalt from Deep Sea Drilling Project 
(DSDP) sites 424 and 425 near the Galapagos spreading 
center 86”W. 

Nutland Cl9831 found no geochemical evidence for mixing 
between olivine tholeiite and ferrobasalt at  the East Pacific 
Rise near the Siqueiros Fracture Zone. He  argued that ferro- 
basalt in this area formed due to crystal fractionation in small 
isolated magma bodies such as dikes or shallow intrusions 
above larger magma chambers. Siiitori et  al. Cl9831 proposed 
that ferrobasalt is generated in small isolated magma bodies 
behind propagating rift tips. Farther behind the propagating 
rift tip, extreme differentiation becomes less likely as the 
steady state thermal configuration of a normal ridge is ap- 
proached. These studies suggest that the extent of differ- 
entiation of MORB may be controlled by a delicate balance 
between cooling and magma supply rates. 

The effects of differentiation and mixing are recorded in 
oceanic plutonic rocks, but at the present time, sampling of 
the plutonic rocks is severely biased toward the Atlantic and 
Indian oceans, where slow spreading rates result ir! large dis- 
placements along transform faults and rift valley boundaries 
[Engel aizd Fisher, 1975; Hodges aiid Papike, 1976; CAY- 
T R O U G H ,  1979; Fox und Stroup, 19811. Data for gabbros 
from intermediate to fast spreading centers are less abundant 
[Vunko aiid Batiza, 1981; Hebert et al., 19831. Moreover, in- 
terpretation of magmatic conditions is impeded by defor- 
mation, metamorphism, or brecciation of most oceanic gab- 
broic and ultramafic rocks. ORSTOM Fonds DQcumentaiire 
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Fig. 1. Map showing location of mid-ocean ridge segments in the 
northeast Pacific. Location of U.S. Geological Survey study area is 
shoRn by the solid square. 

Rare glass-bearing gabbroic xenoliths occur in nearly aphy- 
ric ferrobasalt collected from the southern Juan de Fuca 
Ridge. In this report we present major and trace element data 
for the host ferrobasalt and mineral phase chemistry for these 
unaltered gabbroic xenoliths. Detailed discussion of lava 
chemistry provides a frankwork for comparison with the gab- 
broic xenoliths. The data are used to evaluate the role of 
mixing in the formation of ferrobasalt and the longevity of 
subaxial magma chambeis át the Juan de Fuca Ridge. 

GFOLOGIC SFTTINC 
The Juan de Fuca Ridge extends 500 km from the Blanco 

Fracture Zone to the Sovanco Fracture Zone and is a 
moderate-rate spreading center (30 mm yr- half rate) separ- 
ating the Pacific and Juan de Fuca plates (Figure 1). Previous 
petrologic studies of basalt from the Juan de Fuca Ridge show 
that the southern two thirds of the ridge (south of the Cobb 
offset) is characterized by strongly fractionated mid-oceanic 
ridge basalt (MORB) with high Feo ,  Tio,, MnO, P,O,. 
Na,O, and K,O and low MgO. C a o ,  and Alzo,  [ K a y  er al., 
1970: Srheideyger, 1973: Derrick and Lynn. 1975; Vogt and 
R y n I y ,  1976: Waleham, 1977; llelancy et al., 19821. Ferrobas- 
alt (>  10",1 Feo*, total iron calculated as F e o )  is particularly 
abundant near the Juan de Fuca Ridge-Blanco Fracture Zone 
intersection and 20-30 km south of the Cobb orset. The maxi- 
mum iron and titanium enrichment in the l aws  occurs behind 
zones identified as propagating rifts in both regions [Wilson ct 
al.. 19841. 

High-amplitude magnetic anomalies (60C-1200 gammas) 
are spatially associated with ferrobasalt at the Juan de Fuca 
Ridge-Blanco Fracture Zone intersection [ k-ogt  and Byerlp, 
19761. Vogt and Byerly postulated that the iron and titanium 
enrichment could result from fractional crystallization in a 

subaxial conduit transporting magma longitudinally away 
from the Cobb hotspot and damming of the flow at fracture 
zones. 

Incompatible element ratios are highly variable, both along 
the ridge and within single dredge hauls: most are intermedi- 
ate between normal and enriched MORB [Liias and Rhodes, 
19821. The rare earth element (REE) patterns range from light 
REE depleted to light REE enriched with a dominance of 
fairly flat REE patterns [Schilling et al., 19821. Sr isotopic 
ratios of basalt along the Juan de Fuca Ridge have a small 
range of values; the average *7Sr/s6Sr ratio is 0.70249 
f. 0.00014. Though subtle variations exist along strike, the Sr 
isotopic data d o  not show any systematic variation relative to 
the Cobb hotspot [Eahy er al., 19841. 

Smnv AREA 
The study area is a 12-km segment of the axial valley ap- 

proximately 15 km north of the Juan de Fuca Ridge-Blanco 
Fracture Zone intersection (Figure 1). This area was selected 
in part due to its relatively simple tectonic setting. The ridge 
segment has a linear symmetrical axial rift valley and is lo- 
cated away from hotspots and actively propagating rifts. Pre- 
liminary descriptions of dredged lavas, dredged sulfides, and 
the geologic setting of the ridge segment are published else- 
where [Eaby and Clague, 1982; Koski et al., 1982; Normark et 
u/., 1982; Morton et al., 19831. Dredge locations and bathy- 
metry of the study area are shown in Figure 2. The axial 
valley is extremely flat floored and approximately 1 km wide 
and 100 m deep. 

Seismic reflection studies in the study area [Morton, 19841 
show a weak reflector at  approximately 2.3 km (0.8-1.0 s) 
depth interpreted as a shallow level magma reservoir. The low 
amplitude of the reflection suggests that the velocity contrast 
across the interface is small, gradational (i.e., partially crys- 
talline mush), or both. 

Deep-tow photographic surveys of the study area [Normurk 
et al.. 1982; Lichrinan et al., 19831 indicate that lava in the 
axial valley is dominantly sheet and lobate flow forms, charac- 
teristic of high effusion rates (Figures 3a-3c). with rare pillows 
(Figure 34, characteristic of low effusion rates. Most lava dis- 
plays brilliant glassy reflections. The axial floor is smooth and 
unfissured outside a nearby continuous linear depression 5-25 
m deep and 50-100 m wide that bisects the valley. Sediment 
cover within the axial valley is least ( <25ub) within the cen- 
tral zone of collapse features and increases toward the valley 
margin ( >25%). Zn-rich massive sulfide deposits are aligned 
along the central bathymetric depression. Valley walls are 
dominated by pillow flows lacking glassy reflections and 
having 40-80'!4, sediment cover. The inner valley walls, includ- 
ing a low terrace about 30 m above the valley floor, are 
formed by steep normal faults. 

HOST LAVA 

Petro~~ruphy and Distribution 
The recovered basalt samples from the axial rift valley are 

nearly aphyric with << l o o  phenocrysts; plagioclase (1-5 
mm) >> augite (1-2 mm) > olivine (1-2 mm). The samples are 
all nonvesicular ( <O.SL1,,) glassy to microcrystalline basalt. 
Basalt morphology is dominantly sheet. lobate. and hollow 
lobate (blisters) flow fragments (90",1) with minor amounts of 
pillow fragments ( !O"< , ) .  The sheet and lobate flow fragments 
are commonly 4-8 cm thick and have thick glassy selvages on 
upper and lower surfaces. The upper glassy selvages have a 
maximum thickness of 13 mm. Palagonite thicknesses range 
from 0 to 2 pm. suggesting an age of < 1000 years [Hekinian 
mid Hof l i r t ,  19751. 
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Fig. 2. Scientists aboard the U.S. Geological Survey research vessel S. P. Lee conducted acoustic transponder navi- 
gated dredging, deep-toward camera surveying, and water sampling during September 1981 (cruise L11-81-WF). Locations 
of dredge stations are shown with arrows indicating direction of movement of. the dredge. Dredges 3, 8, and 16 sampled 
older material from the axial walls. Contour interval is 25 m 

Lava samples from the axial valley walls are dominantly 
pillow fragments texturally similar to samples from the axial 
valley. The outer glassy selvage has commonly spalled off 
leaving only a few millimeters of glass; palagonite thicknesses 
on original glass surfaces range from 5 to 16 pm, suggesting an 
age of 2000-5000 years. Three small porphyritic glass frag- 
ments recovered in dredge 8 are probably from the valley 
walls and are the only porphyritic samples collected in the 
study area. These flat glass chips contain 10% total pheno- 
crysts with plagioclase >> augite > olivine. The porphyritic 
glass chips have the thickest palagonite and Mn-oxide coat- 
ings of all the samples. Where the dredge path could have 
sampled both the walls and valley, our assignment of location 
of the samples is based on lava age and morphology of the 
sampled fragments. 

Chemical Composition 
The host lavas for the xenoliths are mid-ocean ridge ferro- 

basalt that exhibits a narrow range of compositional variation. 
P e rage  microprobe analyses of glassy margins of samples 
from each dredge are listed in Table 1. A representative group 
of 16 X ray fluorescence whole-rock major and trace element 
analyses were selected from a larger set of 30 analyses and are 
listed in Table 2. The lavas from the axial valley are enriched 
in iron and titanium (Feo* = 11.6-12.2 wt %, Tio ,  = 1.8-1.9 
wt %, Mg number = 52.5-54.7) compared to normal MORB 
(Feo* < 10.0 wt %, Tio, < 1.5 wt %). Basalt from the axial 
valley walls is also ferrobasalt but exhibits a slightly wider 
compositional range; the most (Mg number = 50.3) and least 
(Mg number = 60.4) differentiated lavas are from the valley 
walls. 

Normative compositions of the nearly aphyric lavas range 
from slightly (up to 1.5%) olivine normative to slightly (up to 
1.7%) quartz normative with the vast majority of the samples 
being slightly quartz normative. The porphyritic sample 8-2 is 
the least differentiated lava from the area and contains 3.7% 
normative olivine. There is a general trend of decreasing nor- 
mative olivine and increasing normative quartz with increas- 
ing FeO/MgO ratios, but higher Na,O values also force the 
norm toward higher normative olivine. 

In general, increasing Feo*, Na,O, K,O, Tio,, P,O,, 
MnO, and SO, are coupled with decreasing MgO, A1,0,, and 
Cao.  SiO, concentrations show no systematic variation with 
increasing Mg number. Plots of Tio ,  versus FeO*/MgO and 
C a 0  versus MgO illustrate these trends (Figures 4a and 4b); 
data from the Galapagos spreading center at approxiniate lon- 
gitudes of 85" and 95"W [Byerly et al., 1976; Clague et al., 
1981; Fornari et al., 19831 are plotted for comparison. The 
most striking aspect of the data set is the chemical homoge- 
neity of samples from the axial valley. The 24 whole-rock X 
ray fluorescence analyses of lavas from the valley floor have 
an average analysis and standard deviation of SiO, = 49.89 
3. 0.18, A1,0, = 13.65 0.08, Fe,O,* = 13.27 +. 0.19, 

MgO = 6.87 & 0.11, Na,O = 2.53 
+. 0.12, K,O = 0.18 +. 0.02, Tio ,  = 1.86 +. 0.04, P 2 0 5  = 0.18 
- + 0.01, and MnO = 0.21 f 0.01, which is statistically identi- 

cal to the analytical precision. 
Trace element abundances are listed with major element 

analyses in Table 2 and shown on MgO variation diagrams in 
Figure 5. The range in trace element concentrations (V 308- 
378, Cr 331-112, Ni 99.349.0, Zn 100-131, Ga  17.7-20.3, Rb 
0.9-2.4, Sr 104.4-109.3, Y 32.1-53.3, Zr 96.9-187, Nb 2.9-6.4 

C a 0  = 11.10 +. 0.10, 
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Fig. 3. Deep-tow photographs of typical basalt morphologies found in the axial valley. (a) Low-relief sheet flows with 
light sediment cover which forms the dominant basalt morphology in the axial valley. (b)  Collapsed hollow lobate sheet 
flow. (c) Lobate basalt flow. (d )  Pillowed basalt flow. 

ppm) are similar to those found in ferrobasalt with com- 
parable FeO*/MgO from the Galapagos spreading center 
[Perfit et u/., 19831. Increasing F e o *  and Tio ,  are accompa- 
nied by increasing concentrations of incompatible elements (V, 
Zr. Y, Zn, Nb) and decreasing concentrations of compatible 
elements (Ni. Cr). 

Ratios of Zr,Nb for the 24 samples from the \alley average 
23.4 4 1.1 and are toward the less depleted range for normal- 
MORB (N-MORB). Similarly, the valley samples have an 
average Zr?'Y ratio of 3.24 & 0.07, an average Y,Nb ratio of 
7.21 & 0.4, and an average P,O, K,O ratio of 1.02 & 0.05 
(Figure 4c). These trace and minor element ratios are all 
within the ranges found for N-MORB elsewhere and are con- 
sistent with the low R7Sr'RhSr ratios (0.7026) reported for three 
samples from the valley floor of this segment of the Juan de 
Fuca Ridge [Euby et u/.. 19841. The sis analyzed samples from 
the valley walls, while more variable in major element compo- 
sition than the 24 valley floor samples. have consistently 
higher P,O, fK,O ratios (1.16 4 0.091, Zr? N b  ratios 
(28.4 & 2.9). and YjNb ratio (8.9 -1- 1.3). 

Phuiiocrgsts and h1icrcJphctiocr)Ists 
Plagioclase compositions are given in Tables 3u and 3h. 

Plagioclase phenocrysts and microphenocrysts are weakly 
zoned. skeletal to euhedral laths in form, and up to 5 mm in 
length. Plagioclase phenocrysts in sample 8-2 range in compo- 
sition from An,, to An--. The average composition of 46 
microphenocryst analyses is An-, with a range of An,, to 
An,,. Analyses with maximum and minimum An contents for 
several samples are listed in Table 3 ~ .  

Olikine occurs as euhedral. hopper, and skeletal microphen- 
ocrysts. Representatile olivine microphenocryst compositions 
are given in Table 4u and shown in Figure h. Olivine micro- 
phenocryst compositions range from Fo,, to Fo,,. The most 
magnesian olivine (Fo,,) occurs in sample 8-2. 

Representative pyroxene analyses are ghen in Table 5 and 
shonn on  the pyroxene quadrilateral in Figure 6. Pyroxene 
compositions referenced in the text are expressed in terms of 
percent Wo. Fs. and En, where Wo is the atomic proportion 
100CaJ(Ca + Fe + Mg). and 
En = 100MgJ(Ca f Fe + Mg). Quadrilateral components 
were calculated using the method of Linds/ey unii Andersen 
[I9831 for comparison to Linds/ey."s [ 19833 graphical pyrox- 
ene geothermometer and are listed in Table 5. Phenocrysts of 
augite in sample 8-2 range in composition from 
Wo,, ,Fs, lEn,, to Wo,, 4Fs1, oEn,, o.  The Cr,O, con- 
tents range from 0.60 to 1.27 wt %, and are about a factor of 3 
higher than Cr,O, contents of pyroxene in the xenoliths. The 
phenocrysts have the most refractory compositions of all ana- 
lyzed pyroxene. Composition of augite microphenocrysts in 
samples 22-34 and 26-13B range from Wo,, 5F~,, 4En,, to 
Wo,, ,Fs, ,En,, 5. Compositions of phenocrysts and micro- 
phenocrysts in the host lava are similar to phenocryst compo- 
sitions in Galapagos spreading center lavas [Perfir (2nd For- 
nari, 19831 and Nazca plate lavas [Xfaxullo und Bcncr, 19761. 

Fractionution und Soirrce Charactcristics 
Variations in major and trace element composition of ferro- 

basalt from the southern Juan de Fuca Ridge are similar to 
the variations in lavas with comparable Feo*  h4gO ratic 

Fs = 100Fe'(Ca + Fe + Mg), 



TABLE 1. Averaged Major Element Microprobe Analyses of Basalt Glasses 

Dredge 

3-6 8 11 12 4 3 23 5 17 22 26 16 16-6 13 

Number of (1) (1) (1) (1) (7) (3) (1) (7) (8) (8) (7) (3) (1) (1) 
samples 

Location wall wall valley? valley valley wall valley valley valley valley valley valley wall? wall 

50.8 
14.4 
11.6 

11.9 
7.41 

2.53 
0.09 
1.78 
0.14 
0.17 
0.14 

50.6 
14.3 
11.3 

12.4 
7.19 

2.58 
0.10 
1.77 
0.17 
0.17 
0.14 

50.8 50.8 
14.1 14.3 
12.1 12.1 

11.4 11.7 
7.10 6.98 

2.61 2.45 
0.15 0.14 
1.92 1.90 
0.18 0.16 
0.19 0.18 
0.16 0.16 

50.6 f 0.1 
14.2 f 0.2 
12.1 f 0.2 

11.3 f 0.3 
6.95 & 0.08 

2.59 4 0.08 
0.15 f 0.01 
1.88 * 0.05 
0.17 f 0.01 
0.18 f 0.01 
0.15 & 0.01 

50.7 f 0.6 
14.1 f 0.2 
12.0 f 0.1 

11.8 f 0.3 
6.85 t 0.06 

2.48 & 0.11 
0.16 f 0.01 
1.89 & 0.04 
0.18 f 0.01 
0.18 f 0.01 
0.15 & 0.01 

51.2 
14.1 
11.9 

11.1 
6.78 

2.71 
0.18 
1.88 
0.22 
0.18 
0.14 

50.5 f 0.2 
14.1 & 0.2 
12.1 f 0.2 

11.3 f 0.3 
6.81 f 0.16 

2.64 & 0.08 
0.15 t 0.01 
1.89 f 0.05 
0.18 f 0.01 
0.18 f 0.01 
0.15 f 0.01 

50.5 f 0.3 
14.1 f 0.2 
12.2 & 0.1 
6.84 f 0.10 

2.58 f 0.07 
0.16 f 0.01 
1.90 f 0.02 
0.17 & 0.01 
0.18 f 0.01 
0.15 & 0.01 

11.2 f 0.3 

50.7 + 0.4 
14.0 f 0.1 
12.3 If: 0.1 

11.2 f 0.3 
6.75 t 0.10 

2.66 & 0.04 
0.16 f 0.01 
1.92 f 0.01 
0.18 f 0.02 
0.18 & 0.01 
0.15 & 0.01 

50.5 f 0.4 
14.1 * 0.1 
12.3 & 0.1 

11.3 & 0.2 
6.76 f 0.06 

2.65 _+ 0.05 
0.15 f 0.01 
1.92 f 0.02 
0.17 & 0.01 
0.19 f 0.01 
0.15 & 0.01 

51.0 f 0.3 
14.0 & 0.1 
12.4 f 0.2 

11.4 f 0.2 
6.78 & 0.05 

2.50 f 0.05 
0.16 * 0.00 
1.98 f 0.04 
0.18 f 0.02 
0.19 f 0.01 
0.15 f 0.01 

50.7 50.7 
14.1 14.0 
13.1 12.9 

11.5 11.0 
6.62 6.26 

2.52 2.64 
0.14 0.19 
2.14 2.14 
0.18 0.27 
0.19 0.19 
0.18 0.15 

Total 101.0 100.7 100.7 100.9 100.2 100.5 100.4 100.0 100.0 100.2 100.2 100.7 101.4 100.4 

Mg #i 55.90 55.67 53.86 53.37 53.25 53.05 52.96 52.66 52.70 52.11 52.08 52.10 50.02 49.07 
FeO/MgO$ 1.40 1.42 1.53 1.56 1.57 1.58 1.58 1.60 1.60 1.64 1.64 1.64 1.78 1.85 

Glasses were analyzed for major and minor elements with a three-channel ARL-EMX electron microprobe using US. Geological Survey standards of A-99 for Ti, Na, Si, and Fe; VG-2 and Indian 
Ocean glass 113716 for Al, Ca, and Mg; K-spar 2 for K;  apatite for P; pyrrhotite for S; and fayalite for Mn. Sample current was 15 nA and counting time was 60 s. Six or more were analyzed and 
averaged to give a representative value for the sample. Matrix corrections were made using a Fram72 program [Beeson, 19671. 

TMg # is the atomic proportion (Mg/Mg + Fe). 
$Fe0 = 0.9 x Feo*. 
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TABLE 2. Representative XRF Major and Trace Element Analyses of Host Lava 
- . 

Sample 

8-2 3-6 12-3 

Ihcation 

Sia,  
AI,O 
Fe203 
MgO 
Ca0 
Na,O 
K,O 
TiOL 
PL05 
MnO 

TO t al 

bfg # t  
calculated Feo$ 
FeOjMgO 

V 
Cr 
Ni 
Zn 
Ga 
Rb 
Sr 
Y 
Zr 
Nh 

Zr," 
Zr,' Y 
Y:Nb 

wall 

49.4 
14.5 
11.6 

1 1 .Y 
8.01 

2.35 
0.1 1 
1 .50 
0.13 
0.21 

99.7 

60.4 
9.36 
1.17 

308. 
331. 
99. 

101). 
17.7 
0.9 

104.4 
32.1 
%.Y 
2.0 

33 

11.1  
3.01 

wall 

19.5 
13.9 
12.5 

11.7 
7.45 

2.3 1 
0.12 
1.69 
0.15 
0.20 

99.5 

56.7 
10.2 
1.37 

345. 
N Y .  
69. 

117. 
18.9 

0 . X  
87.4 
36.5 

4.1 
111. 

27 
3.04 
8.90 

valley 

49.5 
13.7 
12.9 

11.3 
7.09 

2.38 
0.17 
1 .84 
0.17 
0.21 

99.3 

54.8 
10.4 
1.47 

373. 
169. 
60. 

115. 
19.0 
1.6 

103.5 
39.9 
115. 

5.9 

21 
3.13 
6.76 

4-28 11-0 3-3 4-23 16-8 5-7 17-1 26- 1 23-1 22-17 5-67 16-6 13-0 

valley 

49.9 
13.7 
12.9 

11.2 
7.00 

2.50 

1.79 
0.18 
0.2 1 

0.17 

99.6 

54.5 
10.4 

I .49 

368. 
100. 
57. 

128. 
18.4 

1.7 
112.4 
38.6 

123. 
5.3 

24 
3.26 
7.28 

valley? 

49.6 
13.7 
13.1 

11.1 
6.98 

2.41 
0.17 
1.84 
0.17 
0.22 

99.4 

53.9 
10.6 

1.52 

375. 
97. 
56. 

119. 
18.6 
1.6 

39.3 

5.3 

109.9 

128. 

24 
3.26 
7.42 

wall 

50.1 
13.6 
13.2 

11.2 
6.89 

2.51 
0.18 
1 3 4  
0.18 
0.2 1 

99.9 

53.5 
10.7 
1.55 

387. 
124. 
53. 

132. 
18.8 
1.4 

109.8 
39.1 

130. 
5.0 

26 
3.32 
7.82 

valley 

49.9 
13.6 
13.3 

11.1 
6.94 

2.47 
0.18 
1.87 
0.18 
0.21 

99.8 

53.5 
10.8 
1.56 

365. 
94.8 
56. 

118. 
18.4 
2.0 

109.8 
40.6 

133. 
5.5 

24 
3.28 
7.38 

valley 

49.7 
13.5 
13.3 

11.1 
6.80 

2.36 
0.18 
1.92 
0.18 
0.20 

99.2 

53.0 
10.8 
1.59 

399. 
108. 
54. 

121. 
18.8 
1.9 

114.0 
40.8 

134. 
6.2 

22 
3.28 
6.58 

valley 

50.1 
13.6 
13.5 

11.0 
6.81 

2.71 

1.88 
0.18 
0.22 

o.in 

100.2 

52.9 
10.9 
1.59 

361. 
92.3 
49. 

119. 
20.5 

1.4 
115.5 
40.2 

131. 
5.5 

24 
3.26 
7.31 

valley 

49.1 
13.6 
13.3 

11.0 
6.78 

2.60 
0.17 
1.87 
0.18 
0.2 1 

99.4 

52.8 
10.8 
1.59 

372. 
90.1 
52. 

119. 
18.6 
1.8 

114.1 
39.3 

128. 
5.7 

23 
3.26 
6.89 

valley 

13.7 
13.4 

11.0 

50.0 

6.78 

2.53 
0.18 
1.88 
0.17 
0.2 1 

99.9 

52.7 
10.8 

1.59 

369. 
86.2 
50. 

18.5 
1.4 

113.7 
393 

130. 
5.5 

120. 

24 
3.21 
7.24 

valley 

50.0 
13.7 
13.5 

11.1 
6.80 

2.58 
0.18 
1.88 
0.19 
0.22 

100.2 

52.5 
10.9 
1.60 

365. 
88.5 
54. 

117. 
19.5 
1.2 

114.4 
39.9 

128. 
5.4 

24 
3.21 
7.39 

valley 

50.0 
13.6 
13.4 

11.0 
6.77 

2.57 
0.18 
1.88 
0.19 
0.21 

99.8 

52.7 
10.9 
1.61 

364. 
86.0 
50. 

119. 
19.6 
1.7 

114.2 
40.7 

133. 
5.2 

26. 
3.27 
7.83 

valley 

49.7 
13.7 
13.4 

11.0 
6.74 

2.69 
0.18 
1.89 
0.18 
0.21 

99.7 

52.5 
10.9 
1.62 

368. 
89.4 
50. 

121. 
18.9 
2.1 

114.3 

132. 
40.8 

5.5 

24. 
3.74 
7.42 

wall'? 

49.7 
13.4 
14.0 

11.1 
6.58 

2.44 
0.17 
2.06 
0.20 
0.22 

99.9 

50.8 
11.4 

1.73 

398. 
95.7 
51. 

127. 
19.1 

1.3 
99.2 
44.7 

139. 
4.8 

29. 
3.1 1 
9.31 

wall 

49.9 
13.5 
13.8 

10.7 
6.32 

2.56 
0.2 1 
2.1 1 
0.26 
0.23 

99.6 

50.3 
11.2 
1.77 

318. 
112. 
49. 

131. 
20.3 
2.4 

109.3 
53.3 

187. 
6.4 

29. 
3.51 
8.33 

Major element data of fresh niicrucrystalline samples were obtained by X ray fluorescence analysis (XRF) of fused glass discs, prepared by fusing the sample with a lanthdnUm-bedring lithium borate 
fusion mixture at the University of Massachusetts, Ronald B. Gilmore Memorial Laboratory. Trace elements (Tio,, V, Cr, Ni. Zn, Ga, Rb, Sr, Y, Zr, and Nb) were determined by XRF analyses on 
pressed powder pellets. Detection limits and precision (in ppm) for the trace element analyses are 0.7 and 0.5 for Nb, 0.7 and 1 for Zr, 0.5 and 2 for Sr, 3 and 1 for Zn, 3 and 3 for Ni, 3 and 5 for Cr, 4 
and 5 for V, and 0.005 and 0.02 (wt Ou) for Tio,. 

TMg # = atomic proportion Mgí(Mg 4- Fe). 
$Calculated F e 0  = (0.9 Feo*). 
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Fig. 4. Variation diagrams for major and minor element compositions of host lava from the southern Juan de Fuca 
Ridge. Data from the Galapagos spreading center (GSC) are included for comparison. (a) Plot of Tio, versus FeO*/MgO 
shows the narrow range in composition at the lower end of the ferrobasalt field of the Juan de Fuca Ridge basalt data 
from this study superposed on the wide range in compositions from the Galapagos spreading center differentiation suite 
[Byerly et al., 1976; Fornari et al., 19831. (b) Plot of Ca0  versus MgO shows the trend of decreasing C a 0  with decreasing 
MgO due to crystallization of olivine, clinopyroxene, and plagioclase. Juan de Fuca Ridge data from this study exhibit the 
same trends as the Galapagos spreading center data [Clague et al., 1981; Foritari et al., 19831 but are more limited in 
extent of differentiation. (c) Plot of P,O, versqs K,O for Juan de Fuca Ridge data from this study compared to Galapagos 
spreading cedter data [Clague et al., 19811. The ratio of two incompatible elements should be indicative of the source 
regions. Data from Galapagos spreading center at 85"W, Galapagos spreading center at 95"W, and Juan de Fuca Ridge 
(this study) define linear but distinct trends suggesting differences in the source regions. Data from the axial valley form a 
tight cluster in Figures 4b and 4c. Data from the valley walls are more scattered. 

from the Galapagos spreading center. Galapagos spreading 
center lavas from near 95"W and 86"W exhibit decreasing 
P,05, Tio,, V, and Zn contents at very high FeO*/MgO 
ratios; these trends are consistent with late stage fractionation 
of apatite and titanomagnetite. Lavas from the southern Juan 

0.4 
GSC 85"W 

Juan de Fuca Ridge 
4 0.3 

(FI 

4 
o" 0.2 a" 

0.1 

O 
O o. 1 0.2 0.3 

K20 
Fig. 4c 

de Fuca Ridge are more fractionated than normal MORB but 
show a more restricted compositional range than lavas from 
the Galapagos spreading center and do not appear to have 
reached saturation with titanomagnetite or apatite. 

These major element trends for the Juan de Fuca samples 
can be modeled by fractionation of plagioclase, clinopyroxene, 
and lesser olivine as described by Clague and Bunck [1976]. 
Fractionation, however, may not be a unique solution. Mixing 
of relatively primitive magmas with extremely evolved 
magmas residing in the subaxial chamber can produce nearly 
identical major element geochemical trends. The role of 
mixing will be developed later in the paper. 

The Sr isotopic data [Eaby et al., 19841 and the trace and 
minor element ratios discussed above indicate that these lavas 
from the southern Juan de Fuca Ridge are derived from a 
relatively depleted source region. Several other samples from 
this section of the ridge have rare earth patterns that are 
depleted in light rare earth elements, as one might expect 
based on the other trace element and isotopic data. These 
samples have chondrite-normalized La/Sm of 0.674.75 [Sclzill- 
ing et al., 19821, similar to the 95"W Galapagos spreading 
center source which has chondrite-normalized La/Sm = 0.67 
[Clagite et al., 19813 and 87Sr/86Sr ratios of approximately 
0.7027-0.7028 [ Verma and Schilling, 19821. In contrast, the 
source region beneath 85"W on the Galapagos spreading 
center has chondrite-normalized La/Sm = 0.46 and 
s7Sr/86Sr = 0.7024-0.7025. We conclude that the source 
region beneath this section of the southern Juan de Fuca 
Ridge is comparably depleted to that at 95"W but is far less 
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Fig. 5. Trace element content as a function of bfgo cnntent for lava from the southern Juan de Fuca Ridge compared 
to data from the Galapagos spreading center [Clayw ct d.. 1981; Perjir t't al.. 19831. Lines are drawn hy eye. Trace 
element contents of samples from the axial valley form a tight cluster. while trace element contents of samples from the 
axial walls define the extremes of the enclosed fields. 

depleted than that a t  85'W on the Galapagos spreading 
center. The source regions underlying the Juan de Fuca Ridge 
and near 95"W on the Galapagos bpreading center. although 
comparably depleted ln terms of L q S m  and "'sr, ?Sr. are not 

identical ln that Juan de Fuca Ridge source has higher abun- 
dances of Sr and Na. 

Differences ln trace element ratios [Clngrt. et C I / . ,  1981; 
LeRncv er al.. 19831 for the axial \alley and axial \allei \\all 
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samples indicate that the older valley wall lavas were derived 
from a more depleted source than the younger valley floor 
lavas. This observation suggests that the source regions for 
Juan de Fuca MORB may be heterogeneous on a time scale of 
thousands to tens of thousands of years. 

I? 
XENOLITHS 

Xenoliths comprise <<l% of the dredge contents. They 
range in size from 1 cm3 (glomerocryst) to 240 cm3 (Figures 7a 
and 7b). Xenoliths commonly occur near the upper glassy sel- 
vage and along fractures of the sheet and lobate flow frag- 
ments. The common occurrence of xenoliths on fracture sur- 
faces suggests that a mechanism such as differential contrac- 
tion during cooling between the host lava and the xenolith 
created strain that induced fracturing. 

On the basis of texture and mineralogy, xenoliths have been 
subdivided into three types : type I : medium-grained; plagio- 
clase + olivine + glass; type II: medium-grained; plagio- 
clase + augite * olivine + glass; and type III: medium- to 
coarse-grained; plagioclase + augite + olivine -1- inverted 
pigeonite & Fe-Ti oxides + glass. All xenoliths have small vol- 
umes (< 1%) of sulfide globules. 

The following sections describe the textures and phase 
chemistry of each xenolith type. Compositions of plagioclase, 
olivine, pyroxene, oxides, and interstitial glass are given in 
Tables 3,4, 5, 6, and 7 and shown in Figure 6, 8, and 10. Glass 
inclusion data (Tables 8 and 9 and Figure 11) will be discussed 
separately. Modal compositions of xenoliths are shown in 
Table 10. 

'4 

'i 

'h 

*a 

Type I Xenoliths 
Three small (< 1 cm3) olivine plus plagioclase xenoliths 

were found. Xenoliths 5-17, 17-7, and 17-12 are open-textured, 
medium-grained hypidiomorphic interstitial gabbros. Type I 
xenoliths are a loose cluster of crystals with olivine (up to 3 
mm in length) subophitically enclosing or interstitial to euhe- 
dral plagioclase (up to 3 mm). Mineral grains are fresh and 
have not reacted with the surrounding melt. A rim of variolitic 
cystallization formed upon quenching around plagioclase. 

Plagioclase occurs as weakly zoned laths having the same 
compositional range as the microphenocrysts in the lavas. The 
compositional range in sample 17-12 is An,, to An,, and in 
sample 5-17 is An,, to An,,. The average composition of 24 
analyses is An72.,, slightly more sodic than the average micro- 
phenocryst composition. 

Olivine compositions within each sample are homogeneous; 
the range of olivine compositions in sample 17-7 is Fo,,., to 
Fo,,,, and in sample 17-12 is Fo,,,, to Fo,,.,. These compo- 
sitions are intermediate between compositions of micropheno- 
crysts and olivine in xenolith types II and III. The range of 
compositions in sample 5-17 is Fo,,., to Fo,,.,, which are 
more like those for olivine in type II xenoliths. N i 0  contents 
in type I olivine were not analyzed. 

Interstitial glass (25-30 modal '%O) is compositionally similar 
to the surrounding host glass. FeO/MgO (using F e 0  
= Feo* x 0.9) is 1.62 for the interstitial glass similar to 1.60 
for the host lava. Interstitial glass contains 1.92 wt % Tio,, 
2.58 wt Yn Na,O, and 0.18 wt YO P,O,. 

Type I I  Xenoliths 
Type II xenoliths are composed dominantly of plagioclase, 

augite, and glass. Minor volumes of olivine are present. Sam- 
ples 17-1 and 5-0 (Figure 7a) are representative of type II 
xenoliths and are described in detail below. 

Sample 17-1, the largest open-textured xenolith (240 cm3), 
forms a toe of a sheet flow fragment and is texturally similar 

to glassy, highly porphyritic lava (Figure 74. Euhedral to sub- 
hedral augite, and rarely olivine, poikilitically enclose the 
plagioclase laths to form subophitic clusters. Abundant glass 
inclusions indicate rapid crystal growth. Glass adjacent to 
plagioclase and augite is opaque brown due to variolitic crys- 
tallization. Interstitial glass comprises 50 modal % of the 
xenolith and is pale translucent brown away from the crystal 
grain boundaries. Flow of melt around crystals is indicated by 
variations in color and incipient crystallization (Figure 7 4 .  
The absence of embayed crystals or mineral zonation suggests 
that glass and minerals have not reacted. 

Sample 5-0 is a medium to coarse grained hypidiomorphic 
granular gabbro (Figure 7e). Euhedral plagioclase laths are 
similar in size and morphology to those in 17-1 but exhibit 
slight zoning. Augite oikocrysts are up to 1 cm across. Inter- 
stitial glass (22 modal %) is opaque due to incipient crys- 
tallization. There is no evidence of interaction between xeno- 
lith minerals and the surrounding lava; mineral-glass inter- 
faces are sharp with euhedral crystal forms. 

The majority of the type II xcnoliths consist of subophitic 
to interstitial clusters of plagioclase + augite + glass, smaller 
than (< 1 cm3) but similar to xenolith 5-0. Rare inclusions of 
olivine in augite and vice versa occur, but generally these 
phases are not intergrown. 

Plagioclase laths in type II xenoliths range in composition 
from An,.,, to An,,., and have an average composition of 
An,,,,. Plagioclase in open-textured xenoliths (i.e., 17-1) is 
weakly zoned and shows little variation within a single xeno- 
lith. Plagioclase compositions from more crystalline xenoliths 
have slight normal oscillatory zoning. Early formed plagio- 
clase laths, which are poikilitically enclosed by augite, tend to 
be more Ca-rich than small tabular grains growing adjacent to 
interstitital glass or at the xenolith-host lava boundary. 

Olivine in type II xenoliths occurs as small discrete grains 
at the edge of the xenolith in samples 5-0 and 5-77 or as 
subhedral to anhedral grains subophitically enclosing small 
euhedral plagioclase laths in sample 5-1. These olivine grains 
are unzoned and range in composition from Fo,,,, to Fo,,.,. 

Pyroxene in type II xenoliths occurs as homogeneous oi- 
kocrysts and more rarely as small discrete grains in the inter- 
stitital glass. The dominant compositional trend is one of de- 
creasing Mg, Ca, and Cr and increasing Ti with increas- 
ing Fe content. Oikocrysts range in composition from 
Wo41 .5F%. ,En,,. 7 (sample 4-71 to Wo40.0Fs12.3En47.7 
(sample 17-65). Analyses 11 and 14 in Table 5 are typical of 
most of the oikocrysts. An Fe-enrichment trend is also ob- 
served between oikocrysts and small augite grains in the inter- 
stitial glass or near the xenolith-host lava boundary. Analyses 
of pyroxenes from sample 5-1 (analyses 12 and 13 in Table 5) 
show that the oikocryst has 100 x Fe/(Fe + Mg) ratio of 15.9, 
while a small grain in the interstitial glass has a ratio of 21.5. 
The more differentiated composition of late forming pyroxene 
is also observed in samples 5-0 and 5-13. 

Interstitial glass compositions in type II xenoliths define 
Fe-enrichment trends with increased crystallinity of the xeno- 
liths. Compositions range from similar to the host lava 
(FeO/MgO (using F e 0  = Feo* x 0.9) ratio is 1.67) to more 
differentiated than the host lava (FeO/MgO ratio is 2.59). 
Tio, content ranges from 1.90 to 2.65 wt %. Na,O content 
ranges from 2.67 to 3.28 wt 'YO. P,O, content ranges from 0.20 
to 0.33 wt 'Yo. K,O content ranges from 0.18 to 0.33 wt %. 
Chemical variation trends defined by the interstitial glass are 
similar to trends observed in the host glass but extend to more 
evolved compositions. Figures 8a and 8b show increasing 
Tio, with decreasing Mg number and increasing PzO, and 
K,O at essentially the same P 2 0 , / K , 0  ratio. 
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Type I I I  Xenolith 

Type III xenoliths are generally coarser-grained. more crys- 
talline, and mineralogically more evolved than types I and II. 
The most crystalline type II1 xenoliths are characterized by 
zoning in plagioclase and augite, a wide range of grain sizes, 
intricate intergrowth textures, and random mineral grain 
orientation. Type III xenoliths have reacted with the host melt 
more than the other xenolith types. Samples 26-1A, 5-7A, 
5-7B, and 5-8B are typical of type III xenoliths (Figures 7h, 7f; 
7g. and 711). 

Sample 26- 1 A is a medium-grained hypidiomorphic granu- 
lar intersertal gabbro. Grain sizes range from 0.1 to 6 mm for 
plagioclase, 0.3 to 3 mm for olivine, and 0.2 to 5 mm for 
augite. The texture is more equigranular than other type III 
xenoliths. Mineral grains have no preferred orientation. 
Plagioclase is subhedral to euhedral. Larger grains exhibit 
slight optical zonation. Although normal zonation is most 

common, rare oscillatory zonation is also present. Olivine and 
augite appear to have crystallized simujtaneously. Crystal- 
mesostasis interfaces are sharp. 

Samples 5-7A and 5-8B are coarse-grained hypidiomorphic 
granular olivine gabbro. In sample 5-7A olivine is the main 

continuous subhedral grains. Olivine and augite subophiti- 
cally enclose plagioclase but do not enclose each other. Larger 
plagioclase grains are subhedral because of impingement of 
cocrystallizing olivine. Only 1 modal "6 interstitial glass re- 
mains. In sample 5-8B, augite is the main oikocryst phase 
which subophitically encloses plagioclase (up to  1 cm in 
length). Augite and plagioclase exhibit intricate intergrowth 
textures (Figure 9a), indicating simultaneous growth. Normal 
and oscillatory zoning occurs in the larger plagioclase grains. 
In .5-7A and 5-8B the larger augite grains 'exhibit optical 
zoning. Interstitial glass comprises 3 modal O,,:Augite has no 
exsolution lamellae of orthopyroxene, but minute exsolution 

oikocryst phase and occurs as large (5 mm across). optically I 

TABLE 3u. Plagioclase Analyses 

Microphenocrysts Type I Type II 

7 1 I 3 4 5 6 7 8 9 10 11 12 13 14 

Sample 4-35 
Comment? max 

4-35 8-2 8-2 5-7.4 17-12 17-12 5-0 5-0 
min maa min max min core midway 

5-0 
rim 

5-0 
small 
in gm 

51.5 
30.4 

13.6 
0.54 

3.91 
0.03 

100.0 

5-0 
small 
in aug 

50.4 
31.1 

14.4 
0.53 

3.41 
0.04 

99.9 

5-13 5-13 
small small 
in gm in aug 
49.4 50.2 
30.7 30.5 

14.5 13.9 
0.75 0.61 

3.24 3.40 
0.02 0.04 

98.6 98.6 

SiO, 47.6 
AI,O, 32.7 
Fe0 0.38 
Ca0  17.4 
N a 0  1.79 
K,O ... 
Tot al 100.9 

51.0 49.4 51.9 50.0 47.4 51.1 50.8 50.8 
30.6 31.6 29.0 31.3 32.8 30.4 31.1 30.9 

14.7 16.0 14.5 14.9 17.9 13.9 14.2 14.0 
0.51 0.13 0.48 0.52 0.44 0.49 0.41 0.52 

3.177 2.57 3.43 3.11 1.60 3.68 3.55 3.66 
... 0.04 ." . ' .  0.03 0.02 ... ... 

100.2 ino.0 100.3 99.9 100.2 99.6 100.1 99.9 

51.0 
31.2 
0.65 

3.56 
0.04 

14.3 

100.8 

Clirions per Æonnula Unit 
2.290 2.180 2.340 2.316 
1.687 1.779 1.639 1.670 
0.020 0.017 0.019 0.016 
0.731 O.XX2 0.682 0.691 
0.276 0.144 0.324 0.313 
0.002 " ' " 0.001 

5.006 5.002 5.004 5.007 
72.5 86.0 67.8 68.8 

~ y p e  ri 

2.3 12 
1.667 
0.025 
0.693 
0.313 
0.002 
5.012 
68.8 

1.348 2.302 
1.631 1.677 
0.021 0.020 
0.664 0.707 
0.346 0.303 
0.002 o.in2 
5.012 5.011 

65.6 69.9 

2.293 2.322 
1.679 1.661 
0.039 0.024 
0.719 0.687 
0.292 0.305 
0.001 0.002 
5.013 5.001 
71.0 69.1 

Si 2.192 
Al 1.777 

2.316 
1.644 
0.019 
0.718 
0.290 
... 

4.997 
71.2 

7.263 2.382 
1.707 1.568 

0.785 0.711 
0.226 0.303 

0.017 o.ni9 

. . .  .. 

4.998 4.986 
77.6 70.2 

2.321 
1.661 
0.020 

0.324 
0.001 
5.01 1 

0.684 

67.8 

Fe 0.014 
Ca 0.858 
Na o. 1 60 
K 
Total 5.001 
An llo 84.3 

... 

15 16 17 18 19 20 21 LA 7 9  23 24 25 26 27 28 

Sample 5-77 
Comment? large 

in gm 

sio, 50.7 

Fe0 0.60 
C a 0  11.3 

K 2 0  0.04 
Totd 98.6 

AI20 ,  29.8 

Na,O 3.25 

5-77 
small 
in gm 

50.4 
30.0 

13.7 
0.68 

3.51 
0.04 

98.4 

17-1 
large 
in gl 

50.6 
29.9 

13.4 
0.58 

3.67 
0.07 

98.2 

17-1 
small 
in gl 

50. 1 
32.1 

14.6 
0.60 

3.19 
0.03 

100.6 

17-1 
large 

in aug 

50.4 
30.2 

13.7 
0.62 

3.65 
0.02 

98.6 

17-1 
Smdll 
in gl 

49.9 
30.4 

14.1 
0.53 

3.38 
0.03 

98.4 

17-4 
core 

in aug 

50. I 
30.9 
0.55 
14.1 
3.3s 
0.03 

99.0 

17-4 
small 
in aug 

49.5 
30.7 

14.9 
n.60 

2.98 
0.03 

98.7 

17-4 
small 
in aug 

49.1 
31.0 

14.9 
0.60 

2.87 
0.03 

98.5 

17-65 
small 
in aug 

51.3 
29.6 

13.0 
0.56 

3.95 
0.05 

98.5 

17-65 
small 
in gm 

52.3 
28.9 
0.60 

12.7 
4.34 
0.05 

98.9 

17-65 
small 
in aug 

51.5 
29.5 

12.9 
0.57 

4.14 
0.05 

98.6 

17-66 
small 
in gl 

51.2 
30.6 

13.5 
0.59 

3.58 
0.03 

99.6 

17-66 
small 
in gl - 
50.5 
30.6 -, 

b 

0.56 

3.30 
0.04 

14.3 

99.3 

Clition5 pcr Forniulu LinIr 
2.332 2.316 2.307 2.294 
1.647 1.662 1.679 1.678 
0.024 0.020 0.021 0.023 
0.677 0.701 0.696 0.738 
(1.327 0.304 0.299 0.268 
0.u01 0.002 0.002 0.002 

5.008 5.00s 5.00~ 5.003 

67.4 69.6 69.8 73.2 

2.28 1 
1.696 
0.023 
0.740 
0.158 
0.002 

5.000 

74.0 

7.405 
1.565 
0.023 
0.624 
0.387 
0.003 

5.007 

61.5 

2.374 
1.603 
0.022 
0.639 
0.370 
0.003 

5.007 

63.1 

2.340 2.319 
1.647 1.657 
0.022 0.022 
0.668 0.706 
0.317 0.294 
0.002 0.002 

4.996 5.OOo 
67.7 70.5 

Si 
Al 
Fe 
Ca 
Na 
Ii 

Total 

An ' ' I t  

2.344 2.338 
1.622 1.639 
0.023 0.027 

0.291 0.320 
0.ow o ou2 

0.708 0.677 

4 . 9 ~  5.003 

70.7 67.8 

7.348 
1.632 
0.023 
0.666 
0.330 
ï).O04 

5.003 

66.6 

2.273 
1.719 
0.023 
0.71 1 
0.281 
0.00' 

5.(109 

71.5 

2.369 
1.611 
0.022 
0.645 
0.354 
0.003 
5.004 

b4.4 
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TABLE 3a. (continued) 

3805 

Type III 

29 30 31 32 33 34 35 36 37 38 39 40 41 

8 Sample 
Commen tt 

r 

17-66 11-69 
small Ig 
in gl , in gm 

51.1 50.5 
30.5 30.2 

13.9 13.9 
0.57 0.54 

3.48 3.53 
0.04 0.05 

99.6 98.7 

17-69 
small 
in gm 

50.3 
30.5 
0.57 

5-7A 
core 
large 
50.8 
30.9 

14.3 
0.63 

3.53 
0.03 

100.2 

5-IA 5-7A 5-7A 5-IA 
small small core core 
center edge edge center 

50.5 52.9 49.7 49.9 
31.2 28.1 30.6 30.4 

14.4 11.8 14.1 14.0 
0.43 0.67 0.62 0.64 

3.51 4.62 3.27 3.46 
0.03 0.17 0.06 0.04 

100.1 98.3 98.4 98.4 
Cations per Fornida Unit 

2.303 2.441 2.307 2.317 
1.679 1.531 1.675 1.658 
0.016 0.026 0.024 0.024 
0.702 0.585 0.701 0.699 
0.311 0.413 0.295 0.312 
0.002 0.010 0.003 0.002 

5.013 5.006 5.005 5.012 

69.2 58.0 70.2 69.0 

5-8B 5-8B 
core rim 

center center 

51.1 52.9 
30.8 29.1 

13.9 11.9 
0.60 0.68 

3.61 4.60 
0.04 0.09 

100.0 99.3 

16-7.4 
small 
in gl 

55.3 
21.5 

12.1 
0.66 

4.78 
0.08 

100.4 

26-1A 
small 
in gl 

50.4 
29.9 

13.2 
0.66 

3.93 
0.05 

98.1 

26-1A 
small 
in aug 

49.0 
31.1 

14.4 
0.65 

3.05 
0.07 

98.3 

Ca0  
Na,O 
K,O 
Total 

14.2 
3.21 
0.04 

98.9 

Si 
Al 
Fe 
Ca 
Na 
K 

Total 
An TO 

2.337 2.332 
1.644 1.645 
0.022 0.021 
0.683 0.688 
0.308 0.316 
0.002 0.003 

4.996 5.005 

68.8 68.3 

2.322 
1.658 
0.022 
0.700 
0.293 
0.002 

4.997 

70.5 

2.317 
1.658 
0.024 
0.699 
0.312 
0.002 

5.012 

69.0 

2.328 2.416 
1.655 1.568 
0.023 0.026 
0.679 0.583 
0.319 0.408 
0.002 0.005 

5.006 5.006 

67.9 58.5 

2.495 
1.461 
0.025 
0.583 
0.418 
0.005 

4.987 

58.0 

2.341 
1.639 
0.025 
0.655 
0.354 
0.003 

5.017 

64.7 

2.280 
1.706 
0.025 
0.716 
0.275 
0.004 

5.006 

72.0 

tmax, min refer to maximum and minimum An content; core, rim refer to location within large zoned grains; center, edge refer to location 
within xenolith; gm = groundmass; aug = augite; gl = glass; large = >4 mm; small = <2 mm. Microprobe data for plagioclase were 
obtained using an ARL-EMX three-channel microprobe and reduced using the matrix correction program of Fram 72 [Beeson, 19671. U.S. 
Geological Survey standards used in analysis of plagioclase were Amelia Albite for Na; Crystal Bay Bytownite for AI, Si, Ca; K-spar 2 for K; 
and Fayalite for Fe. Sample current was 15 nA and counting time was 60 s. 

Samples 5-7B and 16-7A consist dominantly of plagioclase 
and augite in a loose cluster of crystals. Pigeonite, found only 
during microprobe analysis, has not inverted and is optically 
continuous with adjacent augite. Minerals in these two sam- 
ples have moderately differentiated compositions and exhibit 
zoning and evidence for reaction with the host melt. Zones of 
abundant glass inclusions occur between augite with different 
extinction angles and were probably trapped between inter- 
growing crystals. 

Olivine in type III xenoliths is coarser-grained and more 
iron-rich than microphenocrysts in the host lava and olivine 
in xenolith types I and II. The average composition is Fo,,.,. 
Olivine in samples 26-1A occurs as small (< 1 mm) discrete 
grains with an average composition of Fo,,.,. Olivine in 
sample 17-3 occurs as two small grains at the edge of the 
xenolith with composition of Fo,,,,. Olivine in sample 5-7A 
occurs as large (5 mm) optically continuous subhedral grains 
and has the widest range in composition. Compositions of the 
cores of the large olivine grains range from Fo,,., to Fo,,.,. 
One olivine has a slight zonation from core ( F O , ~ . ~ )  to rim 
(FO,,,~). The most iron-rich olivine (Fo,~,,) occurs in sample 
16-7B, a xenolith similar to 5-7A. Cao-contents range from 
0.23 to 0.33 wt % and are lower than C a 0  contents of micro- 
phenocrysts and olivine in type II xenoliths. 

Plagioclase in type III xenoliths is coarser-grained and 
more complexly zoned than plagioclase in type I and II xeno- 
liths. There is broad compositional overlap between type II 
and III plagioclase. The average composition of 10 plagioclase 
analyses is An,,.,. In general, increasing iron enrichment in 
the interstitial glass is accompanied by decreasing An content 
in the plagioclase. 

Plagioclase in sample 26-1A ranges in composition from 
An,,., to An,,,,. Two large plagioclase grains enclosed in 
olivine in sample 5-7A have An contents of 69.0 and 70.2%. 

lamellae of oxides occur along grain boundaries. Partially in- 
verted pigeonite occurs as an interstitial phase; remnant cores 
of pigeonite are surrounded by coalesced blebs of augite in a 
host of orthopyroxene. Figures 9b, 9c, and 9d shows the 
blebby exsolution texture. Anhedral titanomagnetite and il- 
menite occur in the interstitial glass and as isolated interstitial 
phases (Figures 9e and 9f). Fe-Ti oxides do not show optical 
exsolution. 

The presence of subtle planar extinction discontinuities in 
olivine and melt-filled fractures that crosscut mineral grains 
indicates that these xenoliths have been deformed (Figures 9g, 
9h, and 99. The mesostasis-xenolith interface, along both the 
xenolith edge and melt-filled fractures, is more jagged indicat- 
ing reaction with the melt. Plagioclase appears to have reacted 
with the host melt more than augite or olivine and commonly 
has a sawtooth appearance caused by fingers of melt intruding 

4 the plagioclase (Figure 9h). 
h 

TABLE 3b. Summary of Plagioclase Compositions 

b4 Xenoliths 
Micro- 

phenocrysts I II III 

Number 

Sioz 

Fe0 
C a 0  
Na,O 
K2O 
Total 
Average An TO 
Range An ‘YO 

analyzed 

ALO, 
49.7 
31.1 

15.6 
0.53 

2.92 ... 

99.9 

74.5 
70-84 

50.0 
30.9 

15.0 
0.55 

3.10 ... 
99.6 

72.8 
68-86 

50.6 
30.5 

14.0 
0.58 

3.51 
0.04 

99.2 

68.6 
61-74 

51.3 
30.0 

13.4 
0.62 

3.84 
0.07 

99.2 

65.1 
58-12 
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TABLE 4a. Representative Olivine Analyses 

Microphenocrysts Type I Type II Type III 

1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 

Sample 5-7 
Number (3) 

SO,  39.5 

analyzed? 

Fe0 18.6 
MnO 0.30 
MgO 41.8 
Ca0 0.44 
N i 0  0.16 

Total 100.8 

Si 1.002 
Fe 0.394 
Mn O.UO6 

g 1.580 
Ca 0.0 12 
Ni 0.003 

Total 2.997 

Fo"u 80.0 

(hlgO FeOjL* 0.67 
D 0.25 
Fe0 Feo* 0.84 

8-2 
13) 

39.8 
15.7 

43.6 
0.26 

0.46 
0.16 

100.0 

1.005 
0.33 1 
0.006 
1.638 
0.0 1 3 
0.003 

2.996 

83.2 

0.83 
0.25 
0.76 

17-1 26-1 5-17 17-7 17-12 5-1 5-77 5-0 
(II I11 (4) (3) (2) (3) (2) (3) 

40.1 39.7 39.8 39.3 40.3 37.2 37.0 36.5 
17.5 17.5 24.5 19.8 19.2 24.9 24.9 24.5 

42.0 41.6 35.3 40.4 39.8 37.3 37.5 31.6 
0.29 0.28 0.37 0.30 0.28 0.39 0.39 0.38 

0.55 0.52 ' . .  ... ... 0.35 0.34 0.36 
0.14 0.13 0.15 0.17 0.17 

100.6 99.7 100.1 99.9 996 100.2 100.3 99.5 

Cations per Forimila Unit 
1.013 1.012 1.040 1.010 1.031 0.980 0.977 0.971 
0.370 0.373 0.536 0.426 0.411 0.549 0.548 0.545 
0.006 0.006 0.008 0.007 0.006 0.009 0.009 0.009 
1.580 1.580 1.375 1.545 1.519 1.468 1.478 1.492 

I1.010 0.010 0.010 0.015 0.014 ". 
0.003 0.003 ' " ... ... 0.004 0.004 0.004 

2.987 2.988 2.961 3.010 2.969 3.020 3.026 3.031 

. . .  ... 

81.0 80.9 72.0 78.4 78.7 72.8 72.9 73.2 
O/ii*ine-,Ve/t Equilihriu Calcidurions [Roedev. 19 74]$ 

0.72 0.71 0.43 0.61 0.62 0.45 ... 0.46 
0.24 0.13 ... 0.27 0.26 0.27 . ' .  0.28 
0.78 0.77 ' ' ' 0.90 0.89 0.89 " '  0.93 

S I A  
(1) 

37.5 
23.2 

38.7 
0.36 

0.33 
0.19 

100.3 

0.980 
0.508 
0.008 
1.511 
0.009 
0.004 

3.020 

74.8 

0.50 ... 
... 

S I A  
(1) 

38.9 
26.3 

36.2 
0.40 

0.24 
0.19 

100.2 

0.980 
0.585 
0.009 
1.43.5 
0.007 
0.004 

3.020 

71.0 

0.41 ... 
... 

17-3 
(3) 

36.7 
27.4 

35.5 
0.44 

0.33 
0.18 

100.6 

0.978 
0.608 
0.0 1 0 
1.413 
0.009 
0.004 

3.022 

69.9 

0.39 
0.26 
0.87 

1 
26-1A 16-7B 

(3) (3) 

37.1 37.6 
25.9 31.0 
0.40 0.44 

36.5 30.5 
0.33 ... 
0.19 0.08 

100.4 99.6 

0.981 1.023 
0.571 0.704 
0.w 0.010 
1.446 1.237 
0.009 ... 
0.004 0.002 

3.020 2.976 

71.7 63.7 

0.43 0.30 
0.29 ... 
0.98 ... 

Microphenocrysts from host ]aba; Type I. 11. and III refer to xenoliths. Olivine data were obtained using an ARL-SEMQ automated 
nine-channel microprobe and reduced using the matrix correction program of Beiice arid .4lbet. C1968). Standards used in the analysis of olivine 
were San Carlos oliline for Mg and Si: fayalite for Fe and Mn: and a synthetic Ni-doped diopside. Sample current was 20 nA. Backgrounds for 
Ni0 were calculated by hand using a mean atomic number method based on synthetic Ni-free fayalite and Foq7,, from marble. 

?Averaged analyses vary less than 0.5 Fop" (la). 
$Calculations use host glass compositions with microphenocrysts and intersertal glass compositions with xenoliths. 

Plagioclase in sample 5-8B shows complex zoning: a large. 
normally zoned plagioclase has a core composition of An,,,, 
and rim composition of An,,,,. Small plagioclase grains in the 
interstitial glass in samples 5-7A and 16-7A have the most 
sodic compositions (An58.,l) and reflect the more differentiated 
composition of the residual liquid. Intergrowths of plagioclase 
grains commonly have zones of abundant glass inclusions at 
the grain boundaries. 

Pyroxene in type III xenoliths occurs as augite, magnesian 
pigeonite. and orthopprosene. Sample 26-la contains only 
augite that is fairly equigranular and compositionally homo- 
geneous. Compositions range from W O , , ~ , F ~ , ~ , , , E ~ , , ~ ~  to 
Wo,,,,Fs, ].,En,, ... Large augite oikocrysts in samples 5-7A 

TABLE 4h. Summary of Olivine Compositions 

Xenoliths 
Micro- 

phenocrjsts I I I  111 

Num her 
analyzed 

SiOL 
Fe0 
hlnO 

Ca0 
N i 0  

Total 
Arerage Fo 
Range Fo t ' r ,  

MgO 

117) 

39 8 
17.5 
0 18 

42.5 
0.49 
0.15 

100.7 

81.1 
79-83 

13) 

39.8 
21.2 

38.5 
0.32 

. . .  

99.8 

76.4 
72-79 

36.9 37.3 
24.8 27.2 

37.5 35.0 
0.39 0.42 

0.35 0.31 
0.16 0.19 

1 CX,. 1 100.4 

73.0 69.6 
72-74 64-75 

and 5-8B become more iron-rich toward the margins. 
Cores of augite oikocrysts have ;i compositional range of 
Wo,,,,Fs,> -En4q.i to Wo,,.,Fs, l,9En,q,c, with augite in 5-8B 
slightly more iron-rich than augite in 5-7A. Core compositions 
are similar to augite compositions in 26-1A. 
Points near the edge of an augite oikocryst in sample 
5-7A are W O ~ ~ , ~ F S ~ ~ , ~ E ~ ~ ~ , ~  and in sample 5-8B are 

Augite in sample 5-7B is iron-rich with a core composition 
of W O ~ ~ , ~ ~ F ~ , , , , E ~ , , , ~  and a margin composition of 
Wo,,,,Fs,-~,En,,~, (analysis 7 in Table S). A small grain of 
pigeonite in sample 5-7h has a composition of 
Wo,,5Fs2,,,,En,,5,5 and is optically continuous with the adja- 
cent augite. Augite and pigeonite compositions in sample 
16-7'4 are similar to those in sample 5-7B. A similar oc- 
currence of augite and pigeonite as single crystals and as alter- 
nating sectors in complesly zoned phenocrysts has been re- 

spreading center near 95-W. 
Primary pigeonite, partially inverted to host-lamellae pairs 

of orthopyroxene and augite. occurs as an interstitial phase in 
5-7A and 5-8B. Remnant cores of pigeonite have a compo- 
sitional range of W O , , , F ~ ~ , - E ~ - , , , ~  to Wo9,1F~25.2En65,,. 
These compositions are less iron-rich than pigeonite in sample 
5-7B. Surrounding these cores of pigeonite are areas of host 
orthopyroxene with essolved augite forming blebs microns to 
tens of microns in aidth. Augite blebs have compositions of 
W O ~ ~ . ~ ~ F S , ~ , ~ E ~ ~ ~ , ~  to Wo,,,,Fs,,,,En,,~, in sample 5-7A 
and Wo,,,,Fs,,.,En,,,, to WO,~.,F~,,, ,E~,,, ,  (analysis 19 in 
Table 5) in saniple 5-8B. The exsolved augite has iron contents 
similar to the margins of the large, zoned augite oikocrysts. 

Host orthopyroxene commonly has patchy extinction. 

Wo38,5Fs l~ .4En44,  1. 

ported by Byerly cl9801 in evolved basalt from the Galapagos d& 
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Fig. 6. Pyroxene quadrilaterial and histograms of Fo content in olivine and An content in plagioclase showing the 
sympathetic compositional variation of coexisting mineral phases in the host lava and xenoliths. The pyroxene quadrilat- 
eral on the left shows the large variation of Ca0 content at relatively constant FeO/MgO ratios for the phenocrysts 
(sample 8-2) and microphenocrysts related to rapid cooling. The pyroxene quadrilateral on the right shows the iron 
enrichment trend found in types II and III xenoliths. Magnesium pigeonite and orthopyroxene occur only in type III 
xenoliths. Tie lines connect pyroxene analyses from inverted pigeonite in samples 5-7A, 5-7B, and 5-SA. Histogram of Fo 
content in olivine shows the iron enrichment trend in olivine from host lava and xenoliths. Plagioclase compositions show 
much more overlap than pyroxene or olivine. In general, mineral compositions in types II and III xenoliths overlap, but 
minerals in type III xenoliths have a wider range in composition, extending to more differentiated compositions. 

Ranges in composition in sample 5-7A are W O , . , F ~ ~ ~ ~ ~ E ~ , , . ,  
(analysis 22 in Table 5) to WO,.~FS,,,,E~~,~, (analysis 24 in 
Table 5) and in sample 5-8B are W O ~ , ~ F S , , ~ , E ~ , , . ~  to 
Wo4,3Fs32,4En63.3 (analysis 26 in Table 5). One discrete grain 
of orthopyroxene (WO,~~FS,,,,E~~,,,) occurs in sample 5-7A. 
This orthopyroxene grain is adjacent to augite and probably 
represents complete migration of exsolved augite to the 
margin of an inverted pigeonite. Much of the scatter in the 
host-lamellae pair data occurs in the direction of the tie lines 
and probably reflects overlap of the electron beam on fine 
exsolution lamellae. 

Minor element distribution in host-lamellae pairs are simi- 
lar to contents in other terrestrial and lunar inverted pigeon- 
ites [DeVore, 1955, 1957; Brown, 1957; Carstens, 1958; Ghose 
et al., 1973: Walker et al., 19731. Ti, Al, and Cr are partitioned 
into the high-Ca phase, while Mn is partitioned into the 
low-Ca phase (Figure 10). 

Representative analyses of Fe-Ti oxides are given in Table 
6. Table 6 includes calculation methods of Stormer [1983]. 
Andersoiz [1968], Carinichael [1967], and Lindsley and Spencer 
Cl9821 for ulvospinel and ilmenite components, temperature, 
and oxygen fugacity to allow direct comparison of these data 
to data from other studies. Due to the high minor element 
contents (Mn, Mg, Al, and V) in the xenolith oxides, the recal- 
culation method of Stormer is used in the text. 

Irregular grains of Fe-Ti oxides occur within interstitial 
glass and in interstitial locations in samples 5-7A and 5-8B. 
Titanomagnetite and ilmenite occur as discrete or composite 
grains. Titanomagnetite compositions are fairly homogenous; 
ulvospinel component varies from 59.8 to 63.0%. Con- 

’. 

ri ,  

J ?  

centrations of minor elements (Alzo,, 2.51-3.36 wt % ; V,O,, 
0.88-1.30 wt %; MnO, 0.38-0.47 wt %; MgO, 2.82-4.37 wt 
Yo) are similar to minor element contents in titanomagnetite 
phenocrysts in ferrobasalt and andesite from the Galapagos 
Rift [Perft  and Fornari, 19833. 

Ilmenite is more abundant than titanomagnetite and exhib- 
its a wider range in composition. MgO content in ilmenite is 
higher than in coexisting titanomagnetite. Ilmenite compo- 
sitions have been subdivided into ilmenite and high-Mg ilmen- 
ite. Ilmenite (< 7.0 wt % MgO) occurs as isolated grains or as 
composite grains with titanomagnetite. Ilmenite component 
varies from 87.8 to 89.4%, MgO contents range from 3.67 to 
6.89 wt %, and Alzo, ranges from 0.32 to 0.56 wt %. These 
compositions are similar to, but with slightly higher MgO 
contents than, ilmenite from Galapagos Rift lavas [Perft  and 
Fornari, 19831. High-Mg ilmenite has MgO contents of 7.82- 
8.44 wt O h .  High MgO content is accompanied by higher Tio, 
and lower Fe,O, and F e 0  contents. Ilmenite component 
ranges from 89.8 to 93.8% High-Mg ilmenite occurs only as 
isolated crystals, but there is no apparent correlation between 
size of grain; location of grain within the xenolith; sur- 
rounding silicate phases ; presence of adjacent vapor bubble, 
sulphide phase, or glass ; on ilmenite composition. 

Interstitial glasses are more evolved and have a wider com- 
positional range than interstitial glasses in types I or II. 
FeO/MgO ratios (with F e 0  = Feo* x 0.9) range from 2.14 to 
3.38 (see Table 7). Ranges in minor element contents are 
T ioz  ~2.31-4.71 wt %, Na,O =2.9&3.91 wt %, K 2 0  = 
0.21-0.69 wt YO, and P 2 0 ,  = 0.24-1.03 wt YO. CaO/Al,O, 
ratios vary from 0.62 to 0.76. Interstitial glass compositions 
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for sample 5-7A are not reported because of beam overlap on 
incipiently crystallizing titanomagnetite and apatite. 

Glass Inclusions 
Glass inclusions are present in nearly every mineral phase 

and range in size from less than a micron across to more than 
a hundred microns in length. They usually exhibit negative- 
crystal shapes relative to the host crystal showing that they 
represent small volumes of magma entrapped during the 
growth of the crystal  soh holt^ lind Kostyuk,  1975 ; Roedder. 
19791. 

Compositions of glass inclusions are presented in Table 8 
are plotted on Figure I l t i .  The wide scatter in the glass in- 
clusion data is related to the type of xenolith, the composition 
of the host crystal, and the relative degree of crystallization of 
the inclusion. Glass inclusion compositions define a broad 
trend of increasing differentiation from type T to type III xeno- 
liths. Analyses of glass inclusions and interstitial glass in each 
xenolith type ha\e similar ranges in elemental ratios, with the 
exception of sample 5-1 7, which compositionally resembles 
t>pe II xenoliths. Figure 1 l h  shows the parallel trends, on a 
plot of F e O * C a O  and FeO*/MgO, of data from glass in- 
clusions, interstitial glass, and host lala. Superimposed on this 
trend is the effect of the growth of the host crystal. Crys- 
tallization results in a decrease of Ca0 when the inclusion is 
trapped in plagioclase. a decrease of MgO when trapped in 

olivine, or a decrease in C a 0  and MgO when trapped in 
augite. The distance of the xenolith from the glassy rim of the 
host lava controls the degree of crystallization of the host 
crystal [Clocchiutti, 19801. Thus the xenoliths located farthest 
from the glassy rim have glass inclusion compositions most 
displaced from the MORB fractionation trend. 

The composition of the original trapped liquid may be cal- 
culated, however, by the intersection of fractionation lines of 
the coexisting host minerals on a triangular oxide plot 
[Wutson, 1976; Clocchiutti, 19771. Each Juan de Fuca xeno- 
lith type contains a t  least two different coexisting minerals; 
therefore glass inclusions can be used to  estimate the magma 
composition. These estimated initial compositions are present- 
ed in Table 9. 

Crjatullizurion Sequence 
In general, the crystallization sequence is coherent for the 

entire xenolith suite. The presence of euhedral plagioclase 
grains and its occurrence as inclusions in olivine and augite 
indicate that plagioclase was the liquidus phase for liquids 
from which the xenoliths crystallized. Textural evidence sug- 
gests that olivine and augite began crystallizing essentially 
simultaneously; rare intergrowths of olivine in augite and vice 
versa occur. but olivine and augite more commonly are mu- 
tually exclusive. Compositional evidence suggests that olivine 
may have begun crystallizing slightly earlier than augite be- 

TARLE 5. Representative Pyroxene Analyses 

Phenocrysts hlicrophenocrysts Type II 

1 - 3 4 5 6 7 8 9 10 11 12 13 14 1 

Sample 8-2 S-2 8-2 8-2 8-2 22-34 26-13B 26-13B 26-13B 26-13B 5-0 5-1 5-1 17-1 
Type aug aug aug aug aug aug aug aug aug aug aug aug aug aug 

SIO, 
41,O 
Feo* 
hIgO 
Ca0 
Na,O 
Tioz 
C r 2 0 ,  
hInO 

Total 

SI 
Al 
Fe 
hf E 
Ca 
Na 
Ti 
Cr 
hl n 

Total 

\v o 
En 
F b  

Othcra 
Calculated 
k203 

wo 
En 
Fc 

51.6 
3.63 
5.63 

16.4 
21.1 

0.25 
0.79 
1.15 
0.17 

100.7 

1.880 
0. 156 
o. 172 
0.89 1 
0.824 
0.018 
0.022 
0.033 
0.005 

4.00 1 

38.3 
53.0 
s.7 

12.9 

0.90 

43 7 
47.2 

9. 1 

51.3 
3.54 
5 67 

17.1 
20.0 
(1.23 
0.68 
1 .o0 
0.20 

9Y.7 

1.882 
O 153 
o. 174 
0.935 
0.786 
O.(ll6 
0.019 
0.029 
O.OO6 

4.000 

50.5 
6.45 
5.75 

16.0 
19.3 
0.24 
0.72 
1 .o; 
0.21 

100.2 

1.342 
0.277 
0.175 
0.870 
(1.754 
0.017 
0.020 
0.03 1 
0.006 

3.992 

53.4 51.2 51.8 51.7 52.0 51.6 
1.80 3.83 2.54 2.27 3.51 2.80 
5.77 6.15 7.37 6.65 6.91 7.34 

18.1 17.5 18.3 17.6 17.7 18.8 
19.9 19.0 19.9 20.2 19.2 17.9 

... ... ... 0.20 0.24 ‘.. 
0.52 0.73 ” ’  

0.60 0.96 ” ’  

0.30 0.20 ’ . I  

... ... ... 

... . . .  ... 

... ... ... 
100.5 99.8 99.9 98.3 99.2 98.4 

Cations per Formula Unir 
1.941 1.875 1.891 1.918 1.911 1.907 
0.077 0.165 0.109 0.099 0.152 0.122 
0.175 0.188 0.225 0.206 0.212 0.227 
0.980 0.955 0.996 0.973 0.969 1.036 
0.775 0.745 0.778 0.803 0.756 0.709 
0.014 0.017 . . . . . .  
0.014 0.020 . ‘. 
0.017 0.028 ” ’  

0.006 0.006 ’.’ I ’ .  

3.Y9Y 3.999 3.999 3.9Y9 3.999 4.001 

hf incral Norm LLindslev and .4ndersen. IY831 

... ... 
... ... ... 
... ... ... 

... ... 

36.1 31.4 37.7 
55.5 57.1 53.3 
X.4 11.5 9.0 

12.8 17.6 7.0 

1.21 0.w 0.37 

41.5 41.9 40.1 
49 3 4R.h 50.8 
9.2 9.5 9.1 

33.9 
56.9 
9.2 

13.5 

1.24 

39.4 
50.6 
10.0 

52.7 
1.29 
7.45 

19.0 
18.1 
... 
. . .  
. . .  
. . .  

98.5 

1.949 
0.056 
0.230 
1.047 
0.717 

... 

... 

... 

. . .  

3.999 

33.5 36.1 33.3 30.8 33.3 
59.5 55.5 56.0 59.8 56.7 
7.0 8.1 10.7 9.4 10.0 

10.9 8.2 9.0 9.3 5.1 

3.94 2.31 0.97 2.31 1.65 

Af invrul Norm* 
39.0 40.5 39.11 36.0 36.0 
50.0 49.1 50.0 523 52.5 
11.0 10.4 10.9 11.5 11.5 

52.5 51.9 
2.40 3.08 
6.09 5.99 

17.4 17.4 
20.3 20.4 
0.23 0.25 
0.53 0.55 
0.26 0.41 
0.20 0.23 

99.9 100.2 

1.927 1.901 
0.104 0.133 
0.187 0.183 
0.951 0.952 
0.798 0.798 
0.016 0.018 
0.015 0.015 
0.008 0.012 
0.006 0.007 

4.012 4.019 

38.1 ... 
53.3 ” .  
8.6 ’ . ’  

9.1 12.2 

1.25 2.19 

41.2 41.3 
49.1 49.2 

9.7 9.5 

52.3 53.2 
2.02 2.49 
8.56 6.19 

17.2 17.9 
18.9 20.2 
0.25 0.24 
0.65 0.51 
0.04 0.31 
0.31 0.23 

100.4 101.2 

1.927 1.925 
0.088 0.106 
0.264 0.187 
0.946 0.964 
0.748 0.783 
0.018 0.017 
0.018 0.014 
0.001 0 .09  
0.010 0.007 

4.020 4.012 

35.8 37.2 
52.6 54.4 
11.6 8.4 
9.4 9.5 

1.98 1.38 

38.2 40.5 
48.3 49.8 
13.5 9.7 
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TABLE 5. (continued) 

Type III 

15 16 17 18 19 20 21 22 23 24 25 26 

5 Sample 26-1A 5-7A 5-7B 5-7A 5-8B 5-7A 5-7B 5-7A 5-7A 5-7A 5-8B 5-8B 
Type aug aug auß aug-ex aug-ex pig Pig opx opx opx opx OPX 

SiO, 52.5 
2.18 

L Feo* 6.69 
MgO 17.5 
Ca0 19.7 

Tio, 0.51 
Cr203 0.09 
MnO 0.23 

NazO 0.22 

Total 99.7 

Si 1.934 
Al 0.094 
Fe 0.206 
Mg 0.959 
Cd 0.779’ 
Na 0.016 
Ti 0.014 
Cr 0.003 
Mn 0.007 

Total 4.012 

wo 37.3 
En 53.2 
Fs 9.5 
Others 8.4 

Calculated 1.26 

wo 40.1 
En 49.3 
Fs 10.6 

53.1 
1.83 
6.85 

11.9 
19.6 
0.22 
0.45 
0.09 
0.26 

100.3 

1.941 
0.079 
0.209 
0.978 
0.769 
0.015 
0.012 
0.003 
0.008 

4.014 

37.1 
53.5 
9.4 
7.8 

1.39 

39.3 
50.0 
10.7 

51.8 
2.04 

ii.1 
17.3 
16.7 
0.29 
0.78 
0.09 
0.38 

100.5 

1.918 
0.089 
0.345 
0.954 
0.662 
0.021 
0.022 
0.003 
0.012 

4.026 

... 

... 

... 
10.4 

2.29 

33.8 
48.6 
17.6 

. 51.9 51.8 53.6 
2.16 2.02 1 .00 
9.49 11.7 15.6 

17.7 15.3 24.7 
17.3 18.3 4.33 
0.23 0.30 0.07 
0.75 1.01 0.41 
0.06 0.02 0.03 
0.33 0.40 0.47 

53.4 

17.0 
24.1 

0.86 

4.30 
0.08 
0.35 
0.05 
0.51 

54.9 
1.20 

13.7 
28.0 
2.03 
0.02 
0.61 
0.04 
0.40 

100.0 100.8 100.2 100.6 100.0 

1.921 
0.094 
0.293 
0.977 
0.685 
0.016 
0.021 
0.002 
0.010 

Cations per Formula Unit 
1.925 1.954 1.953 
0.089 0.043 0.037 
0.363 0.474 0.519 
0.845 1.343 1.311 
0.729 0.169 0.168 
0.022 0.005 0.006 
0.028 0.011 0.010 
0.001 0.001 0.002 
0.012 0.015 0.016 

1.943 
0.051 
0.412 
1.500 
0.078 
0.001 
0.016 
0.001 
0.012 

4.019 4.014 4.015 4.022 4.014 

Mineral Norm [Lindsley and Andersen, 19831 
... 36.0 9.8 9.0 4.0 
... 46.4 67.5 66.0 76.0 
... 17.6 22.7 25.0 20.0 
10.0 9.7 5.0 4.6 5.0 

2.07 1.51 0.90 0.80 0.67 

Mineral Norm* 
35.0 37.6 8.5 8.4 3.9 
50.0 43.6 67.6 65.6 75.4 
15.0 18.7 23.9 26.0 20.7 

53.7 

16.3 
26.0 

0.82 

2.07 
0.03 
0.33 
0.04 
0.44 

99.7 

1.961 
0.035 
0.498 
1.412 
0.081 
0.002 
0.009 
0.001 
0.914 

4.013 

4.2 
71.6 
24.3 
4.0 

0.66 

4.1 
70.9 
25.0 

53.5 

17.8 
25.0 

0.76 

2.34 
0.03 
0.48 
0.03 
0.53 

100.4 

1.956 
0.033 
0.543 
1.360 
0.092 
0.002 
0.013 
0.001 
0.016 

4.0 16 

4.7 
68.4 
27.0 
3.6 

0.28 

4.6 
68.2 
27.2 

53.2 

18.7 
24.2 

0.96 

2.26 
0.03 
0.54 
0.03 
0.53 

lW.5 

1.95 1 
0.042 
0.574 
1.323 
0.089 
0.002 
0.015 
0.001 
0.016 

4.013 

4.6 
67.0 
28.0 
4.4 

0.47 

4.5 
66.6 
28.9 

53.0 

20.8 
22.8 

0.88 

2.16 
0.02 
0.50 
0.03 
0.57 

100.9 

1.955 
0.038 
0.642 
1.256 
0.085 
0.001 
O.Ò14 
0.001 
0.018 

4.010 

4.4 
63.6 
32.0 
4.2 

0.40 

4.3 
63.3 
32.4 

Analysis 12 from core or oikocryst; 13 from small grain at edge of xenolith; analyses 18,23 and 19,25 are host-lamellae pairs. Pyroxene data 
were obtained using a ARL-SEMQ automated nine-channel microprobe and reduced using the matrix correction program of Bence and Albee 
[1968]. Standards used in analysis of pyroxene were synthetic Di-Jd for Si, Ca, Mg, Na, and Al; Tio, for Ti; Cr,O, for Cr; Mn,O, for Mn; 
and fayalite for Fe. Sample current was 20 nA, and counting time was 60 s. 

*Wo = Ca/(& + Mg + Fe); En = Mg/(Cd 1- Mg + Fe); Fs = Fe/(Ca + Mg + Fe). 
taug = augite; aug-ex = exsolved augite; pig = pigeonite; opx = orthopyroxene. 

cause the least evolved compositions are from type I (oli- 
vine + plagioclase) xenoliths. Primary pigeonite occupies in- 
terstitial positions and is a late crystallizing phase. Fe-Ti 
oxides were the last phases to crystallize and occur in the 
interstitial glass or along grain boundaries. 

These observations suggest the following paragenetic se- 
quence for the xenoliths : initial crystallization of plagioclase 
followed by plagioclase i- olivine + augite, plagioclase + 
olivine -Í- augite + pigeonite, and plagioclase -k olivine i- 
augite + inversion of pigeonite f Fe-Ti oxides. After crys- 
tallization of pigeonite and Fe-Ti oxides the xenoliths under- 
went ductile deformation, indicated by subtle kink banding in 
olivine, and brittle fracture, indicated by melt-filled fractures 
crosscutting the most crystalline xenoliths. Quenching of the 
xenoliths in the host lava preserved the different stages in the 
crystallization history. 

The crystallization sequence defined by the xenoliths is 
similar to the sequence found in lavas from the Galapagos 
spreading center at approximately 85”W. Per5t  and Fornari 
Cl9831 found the following crystallization sequence in Gala- 

L 

S C I  

.? 

pagos lavas : initial crystallization of plagioclase i- 
olivine followed by plagioclase + augite + olivine, 
plagioclase i- augite + pigeonite, and plagioclase + 
augite + pigeonite -t FeTi oxides. In the Galapagos lavas, oli- 
vine ceases to crystallize in ferrobasalt containing small micro- 
phenocrysts of pigeonite. The coexistence of olivine and pi- 
geonite in the most crystalline xenoliths reflects the metastable 
assemblage caused by continued differentiation of the residual 
melt during in situ crystallization. The crystallization sequence 
found in the Juan de Fuca Ridge xenoliths and Galapagos 
spreading center lavas differs from results of crystallization 
experiments done on a differentiated sample from the Ocean- 
ographer Fracture Zone [Walker  e t  al., 19791 in the lack of 
chromian spinel as a near-liquidus phase, the occurrence of 
olivine before augite, and the occurrence of magnetite. 

General Mineral Trends  

Figure 6 is a compilation of pyroxene, olivine, and plagio- 
clase data for phenocrysts, microphenocrysts, and xenoliths. 
Figure 8 shows the compositional trends of hot and interstitial 
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Fig. 7. Photographs and photomicrographs of xenoliths in basalt from the Juan de Fuca Ridge. (u) Sample 5-0: 
medium-grained gahbroic xenolith enclosed in aphyric host lava. Black near end of scale har is interstitial glass. ( h )  Sample 
5-7A; type III xenolith exposed on fracture surface of sheet flow fragment. Note sharp textural contrast between aphyric 
host lam and xenolith. (cl Sample 17-1'4: open textured, glassy xenolith. Plagioclase laths (white) are subophitically 
surrounded h> augite. Dark grey is glass. Augite and plagioclase contain ahundant glass inclusions. Plane light. (dl Sample 
17-1.4; c lnwup of tlowzge texture in glass around augite crystal. Plane light. ( e )  Sample 5-0; photomicrograph of section 
cut through sample shown in Figure 7u. Ophitic texture xith augite (light grey with well-developed cleavage) surrounding 
plagiclabe laths (white). SprQJs of plagioclase laths extend into interstitial glass (black, center of photo). Crossed nicols. ( f l  
Sample 26-1.4: medium-grained. fairly equigranular xenolith. Black material in upper left of photo is host lava: black 
material within xenolith I S  interstitial glass. 'Augite (grey) and plagioclase (white and light grel-) are dominant minerals. 
Crossed nicols. (y) Sample 5-7A; coarse-grained type III xenolith. Olivine (light grey with irregular fractures) and plagin- 
clase are the dominant minerals. Pyroxene is 3 darker grey. An inverted pigeonite can he seen just ahove the left end of the 
scale har: Figure 9h is a close-up of this pigeonite. Plane light. ( I I )  Sample 5-8B: coarsed-grained t)pe III xenolith. Large 
plagioclase in middle of photo. .Augite is medium gre) in Inwer half of xenolith. Olivine is light grey with irregular 
fractures in the central upper portion of  the pholo. Close-up of plagioclaie and pSroxene intergrowth texture found in 
upper right edge of photo appears in Figure 90. 
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Fig. 8. Major and minor element variation diagrams showing evolved interstitial glass compositions relative to host 
lava compositions. (a) Tio, versus FeO*/MgO plot shows the increasing Tio, and Feo* cofltents with increasing 
differentiation. (b) P,O, versus K,O plot shows enrichment of incompatible elements in the interstitial melts during 
differentiation. 

glasses. The transition from type I to type III xenoliths is 
marked by sympathetic compositional variation af coexisting 
augite, plagioclase, olivine, and glass. Minerals in the xenoliths 
are more evolved than phenocrysts and microphenocrysts in 
the host lavas. The Fe-enrichment trends defined by analyses 
of mafic phases are similar to trends defined by phenocrysts in 
lavas from the Galsipagos spreading center [Byerly, 1980; 
Perj t  and Fornari, 19831, oceanic gabbros [Miyashiro and 
Skido, 1980: Tiezzi and Scott, 1980; Vanko and Batiza, 1982; 
Hebert et al., 19831, and other tholeiitic intrusions such as the 
Skaergaard [Wager and Deer, 19391, the Stillwater Complex 
[Hess, 19601, and the Bushveld [Truter, 19551. 

Plagioclase shows a less systematic variation between xeno- 
lith types. Plagioclase in type II and type III xenoliths show 
similar ranges in composition but are more sodic than those in 
type I xenoliths or the microphenocrysts. 

Olivine analyses provide the most conclusive evidence that 
the xenoliths formed in equilibrium with melts more evolved 
than the host lavas because olivine-liquid Fe/Mg partitioning 
is independent of temperature [Roeder, 19741. Olivine-melt 
equilibrium calculations for microphenocrysts and host lava 
using = (MgO/FeO)Liq . (FeO/MgO),, [Roeder, 19741 
indicate that the distribution coefficient (Dol-Liq) is approxi- 
mately 0.24 (assuming that all iron is Feo). An assumed distri- 
bution coefficient of 0.30 results in calculated FeO/FeO* 
ratios of 0.74-0.84. Per j t  and Fornari Cl9831 arrived at a 
similar conclusion for olivine phenocrysts from the Galapagos 
spreading center. 

Olivine shows and Fe-enrichment trend from type I to type 
III (Figure 12). In contrast to the host lava-microphenocryst 
equilibria, however, the xenolith olivine-interstitial glass equi- 
libria calculations are consistent with the melt having Feo/ 
Feo* ratio of 0.9 and olivine-melt distribution coefficient of 
approximately 0.30. The higher FeO/FeO* ratios imply that 

the conditions of formation of the gabbros are more reduced 
than the conditions of foimation of the microphenocrysts. 

Pyroxene shows a systematic decrease in Cr,O,, increase in 
Tio,, and slight decrease in Alzo, with increasing Fe/ 
(Fe -t Mg) ratio (Figure 10). These data suggest that the xeno- 
liths are comagmatic. Augite compositions of type II and type 
III xenoliths overlap, but the most Fe-enriched augite occurs 
in a type III xenolith with partially inverted pigeonite. Cdm- 
positions of augite phenocrysts and microphenocrysts do not 
follow the Fe-enrichment trend defined by the different xeno- 
lith types but instead are depleted in Ca   WO^^-^,,) and en- 
riched in Al at relatively constant Fe/Mg ratios. Similar trends 
have been noted in Ca-pyroxenes from DSDP hole 425 
[Mattey and Muir, 19801 and hole 319 [Mazzullo and Bence, 
19761. The Ca depletion trend has been related to kinetic 
effects upon quenching [Natland, 19801. 

Partitioning of Fe0  and MgO between coexking clinopy- 
roxene and glass is shown on Figure 13. Calculated K D  = 
(FeO*/MgO)cpx/(FeO*MgO),,, are 0.21 for phenocrysts-host 
glass pairs and 0.15-0.20 for xenolith pyroxene-interstitial 
glass pairs. Lower KD calculated for the xenaliths imply that 
they formed under more reduced conditions than the pheno- 
crysts, consistent with the olivine data. These values sire lower 
than the 0.26 average value reported for the FAMOUS area 
[Bryan, 19791. 

The occurrence of high Mg contents in ilmenite and the 
existence of such wide ranges of compositions within single 
xenoliths are unusual in an oceanic environment. MgO con- 
tents in oceanic samples rarely exceed 5.5 wt ?" [Hdggerty, 
1976; Bq'erly, 1980; Perf2 and Fornari, 19831. The most influ- 
ential factor controlling ilmenite chemistry is the composition 
of the magma from which it crystallized. Magnesian ilmenite 
is characteristic of kimberlites, where it forms in equilibrium 
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with extremely high MgO melts [Haggerty, 19763. If melt 
composition were the only factor, then ilmenite crystallizing 
from extremely differentiated melt, as is indicated by the sili- 
cate mineralogy in the Juan de Fuca Ridge xenoliths, should 
have low MgO contents. Pinckney and Lindsley [1976] 

increases with decreasing temperature. Ilmenite grains with 
vastly different MgO contents occur within millimeters of one 
another; therefore it is unlikely that temperature differences 
caused a factor of 2 difference in Mg content. The origin and 
significance of the high-Mg ilmenite is unknown. 

Geothermometry and Cooling Rate 
Plagiclase-melt equilibria calculations [Drake, 19761 for 

samples 5-7A and 8-2 indicate that the phenocrysts and 
microphenocrysts in the host lava are in equilibrium with a 
dry melt in the temperature range of 120O0-125O0C. The pres- 
ence of water in the melt increases the An content of plagio- 
clase [Johannes, 19781 and results in calculation of anoma- 
lously high temperatures ; hence the plagioclase-melt equilibria 
temperatures for a dry melt are maximum temperature esti- 
mates, although the low volatile content estimates in normal 
MORB [Delaney et al., 19781 and ferrobasalt [Byers et al., 
1983, 19841 suggest that water in the melt should not have 
significantly affected plagioclase equilibrium. 

Use of the Lindsley [1983] graphical geothermometer for 
augite in type II xenoliths yields estimates of crystallization 
temperatures of 1 10O0-12OO0C. The temperature range for 
phenocrysts and microphenocrysts is 1100"-1300"C; these es- 
timates are not reliable because of quenching control of C a 0  
content. Subsolidus equilibrium temperatures can be esti- 
mated by using coexisting orthopyroxene-augite-pigeonite as- 
semblages found in inverted pigeonite. Compositions of host- 
lamellae pairs in sample 5-8B and 5-7A yield temperature 
estimates of 1100"-1150"C and 1 13OoC, respectively. Nonin- 
verted pigeonite in sample 5-7B also yields a temperature of 
1130°C. High-Fe augite in sample 5-72 gives a temperature of 
1090°C. 

The presence of exsolved Ca-rich pyroxene in pigeonite in- 
dicates slow cooling. The character of exsolution lamellae in 
pyroxene reflect bulk composition, maximum temperature, 
and cooling rate [Robinson, 19801. Inverted pigeonite with 
blebby augite, similar to inverted pigeonite in the Juan de 
Fuca xenoliths, has been called "Kintoki-San type" [Kuno, 

t showed that the preference of Mg for the rhombohedral phase 

*' 

Fig. 9. (opposite) Photomicrographs of textures found in type III 
xenoliths. (u) Sample 5-8B; intergrowth texture of augite and plagio- 
clase. Crossed nicols. (b) Sample 5-7A; blebby exsolution texture in 
inverted pigeonite. Plagioclase is medium grey with albite twinning in 
the upper part of the photo. Orthopyroxene is dark grey in the center 
of the pyroxene. Augite is light grey in the central right of the photo. 
Crossed nicols. (c) Sample 5-8B; blebby exsolution texture in inverted 
pigeonite. Augite is light grey and orthopyroxene is dark grey. Exsol- 
ution more aligned along crystallographic planes than in other 
pigeonites. Crossed nicols. (d) Sample 5-7A; blebby exsolution texture 
in inverted pigeonite. This sample shows the great variability in bleb 
width. A core of pigeonite remains in the upper central part of the 
photo. Crossed nicols. (e) and (f) Samples 5-7A and 5-8B; anhedral 
oxides (white) in interstitial glass (grey). Photomicrographs were 
taken with half reflected and half transmitted light to show position of 
oxides within interstitial glass. (9) Sample 5-8B; melt-filled fracture 
through olivine crystal indicating a stage of brittle deformation. Oli- 
vine has subtle extinction discontinuity which runs approximately 
through the center of the photo. Olivine below the discontinuity is 
slightly darker grey than above: Box defines area of Figure 9i. 
Crossed nicols. (h) Sample 5-8B; melt-filled fracture through augite 
and plagioclase. Augite and plagioclase have started to react with the 
melt. Crossed nicols. (i) Sample 5-8B; close-up of fracture in Figure 
99. Reaction between plagioclase, olivine, and melt can be seen by the 
ragged crystal-melt boundaries. Crossed nicols. 

19661 and has been found in plutonic [Brown, 19571 and hy- 
pabyssal [Zsliii, 19731 environments. Ishii and Takeda [ 19741 
suggest that the blebby texture is produced when pigeonite 
undergoes eutectoidal decomposition into orthopyroxene and 
augite at the temperature of the pigeonite eutectoid reaction 
point. 

Mimimum stability temperatures for pigeonite in the xeno- 
liths can be derived graphically from a plot of minimum sta- 
bility for pure Ca-Mg-Fe pigeonite, relative to augite and or- 
thopyroxene, as a function of X = FeZ+/(Fe2+ + Mg) [Linds- 
ley, 19831 and give an estimate of 1150" & 30°C. The use of 
minimum temperature of stability curves at low pressures of 
natural pigeonite, instead of pure Ca-Mg-Fe pigeonite [Ross 
and Huebner, 19791, results in a slightly higher estimate of 
1180°C. A minimum temperature of stability of approximately 
1150°C is consistent with subsolidus temperatures of 1100"- 
1150°C for orthopyroxene-augite pairs in inverted pigeonite. 

Inverted pigeonite with blebby exsolution of augite occurs 
in a two-pyroxene gabbro recovered at DSDP site 334. Pi- 
geonite from site 334 gabbro has complex exsolution patterns 
because equilibration to low temperatures resulted in multiple 
sets of exsolution lamellae [Hodges and Papike, 1976j. Pigeon- 
ite in Juan de Fuca gabbro xenoliths has simple exsolution 
patterns reflecting the arrested equilibrium at higher temper- 
atures. Partly inverted pigeonite has been observed in terres- 
trial hypabyssal rocks, such as the Palisades Sill [Walker et 
al., 19731 and the Kintoki-San dike in Hakone Volcano [lshii 
and Takeda, 19741, and in lunar and meteoric pyroxenes 
[Papike and Bence, 1972; Ghose et al., 1973; Harlow et al., 
19791. We assume that inversion of pigeonite and other sub- 
solidus equilibration reactions in the xenoliths would have 
proceeded to completion had eruption and quenching not ab- 
ruptly changed the rate of cooling. Therefore the similarity in 
texture between pigeonite from the xenoliths and that from 
the Palisades Sill implies that the rate of cooling of the Palis- 
ades Sill was greater than that of the magma chamber source 
of the xenoliths. 

Estimates of temperature and logf,, using the Stormer cal- 
culation method for composite Fe-Ti oxides are 1027°C and 
- 10.47 in sample 5-8b (Pair 1 + 3) and 1054°C and -9.92 in 
sample 5-7a (pair 6 + 9). The composite grains should be the 
most reliable T and fo,indicators. Calculations based on Car- 
michuel [1967] and Lindsley and Spencer [1982] yield T esti- 
mates consistently lower by 40"-60"C and logf,, lower by up 
to 1.30. Scatter in the estimates increases with increasing 
minor element contents. The use of high-Mg ilmenite in the 
magnetite-ilmenite mineral pair results in lower temperature 
estimates (859'-919"C) and lower logf,, estimates (- 12.5 to 
- 14.0). Maximum and minimum temperature and foz esti- 
mates are shown in Table 6. Lack of optically resolvable Fe-Ti 
oxide exsolution indicates quenching without significant slow 
cooling after oxides formed. 

Discussion 
Textural evidence from the Juan de Fuca Ridge xenoliths 

suggests that the xenoliths formed by in situ crystallization 
near the margin of a magma chamber. Xenoliths from Juan de 
Fuca are characterized by random orientation of grains, wide 
range of grain sizes, zoning deep within the crystals in the 
more crystalline xenoliths, and abundant intergrowth textures. 
Textures characteristic of cumulate gabbros, such as homoge- 
neous cumulate phases, limited grain size variation, and edge 
zoning, are not present. The Juan de Fuca Ridge xenoliths 
have textures similar to, except for the abundance of glass, 
those of high-level isotropic gabbro from the Samail ophiolite 
[Pallister and Hopson, 19813. The sympathetic variation of 
interstitial glass, glass inclusion, and mineral compositions 
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Fig. 10. Minor element variation diagram for pyroxene in host lava and xenoliths. Augite from the xenoliths (solid 
circles) exhibits a systematic decrease in Cr,O, and A1,0, and increase in Tioz with increasing Fe,'(Fe i- Mg) and can be 
related to a single fractionation trend. Scatter in Tio, and A1,0, contents in phenocrysts and microphenocrysts is a result 
of disequilibrium crystallization during rapid cooling. 

support the interpretation of in situ crystallization and docu- 
ment the changing composition of the interstitial liquid. 

Several lines of evidence indicate that the Juan de Fuca 
xenoliths formed by quenching of a not yet holocrystalline 
mush and not by partial melting of a holocrystalline gabbro. 
Examination of the entire textural suite shows that for the 
more open-textured xenoliths, euhedral grains are set in a 
matrix of glass. The grain size and crystallinity increase at the 
expense of interstitial glass. An interstitial origin for the glass 
in the more crystalline xenoliths is indicated by the location of 
glass in interstitial areas a t  grain contacts, homogeneity of 
glass within a given xenolith regardless of adjacent mineral 
phases, and absence of reaction textures at interstitial glass- 
mineral contracts. 

In contrast to the sharp interstitial glass-mineral bound- 
aries, evidence of disequilibrium between melt and xenolith 
minerals occurs at host lava-xenolith mineral and injected 
melt-xenolith mineral boundaries for the most differentiated 
type III xenoliths. Thus some reaction between xenoliths and 
host lava occurred between the time of entrainment and the 
time of quenching on the seafloor, but evidence of partial 
melting to produce the interstitial glass is not present. 

The response of the xenoliths to  stress is a function of their 
texture and temperature at the time of deformation. Xenolith 
17-1 has swirls of melt around the crystals, while xenoliths 
5-7A and 5-SB are crosscut by melt-filled fractures. Based on 

the previous discussion of geothermometry, these type III 
xenoliths equilibrated to temperatures of approximately 
1OOO'C but no lower before they were quenched at the surface. 
The confining pressure during fracturing is difficult to con- 
strain because fracturing could have occurred in the magma 
chamber as the fragment was ripped from the wall rock, 
during transport to the surface. or during eruption. Nonethe- 
less, the gabbro xenoliths were brittle enough to be fractured. 
Fracturing has also been documented in Cayman Trough 
gabbros, where Malcolm C198 11 interpreted veins of clinopy- 
roxene a:id brown hornblende as residual magmatic fluid in- 
jected into fractures in the gabbros near their solidus temper- 
ature. 

The most striking features of the xenoliths are their evolved 
composition with respect to  the host lava and the sharp tex- 
tural contrast between the xenoliths and the nearly aphyric 
host lava. Crystal clots less evolved than the host lava have 
been found in Iceland [Larsen. 19791 and International Pro- 
gram of Ocean Drilling (IPOD) leg 46 site 396B [Saro er ul., 
19781 and are interpreted to be cognate xenoliths. Gabbro 
xenoliths from Iceland are most common in porphyritic basalt 
and can be explained by a single episode of crystallization. A 
large gabbroic xenolith with composition more evolved than 
the host melt occurs in basalt from DSDP site 504B near the 
Costa Rica Rift [Nntland, 19831. This single xenolith was in- 
terpreted to be a fragment removed from the walls of a 
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TABLE 6. Fe-Ti Oxide Analyses 

Sample 5-8B Sample 5-7A 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Si 
Ti 
AI 
V 
Cr 
Fef3 
Fe+’ 
Mn 

Total 
Mg 

mag 

(4) 

0.01 

2.53 
1.12 
0.05 

20.6 

26.8 
45.8 
0.47 
2.82 

100.2 

0.000 
0.564 
0.109 
0.033 
0.001 
0.729 
1.401 
0.014 
0.149 

3.000 

mag 

(1) 

0.03 

2.51 
1.06 
0.09 

20.1 

27.8 
44.4 
0.38 
3.51 

99.9 

0.001 
0.548 
0.108 
0.031 
0.003 
0.760 
1.348 
0.012 
O. 190 

3.001 

ilm 

(3) 

0.00 

0.32 
0.43 
0.01 

48.0 

10.6 
36.2 
0.46 
3.67 

99.7 

0.000 
0.893 
0.009 
0.009 
0.000 
0.197 
0.748 
0.0 1 o 
0.135 

2.001 

ilm hi-Mg mag mag mag 
ilm 

(1) (1) (2) (3) (2) 
Recalculated Analyses [Carmickael. 196q 

0.00 0.00 0.03 0.01 0.01 
48.4 51.6 20.2 21.2 20.2 
0.45 0.41 2.67 2.61 3.36 
0.37 0.84 1.25 0.88 1.30 
0.00 0.06 0.02 0.01 0.05 

10.2 7.31 27.3 26.0 27.3 
34.5 31.0 45.1 45.8 43.5 
0.38 0.36 0.44 0.46 0.39 
4.86 8.44 3.20 3.32 4.37 

99.2 100.0 100.2 100.3 100.5 

Cations Per Formula Unit (Sp .  = 3, Rh. = 2) 
0.000 0.000 0.001 0.000 0.000 
0.895 0.921 0.551 0.577 0.543 
0.013 0.012 0.114 0.111 0.141 
0.007 0.016 0.036 0.026 0.037 
o.Oo0 0.001 0.001 0.000 0.001 
0.189 0.130 0.745 0.709 0.733 
0.709 0.615 1.366 1.384 1.299 
0.008 0.007 0.014 0.014 0.012 
0.178 0.298 0.173 0.179 0.233 

1.999 2.000 3.001 3 . W  2.999 

ilm 

(2) 

0.00 

0.56 
0.45 
0.00 

48.9 

11.5 
31.4 
0.36 
6.89 

100.1 

0.000 
0.884 
0.016 
0.009 
0.000 
0.208 
0.630 
0.008 
0.247 

2.002 

ilm 

(3) 

0.00 

0.41 
0.74 
0.00 

48.7 

10.3 
33.8 
0.40 
5.38 

99.7 

O.OO0 
0.892 
0.012 
0.015 
0.000 
0.189 
0.688 
0.008 
0.195 

1.999 

ilm 

(3) 

0.01 

0.47 
0.86 
0.02 

49.1 

10.1 
32.2 
0.37 
6.54 

99.7 

0 .W 
0.893 
0.013 
0.017 
0.000 
0.184 
0.650 
0.008 
0.236 

2.001 

hi-Mg 
ilm 
(2) 

0.00 

0.45 
0.95 
0.03 
9.26 

0.34 
8.52 

50.5 

29.9 

100.0 

0.000 
0.902 
0.013 
0.018 
0.001 
0.165 
0.593 
0.007 
0.302 

2.001 

hi-Mg 
ilm 
(1) 

0.00 

0.38 
0.69 
0.16 
5.72 

0.42 
7.82 

51.6 

32.1 

98.9 

0.000 
0.935 
0.011 
0.013 
0.003 
0.104 
0.646 
0.009 
0.281 

2.002 

Recalculated Mole Fractions 

usp usp ilm ilm ilm usp usp usp ilm ilm ilm ilm ilm 

Storiner [1983] 0.624 0.598 0.892 0.894 0.920 0.610 0.630 0.609 0.878 0.892 0.892 0.898 0.938 
Anders011 [1968] 0.582 0.554 0.884 0.882 0.904 0.566 0.588 0.553 0.859 0.879 0.876 0.878 0.926 
Carrnichael Cl9671 0.564 0.549 0.893 0.895 0.921 0.552 0.577 0.544 0.884 0.894 0.893 0.902 0.935 
Lindsley and Spencer [1982] 0.604 0.588 0.900 0.904 0.934 0.594 0.617 0.595 0.895 0.904 0.907 0.916 0.947 

Mineral Pair Calculations (mag + ilm) 

(1 + 3) (2 + 4) (2 + 5) (6 + 9) 17 + 9) (8 + 10) (8 + 13) 

T fo, T fo, T fo, T fo, T fo, T fo* T foz 
~~~ ~ ~ ~ ~ 

Stormer 119831 1027 -10.47 1001 -10.82 919 -12.51 1054 -9.92 1072 -9.70 1015 -10.61 859 -13.98 
Anderson Cl9681 1015 -10.47 996 -10.68 938 -11.84 1058 -9.60 1078 -9.39 1002 -10.55 869 -13.43 
Curmichael 119671 978 -11.08 959 -11.38 884 -13.03 990 -10.78 1010 -10.53 963 -11.27 830 -14.35 
Lindsley and Spencer 119821 988 -11.10 963 -11.51 861 -13.81 994 -10.92 1013 - 10.68 970 -11.41 806 -15.30 

Analyses 1 and 3 are from a composite grain, as are 6 and 9. Fe-Ti oxide data were obtained using an ARL-SEMQ automated nine-channel 
microprobe and reduced using the matrix correction program of Bence and Albee [1968]. Standards used in the analysis of Fe-Ti oxides were 
synthetic V-doped diopside for Si and V; Fe,O, Fe; Tio, for Ti; synthetic spinel for Mg and AI; Mn,O, for Mn and Tiebaghi chromite for Cr. 
Sample current was 20 nA. The vanadium intensity (k-alpha) was calculated by subtracting the Tiky8 peak from the measured total intensity. 

magma chamber or shallow conduit system that originally 
contained more fractionated melt. The abundance of glass and 
a broad spectrum of texture and compositions in the Juan de 
Fuca xenolith suite suggest that formation of the gabbros is 
intimately involved with the magma chamber and not the 
product of crystallization in a small isolated magma pocket. 
The evolved compositions suggest the existence of melt more 
evolved than the host melt in the magma chamber. 

HAWAIIAN LAVA LAKES: AN ANALOGY 

A puzzling aspect of the xenoliths is the large variability in 
mineral modes (Table 10). Estimated bulk xenolith compo- 
sitions d o  not, in general, reflect lava compositions. Also the 
dominance of augite + plagioclase xenoliths is contrary to  

what one would expect from simple crystallization along a 
liquid line of descent, which requires olivine in addition to  
augite -k plagioclase. The problem may be one of scale. The 
large-scale view is one of in situ crystallization at  the top of a 
cooling magma body, while in detail the actual processes may 
be extremely complex. Drill core studies of Hawaiian lava 
lakes; such as Kilauea Iki [Richter and Moore,  1966; Helz, 
19801, Makaopuhi [Wright  aiad Okamura, 19771, and Alae 
[Wright  and Peck, 19781, document the small-scale com- 
plexities of crystallization in a cooling magma body. 

A feature common to all the studied lava lakes in Hawaii is 
the presence of zones of relatively coarse-grained, glassy, ves- 
icular segregation veins that appear to fill fractures and have 
high differentiated compositions [Wright  and Oliamura, 19771. 
These segregation veins form by physical segregation of differ- 
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TABLE 7. Average Interstitial Glass Analyses 

Type I Type IT Type IT1 

17-7 17-69 17-IA 5-0 5-1 5-72 5-7B 26-IA 16-7A 17-3 5-8B 

(3) 

50.6 
13.7 
12.2 

10.9 
6.78 

2.58 
0.18 
1.92 
0.18 
0.19 
0.16 

99.4 

51.0 
1.62 

( 2 )  

50.6 
14.1 
12.3 

10.8 
6.65 

2.70 
0.18 
1.90 
0.20 
0.19 
0.15 

99.8 

50.3 
1.67 

(41 

51.4 
13.7 
12.9 

10.3 
6.21 

2.86 
0.22 
2.10 
0.22 
0.20 
0.17 

100.3 

47.5 
1.87 

(4) (3) 

50.8 51.6 
13.7 14.0 
13.5 14.0 
5.77 5.65 

10.1 9.62 
3.02 3.17 
0.22 0.23 
2.36 2.41 
0.26 0.27 
0.22 0.21 
0.17 0.19 

100.1 101.4 

44.6 43.1 
2.11 2.24 

(5) 

51.1 
14.5 
14.1 
4.90 

10.0 
3.06 
0.21 
2.44 
0.23 
0.21 
0.20 

101.0 

39.5 
2.59 

51.3 51.7 51.4 51.3 52.7 
13.4 13.9 13.6 13.2 13.1 
13.5 12.9 14.2 15.0 13.2 
6.25 5.42 5.17 5.04 3.51 

10.2 9.83 9.25 9.33 8.05 
2.81 3.05 3.04 3.03 3.69 
0.29 0.30 0.30 0.27 0.64 
2.46 2.55 2.93 2.97 2.96 
0.29 0.30 0.37 0.33 0.84 
0.22 0.20 0.22 0.23 0.23 
0.1.5 0.17 0.19 0.20 0.11 

1011.9 100.3 100.7 100.9 99.0 

46.5 44.1 40.5 38.7 33.2 
1.94 2.14 2.48 2.68 3.38 

Anal>tical procedure for intersertal glasses was the same as the procedure for glassy rims, except that 
counting time was 120 s. 

*Feo* = total Fe calculated as Feo. 
?Fe0 MgO calculated using 0.9 x Feo*. 

entiated melt by filter pressing from a rigid crystal framework. 
Melt, as defined by drilling, is a crystal-liquid mush too fluid 
to support the weight of the drill string. a condition reached 
when the magma contains approximately 45”<) glass and 55?,, 
crystals [Hel;, 19801. Wriglir und Peck [1978] also note that 
the composition of the liquid will vary in composition accord- 
ing to the eficiency of the filter press in separating liquid from 
crystals. Differences in the ratios of minerals brought in will 
produce a differentiate that does not lie on a “liquid line of 
descent.” Heir [ 19801 documents that the total thickness of 
segregation veins in Kilauea Iki, the largest and most complex 
of the Hawaiian lava lakes. is 3-6 m in the central part of the 
lake. corresponding to  6-1 l c r a L  of the upper crust. Formation 
of segregation veins in the crystallizing zone a b m e  the south- 
ern Juan de Fuca Ridge magma chamber can explain the 

highly variable hulk compositions of the xenoliths and the 
dmiation from a simple liquid line of descent. 

Segregation \eins need fractures to  form. Fracturing in lava 
lakes. which are static bodies. may be associated with degass- 
ing of labs and partially molten crust. Additional large hori- 
zontal fractures may form when the upper crust hecomes more 
or less supported by the rvalls of thr  crater and fails to track 
the lens of melt as it cools and solidifies [Wright  utid Okuniuru, 
19771. Mid-ocean ridge magma chambers differ from Ha- 
waiian I a a  I d e s  in that volatiles are kept in solution by high 
hydrostatic and lithostatic loads. The absence of volatile re- 
lease as a fracturing mechani\m. honeler. is more than com- 
pensated for by acthe tectonics at mid-ocean ridges. Lava lake 
studies show that fracturing can be sustained down to the 
crust-melt interface. Similarly. rifting at the ridge crest in the 

TABLE 8. Aberage Glass Inclusion Anal)ses 

Type I Type 11 Type III Type I Type III Type 11 Type II1 

1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 I7 14 
d 

Sample 17-12 5-17 5-15 5-11 26-1A 16-7.4 16-7B 17-3 17-12 5-17 26-IA 16-78 5-11 5-15 16-7A 17-3 26-IA 16-7B 
Host hjineral plag plag plag plag plag plag plag plag 01 nl ol ol aug aug aug aug aug aug 
Number of ( 2 )  (3)  ( I I  (3) (3) (31 ( 6 )  I31 (3 (31 ( I I  (21 (31 (4) (2)  (31 (21 ( I I  

SiO, 50.6 47.5 48.1 51.3 47.4 50.8 44.6 51.1 50.2 51.2 51.2 53.2 51.3 52.4 50.5 50.9 54.9 52.0 
Alzo ,  8.34 7.76 4.93 13.8 6.68 12.3 3.93 12.9 14.6 13.7 14.2 13.9 12.7 16.9 10.6 14.6 17.1 16.6 
Feo* 16.5 20.9 19.9 12.6 21.3 14.2 27.5 15.3 11.7 13.8 14.2 14.3 13.5 13.2 15.1 13.8 10.6 13.1 
M g 0  9.0s 9.02 10.9 5.71 9.25 5.55 9.28 4.28 3.95 3.53 3.22 1.71 5.50 2.54 7.10 3.96 2.15 1.09 

N¿@ 1.15 1.04 0.81 2.26 1.19 2.62 0.67 3.02 2.67 2.75 2.82 3.38 2.61 3.36 2.28 3.23 4.33 4.26 

,*-r analyses 

Ca0 10.3 9.50 10.1 10.3 9.04 9.38 8.56 8.69 12.7 10.7 11.3 9.54 10.3 7.37 9.76 4.6~ 6.77 6.10 

TioZ 2.04 2.96 3.51 2.25 3.24 2.32 3.81 2.82 2.09 2.59 2.16 2.85 2.51 2.33 2.82 2.84 2.40 3.77 
PIOS 0.15 0.28 n.28 0.23 0.24 0.30 0.24 o . 2 ~  0.14 0.22 o.21 0.22 0.26 o.19 0.34 0.26 0.37 0.40 
MnO 0.25 0.39 0.37 0.20 0.32 0.26 0.44 0.24 0.21 0.21 0.18 0.21 0.18 0.20 0.27 (1.19 o.16 0.21 

Total 98.4 99.4 98.1) 98.7 98.7 97.7 99.0 98.6 99.3 98.7 99.5 99.3 98.9 98.5 98.8 98.4 98.8 97.6 

Feo* C a 0  1.6O 2.20 1.97 1.22 2.36 1.51 3.21 1.76 0.92 1.29 1.26 1.50 1.31 1.79 1.55 1.59 1.57 2.15 
Feo* MgO 1.82 2.31 1.83 2.21 2.3U 2.56 2.96 3.57 7.96 3.91 4.41 8.36 2.45 5.20 2.13 3.48 4.93 12.0 
Ca0 hlgO 1.13 1.05 0.93 1.80 0.98 1.69 0.9‘ 2.03 3.22 3.03 3.51 5.58 1.87 :.YO 1.37 2.19 3.15 5.60 
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Fig. l l a .  Compositions of glass inclusions trapped in xenolith 
minerals plotted on MgO, Cao, Feo* triangular plot. Compositions 
of the host rock glasses (small dots) are plotted for comparison and 
fall on a MORB fractionation line. Symbols used are type I xenoliths: 
sample 5-7, solid triangle; sample 5-17, triangle with dot; sample 
17-12, open triangle. Type II xenoliths: sample 5-11, solid circle, 
sample 5-15, circled dot; sample 16-7A, open circle; sample 17-2, 
horizontally half solid circle; sample 17-3, vertically half solid circle. 
Type III xenoliths: sample 16:7B, cross; sample 26-1A, plus. The 
short dashed lines link the inclusions in the different crystals of two 
type II xenoliths. Long dashed liqes divide the field by host minerals. 

oceanic environment may cause fractures that extend to this 
boundary. Rifting of the oceanic crust, therefore, may cause 
percolation of differentiated liquids into fractures at or near 
the ridge crest at mid-ocean.ridges. 

MAGMA MIXING AND FORMATION OF XENOLITHS 

We favor a model of repetitive magma chamber replenish- 
ment to account for the presence of xenoliths within aphyric 
lava. Replenishment occurs before the magma chamber has 
completely solidified and resuk- in mixing, rejuvenated con- 
vection, and superliquidus temperatures [Walker et al., 19791. 
The boundary for rejuvenated convection would be the brittle- 
ductile boundary, approximately 45% liquid, as defined by the 
Hawaiian lava lake studies. The host lava is a hybrid formed 
by mixing highly evolved residual melt with a new batch of 
primitive melt [Clague et al., 19831. Mixing is supported by 
the homogeneous lava composition within the axial valley and 
is probably controlled by density differences. Dense picritic 
magma may pond at the base of the magma chamber after 
injection as modeled by Huppert and Turner [1981]. Sparks et 
al. [1980] calculated that the density of picritic liquids de- 
creases with decreasing temperature due to removal of olivine. 
The density of ferrobasalt, on the other hand, increases with 
decreasing temperature due to removal of dominantly plagio- 
clase. Convective mixing will occur when the density of the 
overlying ferrobasalt is greater than or equal to the density of 

the underlying olivine tholeiite to picrite. Eruption may be 
triggered by injection of the next batch of primitive magma. 
The time between injections of melt must be long enough to 
allow mixing and resorption of phenocrysts to occur but not 
long enough to allow the hybrid melt to cool to the liquidus 
temperature when new phenocrysts would form. 

The linear rift valley, abundance of sheet flows, absence of 
fissuring, and active hydrothermal venting in the U.S. Geo- 
logical Survey (USGS) study area suggest that the magma 
chamber has been replenished within the last few hundred 
years. Initial conduit formation for the eruption fractured the 
crystallizing boundary zone of the magma chamber. High ef- 
fusion rate eruptions of superliquidus magma, responsible for 
the formation of extensive aphyric sheet flows, carried the 
gabbro fragments to the surface. 

CONCLUSIONS 
Basalt from the southern Juan de Fuca Ridge is ferrobasalt 

derived from a depleted MORB source. Subtle differences in 
trace element ratios between basalt from the axial walls (2000- 
5000 years old) and axial valley floor (age < 1000 years) indi- 
cate that mantle source regions for Juan de Fuca MORB are 
variable on a time scale of thousands to tens of thousands of 
years. 

Rare glassy gabbroic xenoliths found in this aphyric ferro- 
basalt are divided into three types based on mineralogy and 
texture; two types are more evolved than the host lava. The 
coarsest-grained xenoliths equilibrated to temperatures of 

TABLE 9. Estimated Initial Compositions of Glass Inclusions 

Host 
Glass Type 1 Type I1 Type II Type III Type I Type III Type ILI Type III 

Sample 17-12 5-15 5-11 16-7a 5-17 26-1.4 16-7B 17-3 

Inclusive in Olivine ... 1.39 f 0.01 1.43 f 0.01 1.73 & 0.03 
2.67 k 0.06 2.72 & 0.06 3.62 f 0.26 

FeO*/CaO 1.07 & 0.02 1.04 & 0.01 . . . 1.. ... 
FeO*/MrO 1.77 + 0.05 1.74 & 0.06 . . . ... ... ... 
CaO/MgO 1.65 f 0.02 1.68 & 0.04 . . . ... ... 1.89 0.04 1.93 0.04 2.17 3 0.14 ... 

Inclusive in Plagioclase 
FeO*/CaO ... 1.05 & 0.01 1.07 1.19 0.02 1.22 & 0.15 1.32 & 0.04 1.33 & 0.04 1.63 f 0.08 1.63 & 0.06 
FeO*/MgO ... 1.74 -1- 0.04 1.79 2.07 & 0.08 2.12 & O 75 2.42 & 0.19 2.40 f 0.20 3.06 f 0.45 3.33 f 0.44 
CaO/MgO ... 1.66 & 0.03 1.67 1.74 & 0.06 1.74 f 0.54 1.83 f 0.13 1.81 & 0.13 1.82 0.27 2.04 3. 0.26 
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Fig. 12. Plot of (Feo*, MgO),, versus (FeO*:MgO),,, showing 
olivine-rtielt equilibria based on the method of Roeder [1974]. Arrow 
extends from analyzed (FeO*'MgO),, (all iron as Feo) to 
(Fe0  'MgO),,, using F e 0  = 0.9 x Feo*. blii-ine-melt pairs are com- 
posed of phenocrysts (open square) and microphenocrysts (open 
circle) with host glass, and xenolith olivine with coexisting interstitial 
glass. Calculated I(, for phenocrysts. microphenocryst-host glass 
pairs are lower than K, calculated for xenolith olivine-interstitial 
glass pairs. 

1 100'-1150"C based on two-pyroxene geothermometry and 
1030-1050°C based on Fe-Ti oxide geothermometry. These 
coarsest-grained Xenoliths were able t o  sustain brittle fracture. 
Gabbroic xenoliths represent partially crystalline wallrock 
formed by in situ crystallization a t  the top of the magma 
chamber. The formation of segregation veins of differentiated 
material by filter pressing, as documented in,  Hawaiian lava 
lake studies, may be an  important process in in situ crys- 
tallization a t  mid-ocean ridges. Crystallization of some xeno- 
liths from these segregation veins may explain the great varia- 
bility in mineral modes and the abundance of augite + plagio- 
clase xenoliths. 

We propose that the magma chamber under the southern 
Juan de  Fuca Ridge has undergone recent replenishment. Fer- 
rohasalt from the southern Juan de  Fuca Ridge is a hybrid 
melt formed by mixing of residual differentiate with more 
primitive melt introduced during replenishment. Total resorp- 
tion of phenocrysts due to  superliquidus temperatures and 
rejuvenated convection may be responsible for the aphyric 
texture of the ferrobasalt. The gabbros crystallized from 
evolved liquids along the cooling boundary zone of a magma 
chamber prior to replenishment. The xenoliths were probably 
carried to  the surface by high-rate eruptions of superliquidus 
magma that resulted in extensive aphyric sheet flows. 

- % L L . d L - - L I  
4 0  

o, 
3 11 

[Fd?bieOl  L,,l 
1.0 :.o 

Fig. l j .  Plot of (Feo* MgO),,, against [Feo* MgO),,, showing 
pyroxene melt equilihria. Pyroxene compositions are more evolved 
and tariahle than phenocrysts microphenocrysts compositions. Bryan 
Cl9791 calculated a h', o1 0.26 for pyroxene in basalt from the 
FAMOLS Brea. The one type III  pyroxene with high calculated K, 
map reflect disequilibrium between pyrosene and interstitial glass due 
to crystallization of Fe-Ti osides. therehy lowering the FeO*.MgO 
mtios in the glas. 

TABLE 10. Xenolith Modal Mineralogy 

lnterstital Fe-Ti 
Sample Glass Plag O1 Aug Pig Oxides Counts 

Type I 
17-7 28.5 52.1 19.4 . . . . . .  lo00 
17-12 25.0 39.0 36.0 . . . . . .  lo00 
Arerage* 26.7 45.6 27.7 . . . . . .  ... 

... 

... 

5-0 21.9 38.6 
5-1 16.2 45.4 
5-10 48.7 31.7 
5-11 20.4 39.3 
5-13 11.9 45.0 
16-5 25.0 48.0 
16-7 35.1 27.1 
17-1A 51.0 27.5 
17-2 23.0 36.0 
17-4 7.6 41.5 
21-25 11.0 55.0 
&& 71-76 ,.. 1.0 33.7 
Average* 28.3 36.8 

Type  I I  
trace 39.5 
18.2 20.2 

19.6 
39.8 
43.1 
27.0 

1.0 20.5 
41 .O 
50.9 
34.0 
65.3 

2.6 32.3 

... 

... 

... 

... 

. . .  372 

... 

... 

... 

... 

... ... 

... ... 

... ... 

... ... 

... ... 

... ... 

... ... 

... ... 

... ... 

... ... 

... ... 

... ... 

... ... 

lo00 
1 0 0  
lo00 
1000 
1000 
100 

lo00 
loo0 
100 
100 
100 
100 

Type  I I I  
5-7A 1.1 52.4 38.7 3.7 4.0 trace lo00 
5-7B 19.8 32.1 I . '  48.1 trace ... 1000 
5-8ß 3.0 47.5 6.1 40.4 1.0 1.0 1000 
16-7 5 3  56.5 0.5 34.7 2.8 trace 1000 
17-3 4.3 83.0 2.8 9.9 1000 
26- 1 'i 16.0 51.0 7.0 26.0 ... lo00 
Alerage* 8.3 S3.7 9.2 27.1 1.5 0.2 

... ... 
... 

*Weighted by the number of points counted. Type I. type II, and 
type III xenoliths represent 2, 80. and 1 8 " ~  of the xenoliths present. 
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