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Biases in the measurements of spatial distribution of fish schools and their conse- 
quences for school biomass estimates during conventional acoustic surveys are mainly 
due to vertical and lateral avoidance of the vessel. In this paper, we quantify school 
avoidance during an acoustic survey carried out from 13 to 29 May 1994 in the 
Catalan Sea. From a lateral multi-beam sonar the geometric characteristics (depth, 
length, width, height, surface, and volume) of 1268 schools were obtained. The 60 
beams (1.5" x 15") of the sonar scanned a vertical plane from o" to 9o", perpendicular 
to the vessel path within a range of 100m. Within this plane, the projected area 
ensonified by the echo-sounder used aboard for acoustic evaluation was evaluated to 
simulate a comparison between the sonar and the echo-sounder. The results have 
enabled us to improve our knowledge on the vertical and lateral avoidance patterns of 
schools in relation to. their size, external structure, and their position in the water 
column, and to quantify the vessel influence on biomass estimated by echo-sounder. 
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Introduction cation of the seawater temperature was responsible for 

The acoustic observation on the spatial distribution of 
pelagic fish is often biased by the reaction of fish 
responding to the survey vessel (Olsen et al., 1983), and 
the correction of the data for this bias, for spatial 
distribution as well as for biomass estimate, is essential. 
Combined techniques, using both echo-sounder and 
sonar, have already been suggested for the study of the 
behaviour of fish schools around the vessel (Lamboeuf 
et al., 1983). The use of single-beam sonar in stock 
assessment has already been described (Bazigos, 1975). 
The sonar was ,mainly used for school counting during 
the acoustic survey, the beam being directed horizontally 
at 90" from the vessel route. The schools were then 
counted on a surface limited by two lines parallel to the 
transect, usually at a distance of 200 and 400 m from the 
transect line. This method was not a real success, 
probably because the actual volume sampled by the 
acoustic beam was ,not  easy to evaluate (Forbes and- 
Nakken, 1972). Close to the vessel (<lo0 m) the beam 
was too narrow to give an exhaustive view of the water 
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"blind areas". 
However, the recent availability of multi-beam sonars 

has allowed scientists to study school behaviour, mainly 
the reaction of schools to fishing boats (Aglen, 1985; 
Diner and Massé, 1987; Misund and Aglen, 1992). This 
paper presents results that indicate how vertical sounder 
information is biased and suggests a methodological 
use of multi-beam sonar in acoustic stock assessment 
methods. 

Materials r 

The multi-beam sonar used was a Reson SEABAT 6012 
with 60 beams of 1.5" (at - 3 dB) each, and 15" in the 
perpendicular direction, surveying a total reception 
angle of go", while the corresponding emission angle was 
120". The sonar frequency was 455 kHz, with pulse 
length of 0.06ms. The TVG function is adjusted at 
_. 20 log R. The range was fixed at 100 m but the efficient 

radge was actually 80m because of background noise 
ov& this distance. At this range the 60 beams were 
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Figure 1. Diagram of the sonar sampling methodology (for 
'clarity, the survey is represented with a very low sampling rate 
but during the survey the distance between transmissions was 
always lower than one metre). 

at 5 knots vessel speed, one sample each 0.37 m along 
the vessel path. The image was a smoothing of two 
successive transmissions. The data obtained from the 
90" sector ensonified were equivalent to 2D video 
images. Experiments (in experimental tank and at sea) 
with calibrated targets indicated that in a homo- 
geneous acoustic field the sonar gives an acceptable 
uniformity in the distribution of brightness on the 
screen. The sonar head was set at 4 m depth to observe 
in the vertical plane so that it could record from O" to 
90" down and scan the side of the vessel route. We 
were thus able to explore the water column ex- 
haustively on one side of the vessel (Fig. 1). 

In this experiment, data were collected only during 
day-time (1700 to 1900 GMT) and from two acoustic 
surveys carried out in the Mediterranean Sea (Spain) 
from 19 to 26 May 1994 on board the RV "Garcia del 
Cid". The first data set was collected using a survey 
design with regularly spaced transects. The second data 
set was recorded during a 26 h station on a fish concen- 
tration near the Catalan coast (40"OS'N and OO"3O'W) at 
a depth less than 40m. This last station consisted in 
repeating 13 rectangluar tracks (1.5 x 2.5 nmi) of 2 h 
each at around 5 knots vessel speed. The trawling hauls, 
made 2 d  later all over these areas, indicated a domi- 
nance of small sardines (Sardina pilchardus W.) and 
anchovies (Engradis encrasicolus L.). 

Methods 
The sonar data video images were recorded on S-VHS 
videotapes and then post-processed in our laboratory 
(Gerlotto et a l ,  1994). Schools smaller than 5 m2 were 
not considered. For each school, the greatest height 
(HMAX) and "width" (WMAX, perpendicular to the 
vessel path) and the distance between the centre of 
gravity of the school and the surface (DSURF) were 

measured. The distance from the centre of gravity of the 
school to the vertical line under the vessel sonar 
(DBCOR) was then computed. Owing to the low value 
of the beam angle in the vertical plane perpendicular to 
the vessel path (1.5"), no beam pattern correction was 
applied. The "length" of schools along the vessel path 
(LMAX) was estimated from the vessel speed and the 
total number of images counted. In this plane the 
reception beam angle is not negligible (15" at - 3 dB1 
and therefore a beam-width correction related to the 
distance from the tranducer was applied on these esti- 
mated "lengths". The beam-width correction mainly 
used is (Johannesson and Losse, 1977): Bc=2*R*tg(u/2), 
where R is the distance from the boat and u the efficient 
beam angle. Thus, we obtained a corrected length: 
LCOR=LMAX - Bc. 

The efficient sonar beam angle was estimated assum- 
ing that, apart from the vessel path (R>25 m), the shape 
of the school was not influenced by the vessel and 
therefore the LCOR versus WMAX scatterplot should 
be symmetrically distributed on each side of the bissec- 
trix. Therefore, an empirical efficient beam angle (u) of 
8" was obtained. This correction still provided a few 
negative length values. In order to correct them we had 
to assume that schools with LCORrWMAX lower than 
0.1 were overcorrected, as their length was shorter than 
the beam width. In these few cases (4%) we did not apply 
the beam correction and we assumed that LCOR= 
O. l*WMAX. From these values the surface of the school 
cross-section (S) and the school volume VCOR were 
estimated assuming an ellipsoid shape (Squire, 1978). 

We also used a vertical echo-sounder during this 
experiment (38 kHz, beam angle of lo'), mounted on a 
subsurface towed body on the same board as the sonar 
head. As no intercalibration between the sonar and the 
vertical echo-sounder was available, we did not com- 
pare quantitatively the exact data obtained by the two 
instruments. However, the limit of the vertical beam 
echo-sounder within the sonar beam range was plotted. 
Because of the radial orientation of the sonar beams, 
vertical and horizontal limits were added (at 55 m deep 
and at a distance of 70m from the boat) in order to 
obtain a rectangular sampling volume. Once these 
limits were set we distinguished two areas. The first 
one (Al), close to the vessel, corresponded to half of 
the area ensonified by the vertical echo-sounder. The 
second one (A2) was the remainder of the area ensoni- 
fied by the sonar (Fig. 2). After that, in each area the 
geometrical characteristics of schools and their distri- 
bution in the water column were measured and then 
compared. 

A one-way analysis of variance (ANOVA) for un- 
balanced design was performed on the different school 
descriptors in order to test the influence of the lateral 
distance from the vessel. The range tests were carried out 
with the Duncan method. 
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Figure 2. Projection in a vertical plane perpendicular to the 
vessel path of the 1268 school detections (close circles). Al 
represents the simulated area ensonified by half of the echo- 
sounder beam. Al +A2 represents a limited rectangular area 
ensonsed by the sonar. 

Results 
The sonar recorded 1268 schools. The DSURF versus 
DBCOR scatterplot is shown in Figure 2. Within the 
limits defined above, 933 schools were counted in the A2 
area and 13 schools in the A l  area. Considering the area 
each instrument sampled, the number of schools per 
surface unit projected within the “virtual” vertical echo- 
sounder beam A l  (0.10 schools m-’) was half that in 
the whole area A1+A2 (0.242 school m-’). 

The DBCOR frequency histogram (Fig. 3) shows a 
non-uniform distribution (~’~75, 9; p<O.OOl) of school 
frequency along this distance, contrary to what should 
be expected under the null hypothesis (Ho) of no lateral 
avoidance. There is a bimodal distribution of schools 
along this axis. The first mode, covering the class 
between O and 40 m, is characterized by few schools near 
the vessel (between O and loin) and a peak of values 
between 10 and 22m. The second mode covers the 
class between 40 and 70 m and presents the highest 
frequencies. These results confirm that, during day- 
time, an important lateral school avoidance reaction 
occurs. 

In area A l  +A2, the mean DSURF per 10 m class of 
lateral distance from the vessel was computed (Fig. 4). 
The distance effect on the school depth was significant 
(ANOVA, F=2.51, p<0.02) and’the DSURF mean of 
the distance class closest to the vessel (O-1Om) was 
significantly higher than all the other ones (Duncan test, 
p<0.05) except for the 50-60 m class (note that the A l  
area is totally included in the first class (0.10 m)). In the 
same way, the distance effect on the log-transformed 
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Figure 3. Frequency histogram of the lateral distances between 
the centre of gravity of the school and the vessel (DBCOR). 
Dashed line is the expected average under Ho; n=946. 
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Figure 4. Box-whisker plot of the school mean depth versus the 
lateral distance from the vessel (10 m strata). The central box 
covers the middle 50% of the data value between the lower and 
upper quartiles. The width of the box is proportional to the 
square root of the number of observations. The notch corre- 
sponds to the width of a confidence interval for the median. The 
vertical bar inside the box represents one standard deviation 
around the mean. The “whiskers” extend out to the values that 
are within 1.5 times the interquartile range. Outlier points are 
plotted as separate points. 

values of HMAX was highly significant (F=30.4, 
p<O.OOl) and the first two classes present significantly 
smaller HMAX mean values than all the others (Duncan 
test, p<0.04, Fig. 5). The distance effect on the log- 
transformed WMAX was also significant (Fz5.65, 
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Figure 5. Box-whisker plot (see Fig. 4 for details) of the school 
mean height versus the lateral distance from the vessel (10 m 
strata). 

p<O.OOl), but the range test indicates that neighbour 
distance classes can be grouped two-by-two, which 
indicates a more gradual effect of the distance from the 
boat on the school width. The distance effect on the 

‘ log-transformed LCOR was not significant (Fz1.90, 
p =0.08). Nevertheless, the relationship between LCOR 
and the lateral distance was sensitive to the beam angle 
correction. As expected, the lateral distance effect on 
log-transformed values of S and VCOR was significantly 
different (F=16.7, p<O.OOl and F=9.51, p<O.OOl 
respectively, Fig. 6) since these values were estimated 
from HMAX and WMAX. These results corroborate 
the hypothesis of a strong vertical school avoidance 
close to the hull of the vessel along with vertical com- 
pression (Fréon et al, 1990). This vertical compression is 
associated with a horizontal one which seems to occur 
mainly in the direction perpendicular to the vessel path 
(WMAX). 

Discussion 
The general pattern of school frequency related to the 
lateral distance from the boat corresponds to the associ- 
ation of the alarm hearing threshold of fish, their flight 
speed, and their distance of reaction linked to the degree 
of disturbance by the vessel. The distribution of fish 
scplools on the starboard side of the vessel (Fig. 3) allows 
us, to make the following assumption: the fish school 
lateral avoidance reaction follows a double “wave-of- 
avoidance” pattern related to the distribution of the 
so’und pressure gradient in front of the vessel (Fig. 7). 
The first wave would appear far away from the vessel, at 
the very moment the fish detect the sound pressure of the 
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Figure 6. Box-whisker plot (see Fig. 4 for details) of the 
log-transformed mean school surface versus the lateral distance 
from the vessel (10 m strata). 

boat. At this stage, because of the acoustic shadow effect 
of the hull of the vessel, a first group of schools is 
trapped along the axis of the vessel path (Urick, 1975; 
Gerlotto and Fréon, 1988; Aglen and Misund, 1990). 
The second group escapes laterally and will then be 
detected by the lateral sonar far from the boat. This 
assumption corresponds to our results, since the average 
frequency of the schools far away from the boat (that is, 
between 40 and 70m from the boat and up to 55m 
deep) was significantly higher than the average fre- 
quency expected under the hypothesis of no lateral 
avoidance (70% instead of 56%, see Fig. 3). Then, while 
the boat is approaching, some of the schools trapped 
inside the acoustic shadow cone avoid the hull both 
laterally and vertically at a very short distance from the 
vessel. The others just dive when the boat passes over 
them. Thus, the lack of schools along the track of the 
boat (see Fig. 3) and the associated peak in schools 
frequency observed between 12 and 24m would 
correspond to this near-field avoidance reaction. 

Our results follow the schematic pattern of gradual 
reactions of fish. The more they detect sensory stimuli, 
the stronger is each additional stimulus intensity and 
the stronger is their reaction (Gerlotto and Fréon, 
1990). In this classification, first the fish far away from 
the boat are disturbed by the sound of the propeller 
(Olsen, 1971) and so they react with a polarized posi- 
tion. This polarization induces a fast compression and 
enables the fish to avoid the disturbed area by a fast 
and coordinated movement of the school (Fréon et aL, 
1993; Pitcher and Parrish, 1993). According to several 
authors, this avoidance reaction can appear far from 
the vessel (Neproshin, 1978; Schuijf and Hawkins, 
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Figure 7. Schematic diagram of the "double wave of avoidance" mechanism. Time O: schools far from the vessel; Time 1: schools 
at medium distance, first wave of avoidance; Time 2: schools below the vessel, second wave of avoidance. White dots: schools 
avoiding during the first wave. Grey dots: schools avoiding during the second wave. Black dots: schools actually recorded by the 
echo-sounder. Black arrows: propagation of sound. Striped arrows: movement of schools. 

1983; Bercy and Bordeau, 1987; Mitson, 1993) and 
may involve up to 41% of the schools (Misund and 
Aglen, 1992). It is likely that our methodology under- 
estimates the total avoidance, since lateral avoidance 
reaction over 80m from the vessel path cannot be 
measured. Secondly, confronted with an impending 
contact with the hull of the boat, fish escape in the 
direction opposite to the disturbing visual source either 
by diving under the hull (Fig. 4) or by escaping 
laterally. The upper part of the school is compressed, 
which explains the disparity in school height and shape 
observed in Figures 5 and 6. This flight reaction is 
linked to the hull operating as a visual releaser and, in 
the case of pelagic fish, it could appear at a few metres 
from them. In this case, the flight distance is a function 
of the minimum approach distance of the species but 
can vary either with several abiotic factors (turbidity 
and temperature) or biotic factors (visual capabilities, 
past learning experiences (Goodey and Liley, 1986; 
Soria et al., 1993) or physiological stage). 
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