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Abstract. Scaling properties of 44 individual river planforms from the Cascade and 
Olympic Mountains of Washington State were defined using the divider method. Analysis 
of the standardized residuals for least squares linear regression of Richardson plots reveals 
systematic deviations from simple self-similarity that correlate with the geomorphological 
context defined by valley type. A single fractal dimension describes rivers flowing through 
bedrock valleys. Those flowing in inherited glacial valleys exhibit two distinct fractal 
dimensions, with a larger fractal dimension at small scales. Rivers flowing in alluvial 
valleys are also described by two fractal dimensions, but with a larger dimension at large 
scales. We further find that the wavelength of the largest meander defines an upper limit 
to the scaling domain characterized by fractal geometry. These results relate scaling 
properties of river planforms to  the geomorphological processes governing valley floor 
morphology. 

Introduction 1983; Tarboton et al., 1988; Turcotte, 19921. This implies that 
the LI derived from length-area relations is not useful for 
examining differences among rivers. Furthermore, Robert alid 
ROY [1990] showed the unreliability of using a! to infer the 
fractal dimension of rivers due to the effect of cartographic 
generalization. 

Another common method used to derive the fractal dimen- 
sion of both individual rivers and channel networks relies on 
the statistical properties of branching networks known as Hor- 
ton's laws [e.g., Feder, 1988; Tarboton et al., 1988; La Barbera 
and R ~ ~ ~ ~ ,  19891. F~~ the main river of any drainage basin, 
Feder [i9881 derived 

The irregular planform of rivers invites description by fractal 
geometry [Mandelbrot, 1977, 1983; Hjelnzfelt, 1988; Tarbotoiz et 
al., 1988; Sizow, 1989; Nikora, 1991; Nilcoln et al., 1993; Gan et 
al., 19921. Although a fractal dimension ( D )  describes the 
geometry of many geomoPhic forms [ClZUfC1z alid Mark, 1980; 
Goodchild, 1980; Mark and Aronson, 1984; Goodchild and 
Mark, 1987; Hiilkenberg, 19921, few studies relate D to Pro- 
cesses governing these forms [WO~O1zOW, 1981; PhilliPS, 19931. 
Indeed, the relatively narrow range of fractal dimensions de- 
scribing a variety of natural patterns suggests the futility of 
searching for ties with physical processes [Turcotte, 19921. 
Some geomorphic features, however, exhibit scale-dependent 
variations in D ,  motivating examination of physical causes of 
such variations [Church and Mark, 1980; Goodchild, 1980; Dut- 
ton, 1981; Lam and Quattrochi, 1992; Beauvais et al., 19941. 

logical process and scaling properties of river planforms are 
complicated by the many ways to calculate D .  

some workers the fractal dimension of river plan- 
forms from the relation between mainstream length and basin 
area [Hack, 19571: 

D = 2(10g RLllog RB) (2) 

while the length-area relation (1) led Rosso et al. [1991] to 
suggest 

Efforts to evaluate potential connections between geomorpho- D = 2(10g RLIlog RA) (3) 

where D is the fractal dimension, R, is the stream length ratio, 
R, is the bifurcation ratio, and RA4 is the stream area ratio (see 
Horten [I9451 and S c h m m  [I9561 for definitions of these 
ratios). Although Rosso et al. [1991] noted that D derived from 
(3) agreed with that estimated using the box-counting method 
[Lovejoy et al., 19871, Horton ratios can yield fractal dimen- Q 
sions less than 1 for individual river planforms [Phillips, 19931. I- 

source areas used to define the channel networks [Helmlinger et 0 
al., 19931. Consequently, methods based on Horton's laws do Q) 

Co not provide reliable approaches for determining D .  
An alternative method for defining the fractal dimension of E 

a river planform is the divider method first used by Richardson a, 
[1961] to measure the length of complex curves, and employed E 
by Mandelbrot [1967] to estimate the fractal dimension of a 2 
coastline. Following Mandelbrot [1977], many workers used O 
this method to characterize the fractal geometry of river plan- 
forms [Hjelmfelt, 1988; Tarboton et al., 1988; Snow, 1989; 

L = ßA" (1) 

proportionality, and A is the drainage area. Mandelbrot [1977], 
and later Church and Mark [1980] and Hjelmfelt [1988], inter- 

the river planform (i.e., a = 0 1 2 ) .  The relatively small range 
of a! for most drainage basins (see data compiled by Montgonz- 
ely arid Dietrich [1992]) implies that D defined in this manner 
is equal to approximately 1.2 for rivers in general [Maradelbrot, 
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a where L is the length of the river planform, ß is a constant of 

preted the exponent a! as being half the fractal dimension of 

Horton ratios also vary nonsystematically with the size of the cn 
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Figure 1. (a) Richardson plot characterized by a length scale 
E,, above which the variance increases about the central 
tendency. (b) Definition of E,,, based on the variance (cr) of 
the standardized residuals of Richardson plot. 

Nikora, 1991; Gan et al., 1992; Beauvais et al., 19941, as well as 
that of other geologic and geomorphologic features [e.g., 
Goodchild, 1980; Aviles et al., 1987; Brown, 1987; Culling and 
Datko, 1987; Andrle aiid Abrahams, 1989; Gilbert, 1989; Mat- 
sushita et al., 1991; Power and Tullis, 1991; Klinkenberg and 
Goodchild, 19921. The divider method involves measuring the 
length L of a curve using a ruler or divider of variable length 
E .  If the curve exhibits fractal scaling, then the length of the 
curve is a power law function of E ,  such that 

L bE1-D (4) 
where b is a proportionality constant. Typically, D is calculated 
from logarithmic plots of L versus E, known as Richardson 
plots, using 

log L = log b f (1 - D )  log E (5) 

The slope of a Richardson plot defines D ,  which indicates how 
fast the river planform length increases as E decreases [Mandel- 
brot, 19671. The power law function defined by (5) holds at all 
scales for self-similar curves such as Koch or Peano curves 
[Mandelbrot, 19831 and describes statistically self-similar and 
self-affine curves only over a limited range of scales [Mandel- 
brot, 1985; Matsushita and Ouchi, 1989; Nikora, 19941. 

Mandelbrot [1977] anticipated that many natural objects are 
described by several fractal dimensions identifiable over dis- 
crete scaling domains. Dutton [1981] later showed that irregu- 
lar curves often are described by different fractal dimensions 
over discrete scaling ranges. Such ranges in scaling properties 
might reflect the scales over which specific phenomena or 
processes operate or dominate the form of a system [Church 
andMark, 1980; Lam and Quattrochi, 19921. Nikora [1991], for 

example, hypothesized that the river and valley width respec- 
tively define lower and upper limits for the application of 
fractal analysis to river planform geometry. Similarly, Snow 
[1989] argued that the scale of meander representation defines 
an upper limit for E. Here we use the divider method to inves- 
tigate the scaling properties of natural river planforms and 
explore their relation to the geomorphological context defined 
by valley type. 

Methods 
The divider method only applies over a limited range of 

scales, and misapplication can lead to inconsistent results 
[Goodchild, 19801. Richardson plots obtained from the classi- 
cal application of the divider method generally exhibit two 
scaling thresholds that bound the range of scales over which a 
single dimension is estimated using least squares linear regres- 
sion. For river planforms, the smaller-scale cutoff (emin) is 
related to the width of the river simply because the river cannot 
meander at finer length scales. The upper limit to defining D 
from Richardson plots (emax) generally is taken to be the E 

value above which the variance of residuals about the regres- 
sion abruptly increases (Figure 1). These two limits define the 
range of scales over which fractal analysis can describe the 
geometry of an object measured to derive a Richardson plot. 

A problem with the divider method is that the results are 
sensitive to the treatment of the remainder length at the end of 
the planform pviles et al., 1987; Klinkenberg and Goodchild, 
1992; Andrle, 19921. Richardson plots also can exhibit devia- 
tions from simple power law scaling, as revealed by systematic 
curvature of the structure of the standardized residuals [Andrle 
andAbraham, 1989; Andrle, 1992; Minkenberg and Goodchild, 
19921. Andrle [1992] and Klinkenberg [1994] provide more in- 
depth discussions on the divider method. 

Remainder Length 
The number of "steps" ( N )  needed to traverse the length L 

of a curve is typically a noninteger, as a fractional E length 
often remains at the end of the planform. This implies an 
increase in measurement error as E increases. There are three 
ways to treat the remainder length using the divider method 
[Aviles et al., 19871: (1) add the remainder length to the esti- 
mate of L ;  (2) neglect the remainder length; and (3) round N 
up to the nearest whole number. Aviles et 01. [1987] found that 
retaining the remainder length produced Richardson plots 
with slightly greater scatter and higher D values, and that 
rounding greatly increased the scatter in the plots. Here we 
further examine the influence of the first two approaches on 
estimates of D. 

Curvature in Richardson Plots 
The linearity of Richardson plots was examined according to 

the method ofAndrle [1992] to test whether the fractal dimen- 
sion is scale-independent. This method examines the curvature 
in the Richardson plots for deviation from strict self-similarity, 
using the standardized residuals from least squares linear re- 
gression of log L versus log E [Andrle and Abrahams, 1989; 
Andrle, 19921. If there was no structure to the regression re- 
siduals, then a single D was estimated using least squares linea 
regression of data between smin and emax. Richardson plo 
exhibiting systematic structure to regression residuals were e 
amined for distinct linear trends over length scales betwc 

and E,, (Figures 2a and 2b). We then performed J 
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regressions over each range of E values characterized by a 
linear structure of residuals in the original composite regres- 
sion to estimate D over these more restricted scaling domains 
(Figures 2c and 2d). 
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Figure 2. Illustration of the procedure for differentiating two 
scaling domains in Richardson plots. (a) An initial least 
squares linear regression of log L versus log E is used to 
construct (b) a plot of the standardized residuals, which iden- 
tifies scaling ranges well described by least squares linear 
regression over more restricted scaling ranges defined by (c) 

< E < E ~ ,  and (d) E ,  < E < E,,. 

Table 1. Fractal Scaling Properties and Sinuosity 
Characteristics of BV River Planforms Described 
by a Single Fractal Dimension D 

Emax A ,  A, 
River ,D OD m m m 

Chute Cr. 
Clendenen Cr. 
Gee Cr. 
Hatchey Cr. 
Little Deer Cr. 
Little Deer Cr.* 
Little Deer Cr.? 
North Branch Cr. 
O’Toole Cr. 
Presentine Cr. 
Quartz Cr. 
DeForest Cr. 
S. F. Nooksack R. 

Alder Cr. 
Braden Cr. 
Cedar Cr. 
Elk Cr. 
S. F. Hoh R.* 
Jackson Cr. 
Lost Cr. 
Maple Cr. 
Mosquito Cr.? 
Mount Tom Cr. 
Owl Cr. 
Steamboat Cr. 
Winfield Cr. 

Cascades 
1.114 0.002 
1.047 0.001 
1.048 0.001 
1.071 0.001 
1.103 0.002 
1.076 0.001 
1.176 0.001 
1.079 0.001 
1.044 0.001 
1.074 0.002 
1.095 0.001 
1.051 0.002 
1.126 0.003 

0i)ntpics 
1.123 0.002 
1.082 0.003 
1.101 0.001 
1.061 0.001 
1.069 0.001 
1.125 0.001 
1.046 0.001 
1.103 0.002 
1.172 0.004 
1.097 0.002 
1.107 0.003 
1.127 0.002 
1.125 0.003 

168 
120 
168 
144 
168 
144 
168 
144 
168 
168 
168 
144 
168 

144 
168 
168 
216 
144 
144 
144 
168 
192 
168 
216 
168 
168 

132 
48 
72 
72 
168 
72 
168 
60 
48 
96 
108 
48 
216 

96 
108 
156 
72 
144 
72 
48 
108 
168 
108 
84 
120 

. 132 

264 
144 
216 
192 
3 12 
192 
312 
216 
192 
276 
264 
192 
312 

192 
240 
264 
240 
240 
216 
192 
216 
420 
252 
264 
288 
264 - 

BV, bedrock valley; OD, standard deviation of D :  E,,, upper limit 
of fractal scaling at which the divider method breaks down; A ,  largest 
meander am litude; A, largest meander wavelength; Cr., creek; R., 
river. Here r- > 0.99 for all the river analyses. P 

*Upstream reach. 
TDownstream reach. 

Procedure and Precision of the Divider Method 
The precision of the divider method depends on both map 

scale and the smallest E value used in the analysis. River plan- 
form lengths were measured manually using a compass from 
U.S. Geological Survey 1:24,000 scale topographic maps; mea- 
surement paths followed the centerline of the main channel. 
The smallest E length equaled 2 mm (48 m), with subsequent 
measurements increasing at 1 mm (24 m) intervals of E length 
(Figure la). The largest E length used for each river equaled 
one tenth the total planform length. This procedure resulted in 
a large number of E values, as recommended by Andrle [1992] 
for estimating D .  Following Andrle and Abraham [1989], rep- 
licate measurements on a number of rivers evaluated the pre- 
cision of manual application of the divider method using a 
compass [Richardson, 1961; Mandelbrot, 1967, 1983; lionlin, 
19921. For all E in the range of to E,,, the number of 
compass walks in different measurement trials varied by at 
most 1% over the entire planform length. 

Study Areas and River Characteristics 
We analyzed 44 individual river planforms from Washington 

State. Twenty reaches are located in the Cascade Range, and 
24 are from the Olympic Peninsula. Three types of reaches 
were defined Gased on valley-scale geomorphology (Tables 
1-3). Twenty-six of the reaches flow through confined bedrock 
valleys (BV rivers), which have only a thin alluvial mantle over 
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Table 2. Fractal Scaling Properties and Sinuosity 
Characteristics of GV River Planforms Described 
by Two Fractal Dimensions With D, > D,  

E,,  &maxi A ,  A, 
River D,  UD, Dl uDl m m m m 

Cascades 
Alder Cr. 1.134 0.002 1.070 0.001 82 360 120 360 
Cumberland Cr. 1.121 0.002 1.051 0.001 96 288 108 300 
Finney Cr. 1.229 0.002 1.106 0.001 157 408 216 432 
Finney Cr.* 1.143 0.001 1.100 0.001 73 264 108 288 
Grandy Cr. 1.149 0.002 1.060 0.002 63 264 84 312 

Olympics 
Goodman Cr. 1.135 0.002 1.107 0.001 153 384 192 432 
Goodman Cr.' 1.125 0.002 1.083 0.002 76 512 108 336 
Minter Cr. 1.098 0.002 1.081 O.OQ1 80 312 108 324 
N. F. Mosquito Cr. 1.138 0.003 1.089 0.001 100 264 108 300 
Mosquito Cr. 1.20 0.003 1.157 0.001 151 408 168 420 

GV, glacial valley; D,, small-scale fractal dimension; D,, large-scale 
fractal dimension; E ~ ,  scaling threshold separating two fractal scalings 
characterized by two fractal dimensions. See Table 1 for additional 
information. 

*Upstream reach. 

bedrock and thus lack floodplains (Table 1). Ten reaches are 
incised into glacial outwash filling narrow and relatively 
straight U-shaped valleys (GV rivers) (Table 2). Eight reaches 
flow through wide alluvial valleys (AV rivers) with large active 
floodplains (Table 3). Some of the AV rivers flow through 
areas glaciated during the Pleistocene, but these rivers are not 
closely confined by valley or terrace walls. Six of the largest 
rivers were partitioned into upstream and downstream reaches 
based on differences in channel gradient and width; in addition 
to composite analyses, each of these reaches was analyzed 
individually. 

Sinuosity Characterization 
Within each reach, we measured the wavelength (A) and the 

amplitude ( A )  of the largest meander because they define 
natural length scales that can be identified objectively. Adopt- 
ing the method of Williams [1986], we measured these param- 
eters on individual meander apexes along each river planform 
using a rule and compass. Meander characteristics were com- 
pared to the scaling thresholds derived from Richardson plots 
to explore ties between scaling limits and geomorphological 
length scales. 

Results 
Richardson Plots 

Richardson plots for each of our channel reaches exhibit 
increased variance of the standardized residuals with larger E. 
An abrupt increase in the variance of the residuals defines the 
upper limit of application of the divider method (i.e., E,,), 
and a narrow range of power law scaling characterizes each of 
the study reaches. As discussed above, each of the reaches 
exhibit structure to regression residuals that define domains 
more appropriately described by separate fractal dimensions in 
Richardson plots. The threshold separating these scaling do- 
mains, E,, is defined as the intercept of the two linear regres- 
sions determined from the residual structure of the composite 
regression (Figure 2). Examination of the standardized resid- 
uals of the Richardson plots reveals that neglecting the remain- 
der length yields a lower- vai-iance and hence a. betteï estimate 

Table 3. Fractal Scaling Properties and Sinuosity 
Characteristics of AV River Planforms Described 
by Two Fractal Dimensions with D, < D I  

E,, Emax, A ,  A7 

River D, UD, DI UD, m m m m 

Finney Cr.'C 
Finney Cr.? 

Goodman Cr.* 
S. F. Hoh R. 
S. F. Hoh R.* 
S. F. Hoh R.t 
Bogachiel R.* 
Snahapish R. 

Cascades 
1.103 0.001 1.201 0.002 132 
1.122 0.002 1.205 0.001 155 

Olympics 
1.168 0.003 1.245 0.001 362 
1.102 0.001 1.186 0.004 316 
1.135 0.002 1.251 0.002 397 
1.106 0.005 1.302 0.003 216 
1.075 0.003 1.28 0.014 295 
1.144 0.002 1.248 0.003 253 

312 216 432 
264 156 360 

408 192 432 
480 348 648 
480 348 648 
336 312 480 
336 276 552 
288 168 408 

AV, alluvial valley. See Tables 1 and 2 for additional information. 
*Downstream reach. 
tDownstream shorter reach. 

of D at small length scales. Conversely, at larger length scales 
{E > E,,), neglecting the remainder length yields greater 
variance in L ,  and power law scaling breaks down. Within each 
scaling domain identified in our analysis, all the river plan- 
forms exhibit linear structures in the residual plots, as well as 
an equal number of positive and negative standardized residual 
values; all the regressions exhibit r2 > 0.99 at the 95% level. 
of confidence. 

Richardson plots from our reaches exhibit either a single 
fractal dimension or two fractal dimensions defined over dis- 
tinct scaling ranges. These scaling ranges are separated by a 
scaling threshold E,, with either D ,  > DI  or D, < D,, where 
D, is the fractal dimension at scales below E,, and D ,  is the 
fractal dimension at scales above E, {Tables 1-3). Nearly all 
the rivers studied are narrower than the minimum ruler length 
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Figure 3. (a) Richardson plot of Little Deer Creek (BV 
river) described by a single fractal dimension, D = 1.103. (b) 
Standardized residuals of Richardson plot. 
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employed to measure the planform length L ;  only data from 
the widest AV river (South Fork Hoh River) exhibit a discern- 
able lower cutoff 

The three valley types (BV, GV, and AV) are described by 
three different types of Richardson plots. The BV rivers that 
define the majority of our sample are described by a single 
fractal dimension that ranges from 1.04 to 1.18 (Table 1; Fig- 
ures 1 and 3). The GV rivers exhibit D, > DI ,  with D, ranging 
from 1.10 to 1.23, and D, from 1.05 to 1.14 (Table 2; Figure 4). 
In contrast, the AV rivers are described by D, < DI, with D, 
ranging from 1.08 to 1.17, and D I  from 1.19 to 1.30 (Table 3 
and Figure 5). At short E length scales, the BV and AV rivers 
have similar fractal dimensions, while the GV rivers are de- 
scribed by higher D values. At large E length scales, the fractal 
dimension of AV rivers exceeds that of the GV rivers. GV and 
AV rivers exhibit E,, values roughly double those of BV 
rivers. AV rivers further exhibit a transition scaling threshold 
(E,), as well as maximum meander amplitudes and wave- 
lengths roughly twice those of GV rivers. 

Among the river planforms partitioned into upstream and 
downstream reaches, the upstream sections of these reaches 
are described by a lower D than the downstream sections 
(Figures 6 and 7). Upstream reaches correspond either to BV 
rivers with low D or to GV rivers described by D, > DI, while 
downstream reaches correspond either to BV rivers with larger 
D or to AV rivers described by D, < DI. 

= 120 m). 

\ t 

Scaling Thresholds and Sinuosity 
The scaling thresholds defined by E,  and E,, are related to 

the amplitude (A)  and wavelength (A) of the largest meander 

4.54 , . 

4.46 - 
4.44, . , , , 

-1 

- 8 2 ,  I 

# 2.0 2.2 2.4 2.6 ' 2.8 
(b) log E (m) 

Figure 5. (a) Richardson plot of South Fork Hoh River (AV 
river) described by two fractal dimensions D, = 1.102 and 
DI = 1.186. (b) Standardized residuals for the composite 
regression displaying two distinct straight line structures defin- 
ing scaling domains for calculating two linear regressions 
shown in the Richardson plot as straight lines (solid circles, 
emin < E < E,; open circles, E ,  < E < E,=). 

u, o 5 ,  I 

' i 1.0 1.5 2.0 2.5 3.0 
(b) log E (m) 

Figure 4. (a) Richardson plot of Finney Creek (GV river) 
described by two fractal dimensions. At smaller scales D, = 
1.229, while at larger scales D ,  = 1.106. (b) Standardized 
residuals for the composite regression showing two distinct 
straight line structures defining two different linear regressions 
in the Richardson plot shown as two straight lines (solid circles, 

< E < E,; open circles, E ,  < E < E,=). 

in each river planform (Figure 8). The scaling thresholds iden- 
tified above are correlated to meander length scales in each 
valley type (Table 4). Also, the wavelength of the largest me- 
ander defines an upper limit to E,, for all data (Figure Sa), 
whereas the meander amplitude provides a reasonable predic- 
tor of the transition scaling threshold (E,). Hence the size of 
the largest meander amplitude and wavelength appears to limit 
the scale range over which fractal scaling describes river plan- 
forms. The scaling threshold E, for GV and AV rivers is less 
than the largest A and is approximately equal to the largest A 
(Figure 8b and Table 4). These results reveal that the largest 
meander wavelength limits E,, and that E, approximately 
equals the largest meander amplitude for both GV and AV 
rivers (Table 4). 

Discussion 
Many workers have explored characterizing river planforms 

using fractal dimensions, but none related differences in form 
(i.e., D) to differences in process, in part because estimates of 
D using Hortonian or allometric relations provide unreliable 
fractal dimensions [Andrle, 1992; Klinkenberg and Goodchild, 
1992; Helmlinger et al., 1993; Phillips, 1993; Klinkenberg, 19941. 
Moreover, the wide range of scales typically used to calculate 
fractal dimensions by the divider method [e.g., Aviles et al., 
1987; Hjelmfelt, 1988; Tarboton et al., 1988; Sizow, 1989; Rosso 
et al., 1991; Gait et al., 19921 often exceed length scales intrinsic 
to the method, thereby undermining the ability to relate fractal 
dimensions to physical processes. Distinct scaling properties of 
the three river types discussed above document a relation to 
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Figure 6. (a) Richardson plot of the upstream section of Little 
Deer Creek (BV river) described by a single fractal dimension 
D = 1.076. (b) Standardized residuals of Richardson plot. 

valley morphology. The channel width and the largest meander 
wavelength bound these scaling domains over which fractal 
geometry describes river planforms. This narrow scale range 
demonstrates that though river planforms may be self-affine, 
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Figure 7. (a) Richardson plot of the downstream section of 
Little Deer Creek (BV river) described by a single fractal dmen- 
sion D = 1.176. (b) Standardized residuals of Ricliardson plot. 
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(b) A (m) 
Figure 8. Correlation diagrams of (a) E,, versus maximum 
meander wavelength (A) and (b) E, versus maximum meander 
amplitude (A) (open circles, BV river data; solid circles, GV 
river data; squares, AV river data). Lines represent 1:l rela- 
tions; regression equations are collated in Table 4. 

they are strictly self-similar only over a restricted range of 
scales. 

The interplay of water flow, sediment transport, bed topog- 
raphy, and the nature of channel bank material controls me- 
ander development. Although some aspects of river planform 
geometry may reflect random processes [Langbein and 
Leopold, 1966; Thakur and Scheidegger, 1970; Ghosh and 
Scheidegger, 1971; Shreve, 1969, 1974; Ferguson, 1976; Wallis, 
1978; Turcotte, 19921, the form and scale of meander patterns 
depend on interactions among channel gradient, valley floor 
material and the ratio of the river width to the valley width 
[Wolman and Leopold, 1957; Bognold, 1960; Leopold and Wol- 
man, 1960; Schumm, 1963; Ferguson, 1975; Hey, 1976; Davies 
and Tinker, 1984; Williams, 19861. The form and sue of mean- 
ders also depend on the river width-to-depth ratio, discharge, 
and the hydraulic properties of flow through bends [Dury, 1955, 
1969; Einstein and Shen, 1964; Engelund and Skovgaard, 1973; 
Ferguson, 1975; Parker, 1976; Dietrich et al., 1979; Howard and 

Table 4. Relations Between Fractal Scaling and Meander 
Features 

E,, Versus A E, Versus A 

All data E,, = 72.8 f 1.02A; E, = -9.4 f 0.99~4; 
r = 0.85 

r = 0.58 

r = 0.96 

r = 0.86 

r = 0.81 ... BV rivers 

GV rivers 

AV rivers 

E,, = 109 i- 0.22h; 

= -20.6 + 0.99h; E, = -0.76 + 0.79A; 

E, = 11.9 f 0.57A; 
r = 0.94 

r = 0.49 
E,, = 39.4 + 0.65h; 

Least squares linear regression equations of Figure 8 plots. BV, 
bedrock valley; GV, glacial valley; AV, alluvial valley. 



Heinberger, 19911. Our results indicate that the morphological 
signature of these processes defines the range of scales over 
which fractal geometry describes river planforms. 

The relation between a channel and its valley helps explain 
the different scaling patterns of BV, AV, and GV rivers. BV 
rivers occupy narrow, confined valleys in which bedrock struc- 
ture, strength, and fracture patterns may influence channel 
orientation. Resistant bedrock valley walls impede meander- 
ing, leading to quasi-linear planforms described by a single low 
D .  The single D implies a lack of a preferential scale to the 
planform of bedrock rivers. GV rivers confined within incised 
glacial terraces meander freely at short length scales within the 
valley, but the inherited glacial form constrains channel form 
at larger scales. This restriction at large scales results in higher 
D at short wavelengths and lower D at longer wavelengths. In 
contrast, AV rivers occupying wide floodplains typically have 
low gradients and unconsolidated bank material that encour- 
age meander development, and meander wavelength is pro- 
portional to discharge [Dury, 1955, 1969; Carlston, 1965; Ikeda 
et al., 1981; Ricliards, 19821. Although AV rivers are free to 
meander at all length scales, the lower D observed at shorter 
length scales documents simpler fine-scale channel form. We 
infer that the transitional scale (i.e., cc) represents that scale 
above which random influences dominate channel pattern and 
below which the interplay of flow hydraulics and sediment 
transport governing channel form [Einstein and Shen, 1964; 
Engelund and Skovgaard, 1973; Parker, 1976; Dietrich et al., 
1979; Ikeda et al., 1981; Dietrich and Sinith, 19831 results in 
relatively smooth meanders. These differences among BV, GV, 
and AV rivers imply that the scaling properties of river plan- 
forms may reveal the range of scales over which different types 
of processes influence river planforms. 

Conclusions 
Our analyses reveal that river planforms exhibit fractal scal- 

ing properties over scaling ranges bounded by the channel 
width and the largest meander wavelength. In mountain drain- 
age basins of Washington State, a single, low fractal dimension 
describes rivers flowing in confined bedrock valleys (BV riv- 
ers). A scaling threshold related to the, amplitude of the largest 
meander separates distinct scaling domains apparent in Rich- 
ardson plots of river planforms flowing either in inherited 
glacial valleys (GV rivers) or in wide alluvial valleys (AV riv- 
ers). GV rivers exhibit higher values of D at small scales and 
lower values of D at large scales, while AV rivers display the 
opposite relation. We believe these analyses to be the first to 
relate the scaling properties of river planforms to the genetic 
relation between a river and its valley. 
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