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Abstract. From 1988 to 1990, fish larvae were sampled 
before, during, and after ice breakup within and outside 
the plume of the Great Whale River off Kuujjuarapik, 
southeastern Hudson Bay, Canada. Arctic cod (Boreoga- 
dus saida) and sand lance (Ammodytes spp.) were the most 
abundant larvae. Half of the larval fish taxa emerged 
before the ice broke up in the Bay. The highest densities of 
Arctic cod, sand lance, slender eelblenny, and gelatinous 
snailfish larvae were in salinities exceeding 25 practical 
salinity units (PAU.). Arctic shanny, sculpins, and capelin 
larvae were more abundant at salinities between 1 and 
25 P.S.U.. Burbot and coregonid larvae were clearly associ- 
ated with fresh or brackish waters even when caught in the 
Bay. The timing and extent of the Great Whale River 
freshet influenced the distribution of marine fish larvae in 
southeastern Hudson Bay and determined the moment 
when the larvae of anadromous and freshwater species 
entered the Bay. 

Arctic and subarctic seas are characterized by a short 
season of production which begins with the development 
of ice algae at the ice bottom (Apollonio 1961; Horner 
1976; Alexander 1980). Fish larvae emerging in these 
environments often present a protracted larval phase due 
to poor feeding conditions and slow growth (Houde 1989). 
Because of this slow development and the short produc- 
tion season, fish larvae are presumably more likely to 
encounter adverse environmental conditions at these high 
latitudes than at lower latitudes (Houde 1989). Hence, the 
timing of spawning (Cushing 1975) and the selection of 
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favorable spawning sites by adults (Iles and Sinclair 1982) 
should be particularly critical for the recruitment success of 
fish species inhabiting Arctic and subarctic environments. 

Hudson Bay is a large subarctic inland sea usually 
covered by ice from December to early June (Markham 
1986; Larouche and Galbraith 1989). Several studies have 
been conducted on the distribution and basic biology of 
adult fish in this area (Vladykov 1933; Hunter 1968; Auger 
and Power 1978; Morin et al. 1980; Morin and Dodson 
1986) especially for anadromous coregonids (Dymond 
1933; Kemp et al. 1989; Morin et al. 1981). Yet, except for a 
study of the khthyoplankton assemblage of the Eastmain 
River estuary, James Bay (Ochman and Dodson 1982), the 
early life history of both marine and anadromous species 
in the general area of Hudson Bay is poorly known. 

In southeastern Hudson Bay primary and secondary 
production dynamics have been intensively studied (Gos- 
selin et al. 1985, 1986, and 1990; Legendre et al. 1981 and 
1989; Runge and Ingram 1988; Runge et al. 1991; Touran- 
geau and Runge 1991). Research on the early life history 
stages of fish has been initiated only recently and has 
focused on the survival (Drolet et al. 1991), feeding success 
(Gilbert et al. 1992), and vertical distribution (Ponton and 
Fortier 1992) of marine fish larvae in relation to light and 
food availability under the ice cover. 

In this paper we present the seasonal occurrence and 
general distribution of the larval stages of freshwater, 
anadromous and marine fish sampled in and around the 
plume of the Great Whale River in the spring and early 
summer of 1988, 1989 and 1990. In particular, we relate the 
timing of the emergence of the different species to the 
development of the river plume and the breakup of the ice 
cover in the Bay. Previous information on the spawning 
strategy and early life history of Arctic and subarctic fish is 
reviewed and discussed in the light of this new data set. 

Materials and methods 
Study area 

The waters of southeastern Hudson Bay are strongly influenced by 
freshwater inputs from rivers. The Great Whale River (Fig. 1) is one 
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Fig. 1. Sampling stations in southeastern Hudson Bay, Canada. 
Opeiz symbols: location of underice sampling with snowmobiles (UIS) 
and open-water sampling by helicopter (HS). Solid symbols: open 
water stations sampled from a boat (BS) 

of the most important sources of freshwater in the Bay. At the freshet 
in May, its outflow increases from 135-200m3.s-' to ca. 
900 m3 .s-I, forming a plume that extends NNE under the ice of the 
Bay over a 1000 km' area (Ingram 1981; Ingram and Larouche 
1987). Ice generally breaks up around May 20 in the Great Whale 
River (Wilson 1973), i.e., about 10 days earlier than in the Bay itself 
off Kuujjuarapik. Once the pack-ice has broken up, increased wind 
stress and larger tidal flow induce rapid mixing of the plume waters 
with the underlying saline waters, hence reducing stratification in the 
Bay (Lepage and Ingram 1991). 

Sampling techniques and data treatment 

Two to four stations located on a 20-km transect heading northward 
from the mouth of the Great Whale River were sampled before, 
during and after ice breakup (April to June) in 1988,1989, and 1990 
(Fig. lb). As ice broke up, open-water stations were added in the 
lower part of the River and along the Kuujjuarapik coastal area 
(Fig. IC). Several ichthyoplankton samples were obtained also in the 
Richmond Gulf and Belcher Islands areas in June 1990 (Fig. la). 

Sampling methods were adjusted for changes in ice-cover condi- 
tions (Table 1). Under ice cover, two 1 m', 500 pm mesh plankton 
nets fitted side by side on a rectangular metal frame were used to 
sample horizontally at depths of 0-2 m and ca. 6-8 m (ca. 8-10 m in 
1988). These nets were attached to a cable forming a loop between 
two holes separated by 150m (200m in 1988) and towed with a 
heavy-duty snowmobile. After ice breakup, a 1 m diameter, 500 pm 
mesh conical net with an 80pm mesh rigid codend was towed at 
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similar depths from a float-mounted helicopter that alighted in ice- 
free areas near the sampling locations. Details of both underice (UIS) 
and helicopter (HS) sampling are described in Drolet et al. (1991) and 
Gilbert et al. (1992). In ice-free conditions, a 1 m diameter, 6 m long 
and 500 pm mesh size net was pulled by a 35 HP power-boat. Boat 
sampling (BS) was limited to the surface layer (O-2m) except in 
August 1990 when a more powerful boat equipped with a winch 
allowed sampling between 7 and 26 m depths using the same net. 
Filtered volume was measured with a calibrated TSK flowmeter 
installed in the center of ti.. let opening. Depending on the sampling 
technique, nets were towed from 3 to 15 min and average filtered 
volumes ranged from 284 m3 to 653 m3 (Table 1). All samples were 
preserved in 4% neutralized formalin. 

A CTD profile was obtained with a portable Seacat probe before 
plankton sampling at each station. Temperature (" C) and salinity 
(practical salinity units P.S.U.) values were later associated with each 
ichthyoplankton sample. They were calculated as the arithmetic 
means of the observations in a 2 m thick water layer corresponding 
to the plankton sampling depth. 

All larvae were sorted, counted and measured to the nearest 
0.1 mm. Most of marine fish larvae were identified according to 
Fahay (1983). Other descriptions used were from Dunn and Vinter 
(1984) for Boreogadus saida, Faber (1976) for Stichaeidae and 
Lumpenidae, Cucin and Faber (1985) for Coregoizus clugeaforinis, 
C. artedii and Lota lota, Auer (1982) for other freshwater species and 
Khan (1971) for larvae of Myoxocephalus spp. 

Y 
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Results 

Temperature and saliiiity 

Our sampling design allowed us to cover most of. the 
temperature-salinity conditions existing in spring and 
summer in the coastal area of southeastern Hudson Bay. 
Under the ice cover in April-May, the cold (< - 1 "C) and 
saline (> 25 PAU.) marine layer mixed little with the 
warmer (> OOC) and brackish (< 5 PAU.) plume of the 
Great Whale River (Fig. 2a). Mixing increased in June 
when ice broke up in the Bay (Fig. 2b). The July-August 
period presented a classical estuarine situation where the 
warm freshwater progressively mixed with the cold, mar- 
ine Hudson Bay water (Fig. 2c). 

Larval jìsh coininunity 

Individuals from 21 species belonging to 12 families were 
caught over the three-year period (Table 2). Arctic cod 
(Boreogadus saida) and sand lance (Ammodytes spp.) con- 
tributed 50.4% and 37.9% of the total respectively. Burbot 
(Lota lota), Stichaeidae (Arctic shanny, Stichaeus punctatus 
and slender eelblenny, Lumpenus fabricii), Cottidae (Arctic 
staghorn sculpin Gyinnocanthus tricuspis and other scul- 
pins Myoxocephalus spp.), Cyclopteridae (gelatinous snail- 
fish, Liparis fabricii) and Osmeridae (capelin, Mallotus 
villosus) were one order of magnitude less abundant. 
Salmonidae represented 0.25% of the larvae with 26 cisco 
(Coregonus artedii) and 6 lake whitefish (C. clupeaforniis). 
Other species were scarcer. 

Seasonal occurrence and abundance 

Larvae from 56% of,the fish taxa emerged before the ice 
breakup in the Bay (Fig. 3). Arctic cod (Boreogadus saida) 
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Fig. 2a-c. Temperature-salinity values observed at depths of icht- 
hyoplankton sampling in April-May (a), June (b), and July-August (e) 

and sand lance (Ammodytes spp.) were first to appear at the 
end of April and persisted throughout each sampling 
period. Hatching of Arctic cod probably began earlier 
than our sampling as s'Òme individuals were present in the 
very first collections (Fig. 3). Larvae of burbot (Lota lota) 
and coregonid (Coregonus spp.) which hatched in the 
Great Whale River, first occurred in the Bay in early and 
late May respectively, i.e. generally just before and after ice 
breakup in the River. Larvae of two freshwater species, 
lake chub (Couesius plumbeus) and longnose sucker 
(Catostomus catostomus), occurred in July in the lower part 
of the River. Hatching of Arctic alligator fish eggs (Aspido- 
phoroides olkiri) probably began in early June as some 
yolk-sac larvae were sampled at that time. Capelin (Mallo- 
tu3 villosus) and Greenland cod (Gadus ogac) larvae did not 
occur until July. 

Arctic cod (Boreogadus saida) and sand lance (Amnio- 
dytes spp.) densities ranged between 5 and 50 larvae per 



, 324 

Table 2. List of the larval fish species caught in the southeastern coastal zone of Hudson Bay and in the Great Whale River. Uncertain 
identifications are in brackets 

Scientific name Common name Total number 
captured 

U 

Salmoniformes 
Salmonidae 

Coregoninae 
Coregonus artedii Lesueur, 1818 
C. clzrpeaformis (Mitchill, 181 8) 

Osmeridae 

Cypriniformes 
Cyprinidae 

Catostomidae 

Mallotus villosus (Müller, 1777) 

[Couesius pluinbeits (Agassiz, 1 SSO)] 

Catostomiis catostomzis (Forster, 1773) 
Gadiformes 

Gadidae 
Boreogadus snida (Lepechin, 1774) 
Gadus ogac Richardson, 1836 
Lota lofa (Linnaeus, 1758) 

Perciformes 
Stichaeidae 

Lumpeiizis Cfabricii] (Valenciennes, 1836) 
Stichaeiis puizctatus (Fabricius, 1780) 

Pholis Cfasciara] (Bloch and Schneider, 1801) 

Ainmodytes spp. 

Pholidae 

Ammodytidae 

[A. ainericarius DeKay, 1842 and 
A.  dirbizis Reinhardt, 18381 

Cottidae 
Gymnocanthiis triczispis (Rheinhardt, 1832) 
Icelzis sp. 

[I. bicorizis (Reinhardt, 1841) or 
I. spatula Gilbert and Burke, 19121 

Myoxocephaltrs quadricornis (Linnaeus, 1758) 
M .  scorpioides (Fabricius, 1780) 

M .  scorpizrs (Linnaeus, 1758) 
Triglops sp. 

[T. miirrayi Günther, 1888 or 
T. pingeli Reinhardt, 18321 

Agonidae 

Cyclopteridae 

Pieuronectiformes 
Pleuronectidae 

Aspidophoroides olriki Liitken, 1876 

Liparis uabricii] Kroyer, 1847 

Hippoglossoides platessoides (Fabricius, 1780) 

cisco 
lake whitefish 

capelin 

[lake chub] 

longnose sucker 

Arctic cod 
Greenland cod 
burbot 

[slender eelblenny] 
Arctic shanny 

[banded gunnel] 

[American sand lance and 
northern sandlance] 

Arctic staghorn sculpin 

[two-horn sculpin or 
spatulate sculpin] 
fourhorn sculpin 
Arctic sculpin 

shorthorn sculpin 

[moustache sculpin or 
ribbed sculpin] 

Arctic alligatorfish 

[gelatinous snailfish] 

1 

American plaice 

26 
6 

88 

3 

4 

6420 
5 

334 

148 
498 

1 

4830 

102 

4 

152 

9 

6 

90 

19 

100m3 (Fig. 4a and b). Arctic cod densities sometimes 
exceeded 100 larvae per 100 m3 (Fig. 4a) and the maximum 
(470 larvae per 100 m3) was observed at a station off the 
Gulf of Richmond. Other species seldom reached densities 
in excess of 5.100 m-3. Coregonus spp. larvae were always 
scarce in the Bay or the River where densities never 
exceeded 1.100 m-3 (Fig. 4j). 

Larval abundance, water salinity and temperature 

. Larval distribution with respect to salinity and temper- 
ature varied between species and over time (Table 3). The 
highest densities of sand lance (Ammodytes spp.) larvae 

were always found in cold waters of salinity exceeding 
25 P.S.U.. Similar trends were observed for gelatinous 
snailfish (Liparis fabricii). Arctic cod (Boreogadus saida) 
and slender eelblenny (Lumpenus fabricii) larvae were more 
abundant in waters of intermediate to high salinity 
(15-25 P.s.u.) and low temperature (- 1.3 to 0.8"C) in 
April-May (Table 3, Wilcoxon test, P = 0.049). In June, 
both Arctic cod and sand lance larvae were much more 
abundant at salinities >25 PAU. and found only in small 
numbers, albeit regularly, in warmer waters of low salinity 
(Table 3). Arctic shanny (Stichaezu pzmctatus), sculpins 
(Myoxocephalais spp. and Gymnocanthus tricuspis) and 
capelin (Mallotus villosus) larvae were more abundant in 
waters of salinity and temperature ranging respectively 
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Fig. 3. Seasonal occurrence of all the larval fish 
species caught during 1988-1990. Arrows indi- 
cate the beginning of ice breakup in the Bay off 
Kuujjuarapik. Note that ice breakup generally 
occurred ten days earlier within the Great 
Whale River itself 
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Table 3. Occurrence (percent of samples in which the species was present) and mean densities (N.loO~n-~) of the ten most abundant species at various salinities (practical salinity units P.s.u.) and corresponding temperature ranges E 
(“C) for the three sampling periods. S D  standard deviation, P: associated probability of the Kruskal-Wallis test of differences between mean densities o\ 

APRIL-MAY JUNE JULY-AUGUST 
Salinity (P.s.u.) >I 1-15 15-25 > 25 21 1-1 5 15-25 > 25 91 1-15 15-25 > 25 
Temperature O - 1.3 - 1.3 - 1.5 0.6 -0.5 - 1.0 - 1.3 13.0 6.6 1.9 - &O 
ranges (“C) to 8.0 to 2.9 to 0.8 - to-0.1 to 10.8 to 9.0 to 1.4 to 0.2 to 14.3 to 8.3 to 8.4 to 8.1 

Marine water species 
Boreogadus saida 

Occurrence 
Mean Density 
SD 
P 

Occurrence 
Mean Density 
SD 
P 

Occurrence 
Mean Density 
SD 
P 

Occurrence 
Mean Density 
SD 
P 

Ammodytes sp. 

Lumpenus fabricii 

Liparis fabricii 

Brackish water species 
Stichaeus punctatus 

Occurrence 
Mean Density 
SD 
P 

Myoxocephalus spp. 
Occurrence 
Mean Density 
SD 
P 

Gymnocanthus tricuspis 
Occurrence 
Mean Density 
SD 
P 

Mallotus villosus 
Occurrence 
Mean Density 
SD 
P 

Freshwater species 
Lota lofa 

Occurrence 
Mean Density 
SD 
P 

Occurrence 
Mean Density 
SD 
P 

Coregonus spp. 

24 
0.84 
3.77 

54 
1.18 
2.23 

O 
O 
- 

IO 
0.03 
0.10 

4 
0.03 
0.13 

1 
<0.01 
0.03 

6 
0.02 
0.07 

O 
O 
- 

51 
0.60 
1.12 

15 
0.04 
0.11 

45 97 
3.40 9.78 

10.43 16.8 1 
< 0.000 1 

59 89 
1.87 3.03 
5.29 3.05 

< 0.000 1 

O 17 
O 0.07 

0.18 - 

<0.0001 

12 22 
0.03 0.06 
0.09 0.1 1 

0.4400 

10 25 
0.05 0.18 
0.15 0.43 

0.0235 

4 3 
0.02 < 0.0 1 
0.13 0.05 

0.5742 

8 8 
0.03 0.06 
0.12 0.24 

0.6082 

O O 
O O 
- - 

10 25 
0.13 0.07 
0.5 1 0.13 

<0.0001 

2 O 
<0.01 O 

0.02 - 
< 0.0001 

18 25 
8.61 0.65 

17.28 1.99 

14 . 35 
4.02 0.87 
5.60 1.73 

11 I 
0.05 10.01 
0.17 0.01 

Il 1 
0.08 < 0.0 1 
0.28 0.01 

14 9 
0.06 0.03 
0.20 0.10 

6 4 
0.02 <0.01 
0.07 0.03 

3 4 
0.01 0.02 
0.10 0.13 

O O 
O O 
- - 

7 37 
0.05 0.23 
0.22 0.45 

O 14 
O 0.03 

0.09 - 

58 67 
1.37 0.78 
2.45 1.46 

< 0.0001 

79 78 
1.43 0.67 
1.84 . 0.76 

<0.0001 

5 27 
<0.01 0.07 

0.02 0.17 
< 0.0001 

10 O 
0.02 O 
0.05 

0.0002 

63 72 
1.16 1.45 
1.65 3.32 

<0.0001 

47 50 
0.37 0.26 
0.69 0.54 

<0.0001 

47 22 
0.23 , 0.08 
0.39 0.18 

0.0001 

O O 
O O 
- - 

- 

5 O 
0.0 1 O 
0.06 - 

<0.0001 

O O 
O O 
- - 

76 O 
12.55 O 
19.94 - 

82 O 
9.73 . o  

14.33 - 

47 O 
0.27 O 
0.45 - 

23 O 
0.43 O 
0.98 - 

44 O 
0.32 O 
0.58 - 

23 O 
0.13 O 
0.28 - 

18 O 
0.06 O 
0.16 - 

O 8 
O 0.0 1 

0.04 - 

9 O 
0.04 O 
0.13 - 

O O 
0 -  O 
- - 

O 0 
O 0 
- - 

20 55 
0.04 0.8 1 
0.09 2.23 

< 0.0001 

O 5 
O 0.06 

0.26 - 
<0.0001 

O 0 
O 0 
- - 

20 45 
0.16 0.34 
0.35 0.50 

0.0020 

O 5 
O 0.02 

0.10 - 
0.6300 

O 5 
O 0.01 

0.06 - 
0.1830 

100 20 
1.88 0.08 
2.00 0.17 

<0.0001 

14 
0.50 
0.12 

85 
2.21 
3.30 

24 
0.09 
0.19 

0 
0 
- 

5 
0.03 
0.12 

9 
0.03 
0.09 

19 
0.04 
0.09 

5 
t0.01 

0.04 

0 
0 
- 

0 
0 - 
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Table 4. Mean length of Arctic cod lar- 
vae caught in Kuujjuarapik (K), Rich- Area Date Nb of Nb of YO Mean standard Z P 
mond Gulf (RG), and Belcher Islands 
(BI) areas in 1990. Z Mann-Whitney 
statistic and P: associated probability 

stations larvae yolk-sac length 
i* larvae (mm) 5 SD 

K 2 Jun 3 127 2.4 6.23 5 0.72 

RG 3 Jun 3 405 2.1 5.91 50.72 
7.47 5 0.64 K 5 Jun 3 296 0.3 

BI 6 J u n  3 22 o 5.71 k0.71 
K 11 Jun 3 556 1.9 7.99 0.75 

BI 12 Jun 3 144 O 6.06 0.64 

4.63 <0.0001 

7.21 <0.0001 

17.39 <0.0001 

from 1 to 25 p.s.u? and from - 1.3 to 9.O"C (Table 3). This 
trend was already present in April-May for Arctic shanny 
but developed only later for sculpins. Most burbot (Lota 
lota) and all coregonid (Coregonus clupeaformis and 
C. artedii) larvae were clearly restricted to the warm 
( > O  OC) and fresh or low salinity waters of the River or its 
plume (Table 3). 

Spatial variations in size distributions 

Differences in the size distribution of Arctic cod were 
detected at the larger geographic scale surveyed in June 
1990 (Table 4). At a given date, the larvae caught near 
Kuujjuarapik were significantly larger than those cap- 
tured in the Richmond Gulf and Belcher Islands areas. 
Most larvae had lost their yolk-sac at that time (June). 

Discussion 

Hudson Bay marine waters originate mostly from the 
adjacent Arctic ocean but are marginally influenced by 
inflows from the North Atlantic (Dunbar 1958). 
Freshwater inputs from large rivers around the Bay con- 
tribute to lower the surface salinity in coastal areas (Barber 
1967, Prinsenberg 1986). As a result, three main groups of 
fishes are found in Hudson Bay: 19 Arctic marine species 
(15 genera), 15 non-Arctic marine species (1 3 genera), and 
31 brackish and freshwater species (24 genera) (Morin and 
Dodson 1986). Three of the 14 families of marine fish 
inhabiting Hudson Bay were not represented in our 
samples: Zoarcidae (three Arctic species) whose repro- 
duction is poorly documented (Scott and Scott 1988), 
Cyclopteridae (three non-Arctic species) whose larvae are 
never truly planktonic (Russel 1976), and Clupeidae (Clu- 
pea harengus). Adult Atlantic herring (C. hareizgus) migr- 
ate into the Kuujjuarapik coastal area in summer 
(C. Michel, GIROQ, Université Laval, Québec, Canada, 
pers. comm.). The absence of herring larvae in our samples 
may indicate that this species does not spawn in the spring 
in the area studied. The freshwater fish larvae belonged to 
only five of the 11 species reported to colonize either the 
estuary or the lower part of the Great Whale River (Auger 
and Power 1978, Morin et al. 1980). Larvae distributed 
along the river and estuary banks may have been under- 
represented as we sampled only the main channel. 

The ichthyoplankton was dominated by Arctic cod 
Boreogadus saida. Although densities of Arctic cod larvae 

in southeastern Hudson Bay were similar to those ob- 
served in high Arctic areas (Sekerak 1982, Chiperzak et al. 
1990), their relative abundance was much lower. On 
average, they contributed only about 50% of the ichthyo- 
plankton community off Kuujjuarapik as opposed to 
85-95% in the high Arctic. This difference resulted from 
the high abundance of Anzmodytes spp. larvae which 
accounted for more than 33% of the total (Table 2) and 
occurred at densities comparable to those observed in 
temperate seas (Potter and Lough 1987). While B. saida is 
the key species in the high Arctic marine food web (see 
Bain and Sekerak 1978 for a review), it may have to share 
this role in southeastern Hudson Bay where its distribu- 
tion area overlaps that of Amiizodytes spp., a non-Arctic 
species. This hypothesis is consistent with the observation 
that sand lance adults represent a large proportion of the 
diet of ringed seals (Phoca Izispida) at least in late summer 
and fall in the Kuujjuarapik area (Breton-Provencher 
1979). 

Anadromous coregonids generally represent the most 
abundant component of estuarine fish communities in 
Hudson Bay (Morin et al. 1980). However, lake whitefish ~ 

(Coregonus clupeaforinis) and cisco (C. artedii) accounted 
only for 0.25% of the total number of larvae and 8.6% of 
the freshwater larvae caught in the Great Whale River - 
Kuujjuarapik area. Their densities remained one to two 
orders of magnitude lower than in the estuary of the 
Eastmain River in nearby James Bay (Ochman and Dod- 
son 1982). Kemp et al. (1989) observed that adult lake 
whitefish and cisco represented 42 to 98% of the Salmo- 
nids and 34 to 90% of all fish species by number in five 
rivers entering James and Hudson Bays between 52" 15' 
and 60'01'N. However, the authors found that these two 
species accounted for only 23% of the Salmonids and 7% 
of all fish species in the Great Whale River. This lower 
abundance of adults coregonids may explain the low 
densities of coregonid larvae observed in the river and its 
estuary. 

Knowledge of the early life history of the major fish 
species found in southeastern Hudson Bay is scarce and 
generally incomplete (Table 5a, b and c). Our observations 
complement the available information. For example, Arc- 
tic cod larvae first occurred in our samples in late April. 
This species therefore spawned in early winter in Hudson 
Bay as in most other Arctic areas (Table 5a). Data from 
various locations indicate that sand lance reproduces 
between December and April (Table 5b). In our sampling 
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area, sand lance larvae emerged later than Arctic cod 
perhaps as a result of protracted embryonic development 
at low temperatures (Table 5b). 

To our knowledge, development time of Arctic shanny 
(Stichaeus punctatus) eggs has never been documented. If 
spawning occurs in February-March in Hudson Bay as it 
does along Newfoundland shores (Table sa) and since we 
first caught these larvae in mid-May (Fig. 3), egg incuba- 
tion could last 2 to 3 months at temperatures below 0°C. 
No yolk-sac larvae of sculpin (Myoxocephahs spp.) and 
slender eelblenny (Lumpenzrsfnbricii) were caught in early 
summer (Fig. 3). These species therefore most likely repro- 
duce in winter as they do in the Baltic and the White Seas 
rather than in spring as in Alaska and off west Greenland 
(Table 5a and b). Winter spawning also appears to be the 
strategy adopted in subarctic areas by Arctic staghorn 
sculpin (Gymnocanthus tricuspis) and gelatinous snailfish 
(Liparis fabricii). Their larvae appeared in our samples 
during the first weeks of May (Fig. 3). Our results confirm 
that capelin (Mallotus villosus) spawn in early July in 
Hudson Bay as observed by Vladykov (1933). 

Arctic cod larvae sampled near the Belcher Islands and 
the Gulf of Richmond in June 1990 were smaller, and 
presumably younger, than those caught near Kuujjuara- 
pik (Table 4). This raises the question of spawning site 
location for this species in Hudson Bay. Spawning sites of 

' ? 
Y 

I 
I Arctic cod in Arctic and subarctic regions are generally 

unknown (Bain and Sekerak 1978; Craig et al. 1982) but 
are presumed to be associated with ice edges (Benko et al. 
1970). An ice-free area persisting annually until mid- 
December northwest of the Belcher Islands (Markham 
1988) may provide an ice edge suitable for Arctic cod 
spawning. As Arctic cod eggs and larvae can be trans- 
ported by surface currents over long distances (Baranen- 
kova et al. 1966, Althukhov 1979a), the general circulation 
(Prinsenberg 1986) may play an important role in achiev- 
ing their transport towards the coastal areas of Hudson 
Bay. Testing this hypothesis would require a better know- 
ledge of the local surface current patterns (see Larouche 
1989) and of the age of the larvae caught in each area. 

The early life of freshwater, anadromous and marine 
fish in the coastal areas of southeastern Hudson Bay is 
strongly influenced by the outflow of the Great Whale 
River. At the time of river run-off, some coregonid and 
burbot larvae were observed in the Bay. However, their 
survival after the plume begins to contract remains un- 
known. Larvae from over 50% of the marine fish species 
were first caught before ice breakup in the Bay (Fig. 3) 
when the brackish plume was near full expansion. Ice 
cover and the underlying plume influence the spatial 
distribution of marine fish larvae, both horizontally (Gil- 
bert et al. 1992) and vertically (Ponton and Fortier 1992). 

\I 

Table 5a-c. Summary of data on spawning period, egg development duration, and size of larvae at hatching 

a) most abundant Arctic marine species 

Location Spawning period Egg development Size of larvae at Reference 
duration hatching (mm) 

Boreogndiis snida 
White Sea 

White Sea 

Barents Sea 
Barents Sea 
Beaufort Sea 

Barents Sea 

Stichneus punctntus 

Newfoundland 

White Sea 

Tuktoyaktuk, 
Beaufort Sea 
Alaska 
White Sea 

Logy Bay, 

Myoxocephaltis quadricornis 

Baltic Sea 

Gymnocnnthus tricuspis 
Trinity Bay, 
Newfoundland 

Lipnris fabricii 
White Sea 
USSR coast 

Jan to Feb 
rarely Apr 
Dec to Feb 

Oct to Mar 
Early spring 
Late Nov to 
early Feb 
End Dec to 
end Mar 

Feb to March 

Dec to Jan 

January 

Summer 
Dec to 
late Jan 
Dec to Jan 

Fall 

Feb to Mar 
Sep to Oct 

77 to 79 d 

26 to 35 d 
(-1.5"C) 

(-0.3 to 2.5 "C) 

- 
1.5 to 

3 months 

5.5 to 6.1 
ave = 5.81 

5.5f0.1 

3.5 
- 

- 

5.5 

- 

7.0 to 11.5 
ave = 8.0 

- 
- 

- 
- 

- 

- 
- 

Altukhov 1979a 

Aronovich et al. 1975 
Baranenkova et al. 1966 
Benko et al. 1970 

Craig et al. 1982 

Rass 1968 

Farwell et al. 1976 

Altukhov 1979b 

Bond 1982 
Goldberg et al. 1987 
Mukhomedianov 1967 in 
Khan 1971 
Westin 1969 

Ends  1970 

Altukhov 1979c 
Andriashev 1954 in 
Scott and Scott 1988 
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b) most abundant nonlArctic marine species 
1 

Location Spawning period Egg development Size of larvae at Reference 
duration hatching (mm) 

Aiiiinodytes aniericaiius 
Fortune Bay, 
Newfoundland 
Laboratory 
Eastern 
Newfoundland 

Ainriiodytes dubius 
Long Island 
Scotian Shelf 
Eastern 
Newfoundland 

Myoxocepkalus Scorpius 
White Sea 
US coast, 
North Atlantic 
Bay Bulls, 
Newfoundland 
Kiel Fjord, 
Baltic Sea 
Gdansk Bay, 
Baltic Sea 

Lunipenus fabricii 
White Sea 
off west 
Greenland 

Mallotus villosus 
Barents Sea 
North Atlantic 
Hudson Bay 

Dalley and Winters 1987 
Smigielski et al. 1984 

Winters 1989 

Dec to Apr 

Late autumn 
to early winter 

- 
I35 d (2°C) 

- 

- 
6.2 

- 

3.6 
4.0 

- 

7.4 to 8.6 

- 

- 
6.0 

- 

- 
- 

- 
6.0 to 7.0 

- 

Dec to Feb 

Later than 
A. aniericaiius 

- 
Richards 1982 
Scott 1972 

Winters 1989 

Nov to mid-Jan ca. 4 months (< OOC) Altukhov 1979b 
Bigelow and Schroeder 
1953 in Khan 1971 Nov to Feb 

late Nov to 
early Dec 

Dec to Feb 
Dec to 
end Mar 

Ennis 1970 

Lamp 1966 

Raciborski 1984 

Ott to Nov 
July 

Altukhov 1979c 
Jensen 1964 in 
Scott and Scott 1988 

Feb to June 

end Jul to Aug 

Benko et al. 1970 
Fahay 1983 
Vladykov 1933 

c) most abundant freshwater species 

Location Spawning period Egg development Size of larvae at Reference 
duration hatching (mm) 

Lota lota 
Lake Opeongo, 
Canada 
L. Angersjo, 
Sweden 
Laboratory 

Mackenzie 
Basin 
Laboratory 
L. Opeongo & 
laboratory 
James and 
Hudson Bays 
Eastmain and 
La Grande Riv., 
Canada 

Coregoiiiis clupeajorinis 

Coregonus artedii 
Laboratory 
Mackenzie 
Basin 
L. Opeongo & 
laboratory 
James and 
Hudson Bays 
Eastmain and 
La Grande Riv., 
Canada 

3.0 to 4.0 Cucin and Faber 1985 

Late Feb 
- 

Hedin 1983 
Jaeger et al. 1981 

- 
52'd (2 "C) 

- 
3.7 & 0.1 

Fall 

Mid-Nov to . 
Dec 

Late autumn 

- 
Bodaly et al. 1989 
Colby and Brooke 1973 

Cucin and Faber 1985 

Dymond 1933 

- 
236 d (0.5 "C) 
155 to 175d 
(1.0 to S O C )  

- 
.- 

7.5 to 8.5 

Autumn Morin et al. 1981 

182 d 
(0.5 OC) 

4 to 6 months 
(1.0 to 8°C) 

- 
13.3k0.54 

- 

9.5 to 10.5 

Brooke 1915 

Bodaly et al. 1989 

Cucin and Faber 1985 

Dymond 1933 

Ott to Nov 
End Oct to 
mid-Nov 

Early autumn 

Fall Morin et al. 1981 
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Accordingly, our highest densities of Arctic cod larvae 
were obtained at intermediate (1 5-25 P.s.u.) salinities 
under ice cover and in salinities in excess of 25 PAU. when 
light limitation was alleviated after ice breakup. 

Although limited to the spring and summer periods, 
our observations provide new insights into the poorly 
known early life history of fish species in subarctic coastal 
areas. At those intermediate latitudes, the distributions of 
Arctic and temperate marine fish species overlap and, 
contrary to the situation further north, more than one 
species may dominate the ichthyoplankton community. 
Processes associated with river outflow clearly influence 
the spatial distribution of marine fish larvae in the coastal 
zone. They also affect the flushing in the Bay of freshwater 
and anadromous species. I t  can thus be hypothesized that 
interannual variations in the timing of the spring freshet, in 
the extent of the plume underneath the ice, and the timing 
of ice breakup significantly impact on the environmental 
conditions encountered by the young stages of several fish 
species in subarctic coastal areas such as southeastern 
Hudson Bay. 

Acknotvledgenieiits. This study is part of a collaborative project 
between GIROQ and the Canadian Department of Fisheries and 
Oceans (Institut Maurice Lamontagne). Field and laboratory work 
was funded in part by grants to L. Fortier from NSERC and DFO, 
and by grants to GIROQ from NSERC and the Fond FCAR of 
Québec. Helicopter time was provided by DFO. The Centre d’études 
nordiques (Université Laval) provided accommodation at its field 
station in Kuujjuarapik where we benefited from the assistance of the 
superintendent C. Coté. Special thanks to R. Drolet, C. ?util, and M. 
Gilbert for their contribution to this study. G. Bergeron, M. Bolduc, 
M. Frenette, L. Girard, N. Hamel, L. Michaud, D. Morissette, M. 
Parent, J. Ponton, M.-A. Rémillard, J.-G. Rondeau, M. Salathé and 
S. Tourangeau helped in the field or the laboratory. 

References 

Alexander V (1980) Interrelationships between the seasonal sea ice 
and biological regimes. Cold Regions Sci Techno1 2:157-178 

Altukhov KA (1979a) The reproduction and development of the 
Arctic cod, Boreogadus snida, in the White Sea. J Ichthyol 

Altukhov KA (1979b) On the biology of the early stages of develop- 
ment of some White Sea fishes. Vopr Ikhtiol 19:117-127 

Altukhov KA (1979~) A contribution to the biology of noncommer- 
cial and rare fish species from the White Sea in the early stages of 
development. Vopr Ikhtiol 19:1079-1090 

Apollonio S (1961) The chlorophyll content of Arctic sea ice. Arctic 

Aronovich TM, Doroshev SI, Spectorova LV, Makhotin VM (1975) 
Egg incubation and larval rearing of Nagava (Eleginus nnvagn 
Pall.), Polar cod (Boreogadus snida Lepechin) and Arctic flounder 
(Liopsetta glacinlis Pall.) in the laboratory. Aquaculture 

Auer NA (1982) Identification of larval fishes of the Great Lakes 
basin with emphasis on the Lake Michigan drainage. Great 
Lakes Fishery Commission, Ann Arbor, MI 48105. Special Pub. 

Auger F, Power G (1978) Compléments des études ichtyologiques de 
l’embouchure de la Grande rivière de la Baleine, du détroit de 
Manitounuk et de l’estuaire de la Petite rivière de la Baleine. 
GIROQ, rapport à I’Hydro-Québec. (Projet Grande Baleine, 
Etudes océanographiques dans la baie d’Hudson; Mandat 
d’avant-projet préliminaire Hydro-Québec/OGB 76-l), pp 59 

Bain H, Sekerak AD (1978). Aspects of the biology of Arctic cod, 

19:93-101 

1 4  197-200 

6233-242 

82-3, pp 744 

n 
, %  

’1 

I .  Boreogndus snida, in the central Canadian Arctic. Report for 
Polar Gas Project by LGL Limited, Toronto, Ontario, pp 104 

Baranenkova AS, Ponomarenko VP, Khokhlina NS (1966) The 
distribution, size and growth of the larvae and fry of Boreogndits 
snida (Lepechin) in the Barents Sea. Vopr Ikhtiol 6:498-518 

Barber FG (1967) A contribution to the oceanography of Hudson 
Bay. Marine Sciences Branch, Dept of Energy, Mines and 
Resources, Ottawa. Manuscript Report Series No 4: pp 69 

Benko YK, Dragesund O, Hognestad PT, Jones BW, Monstad T, 
Nizovtsez GP, Olsen S, Seliverstov AS (1970) Distribution and 
abundance of O-group fish in the Barents Sea in August-Sep- 
tember 1965-1968. Int. Coun. Explor. Sea Coop Res Rep Ser 

Bodaly RA, Reist JD, Rosenberg DM, McCart PJ, Hecky RE (1989) 
Fish and fisheries of the Mackenzie and Churchill River basins, 
northern Canada. In: Dodge D P  (ed) Proc Int Large Rivers Symp 
Can Spec Pub1 Fish Aquat Sci No 106:128-144 

Bond WA (1982) A study of the fishery resources of Tuktoyaktuk 
Harbour, southern Beaufort sea coast, with special reference to 
life histories of anadromous coregonids. Can Tech Rep Fish 
Aquat Sci No 1119, pp 90 

Breton-Provencher M (1979) Etude de la population de phoques 
annelés (Phocn hispida) et des autres Pinnipèdes de la région de 
Poste-de-la-Baleine (Nouveau-Québec). GIROQ, rapport à 
l’Hydro-Québec, projet Grande-Baleine (Mandat d’avant-projet 
préliminaire OGB/76-l), pp 148 

Brooke LT (1975) Effect of different constant incubation tem- 
peratures on egg survival and embryonic development in 
lake whitefish (Coregonus clzrpeaformis). Trans Am Fish Soc 

Chiperzak DB, Hopky GE, Lawrence MI, Lacho G (1990) Marine 
ichthyoplankton data from the Canadian Beaufort Sea shelf, July 
and September 1984. Can Data Rep Fish Aquat Sci 779, pp 45 

Colby PJ, Brooke LT (1973) Effects of temperature on embryonic 
development of lake herring (Coregonus artedii). J Fish Res Bd 
Canada 30:799-810 

Craig PC, Griffiths W, Haldorson L, McElderry H (1982) Ecological 
studies of Arctic cod (Boreogndzis saidmu) in Beaufort Sea coastal 

, waters, Alaska. Can J Fish Aquat Sci 39:395-406 
Cucin D, Faber DJ (1985). Early life studies of lake whitefish 

(Coregonits clupeaformis), cisco (Coregonus nrtedii) and yellow 
perch (Percajavescens) in Lake Opeongo, Ontario. Ontario Fish 
Tech Rep Ser No 16, pp 28 

Cushing DH (1975) Marine ecology and fisheries. Cambridge Uni- 
versity Press, New York, pp 278 

Dalley EL, Winters GH (1987) Early life history of sand lance 
(Animodytes), with evidence for spawning of A. dirbizis in Fortune 
Bay, Newfoundland. Fish Bull 85631-641 

Drolet R, Fortier L, Ponton D, Gilbert M (1991) The production of 
fish larvae and their prey in subarctic southeastern Hudson Bay. 
Mar Eco1 Prog Ser 77:105-118 

Dunbar MJ (1958) Physical oceanographic results of the “Calanus” 
expeditions in Ungava Bay, Frobisher Bay, Cumberland Sound, 
Hudson Strait, and northern Hudson Bay, 1949-1955. J Fish Res 
Bd Canada 15:155-201 ’ 

Dunn JR, Vinter BM (1984) Development of larvae of the saffron 
cod, Eleginirs gracilis, with comments on the identification of 
Gadid larvae in Pacific and Arctic waters contiguous to Canada 
and Alaska. Can J Fish Aquat Sci 41:304-318 

Dymond JR (1933) Biological and oceanographic conditions in 
Hudson Bay. 8. The coregonine fishes of Hudson and James Bay. 
Contrib Can Bio1 Fish 8:l-12 

Ennis G P  (1970) Reproduction and associated behaviour in the 
shorthorn sculpin, Myoxocephaltts scorpius in Newfoundland. 
J Fish Res Bd Canada 27:2037-2045 

Faber DJ (1976) Identification of four northern blenioid fish larvae in 
the Canadian Atlantic Ocean (Stichaeidae, Lumpenidae). J Fish 
Res Bd Canada 33:1798-1802 

Fahay M P  (1983) Guide to early stages of marine fishes occurring in 
the western North Atlantic Ocean, Cape Hatteras to the southern 
Scotian Shelf. J Northw At1 Fish Sci 4, pp 423 

L 

A:35-47 

104:555-559 



G 

‘k 
J 33 1 

Farwell MK, Green JM, Pepper VA (1976) Distribution and known 
life history of Stickneus punctatus in the northwest Atlantic. 

Gilbert M, Fortier L, Ponton D, Drolet R (1992) Feeding ecology of 
fish larvae across the Great Whale River plume in seasonally ice- 
covered southeastern Hudson Bay. Mar Eco1 Prog Ser 8419-30 

Goldberg SR, Yasutake WT, West RL (1987) Summer spawning in 
the fourhorn sculpin, Myoxocephalus quadricoriiis, from Alaska. 
Can Field-Nat 101:457 

Gosselin M, Legendre L, Demers S, Ingram RG (1985) Responses of 
sea-ice microalgae to climatic and fortnightly tidal energy inputs 
(Manitounuk Sound, Hudson Bay). Can J Fish Aquat Sci 

Gosselin M, Legendre L, Therriault J-C, Demers S, Rochet M (1986) 
Physical control of the horizontal patchiness of sea-ice micro- 
algae. Mar Eco1 Prog Ser 29:289-298 

Gosselin M, Legendre L, Therriault J-C, Demers S (1990) Light and 
nutrient limitation of sea-ice microalgae (Hudson Bay, Canadian 
Arctic). J Phycol 26:220-232 

Hedin J (1983) Seasonal spawning migrations of the burbot (Lota 
lota L.) in a coastal stream of the northern Bothnian sea. Fauna 
Norrlandica 6:l-20 

Horner RA (1976) Sea ice organisms. Oceanogr Mar Bio1 Ann Rev 

Houde ED (1989) Comparative growth, mortality, and energetics of 
marine fish larvae: temperature and implied latitudinal effects. 
Fish Bull US 87:471-485 

Hunter JG (1968) Fishes and fisheries. In: Beak CS (ed) Science 
History and Hudson Bay. Canada Dept Energy, Mines and 
Resources, Ottawa, pp 360-378 

Iles TD, Sinclair M (1982) Atlantic herring: stock discreteness and 
abundance. Science 215:627-633 

Ingram RG (1981) Characteristics of the Great Whale River plume. 
J Geophys Res 86 C3:2017-2023 

Ingram RG, Larouche P (1987) Variability of an under-ice river 
plume in Hudson Bay. J Geophys Res 92(C):9541-9547 

Jaeger T, Nellen W, Schaefer W, Shodjai F (1981) Influence of 
salinity and temperature on early life stages of Coregonus albula, 
C. lavaretus, Rutilus rutilus and Lota lota. Rapp. P.-v. Réun. Cons 
Int Explor Mer 178:345-348 

Kemp A, Bernatchez L, Dodson JJ (1989) A revision of coregonine 
fish distribution and abundance in eastern James-Hudson Bay. 
Env Bio1 Fish 26:247-255 

Khan N (1971) Comparative morphology and ecology of the pelagic 
larvae of nine Cottidae (Pisces) of the northwest Atlantic and 
St. Lawrence drainage. Thesis, Univ. of Ottawa, Ottawa, pp 234 

Lamp F (1966) Contribution to the biology of the sea scorpions 
Myoxocephalus scorpius (L.) and Taurulus bubulis (Euphr.) in the 
Kiel Fjord. Kieler Meefesforschungen 2298-120 (Fish Res Board 
Can Trans1 Ser No 902, pp 48) 

Larouche P (1989) Spring surface circulation patterns detected using 
remote sensing of drifting ice floes in Hudson Bay, Canada. Proc. 
Int. Geoscience and Remote Sensing Symposium (IGARSS), 
Vancouver, Canada, pp 780-782 

Larouche P, Galbraith PS (1989) Factors affecting fast-ice consolida- 
tion in southeastern Hudson Bay, Canada. Atmosphere-Ocean. 

Legendre L, Ingram RG, Poulin M (1981) Physical control of 
phytoplankton production under sea ice (Manitounuk Sound, 
Hudson Bay). Can J Fish Aquat Sci 38:1385-1392 

Legendre L, Demers S, Therriault J-C (1989) Responses of Arctic sea- 
ice micro-algae to light and temperature: physiological adapta- 
tions and ecological implications. Rapp. P.-v. Réun. Cons Int 
Explor Mer 188:115-120 

Lepage S, Ingram RG (1991) Variation of upper layer dynamics 
during breakup of the seasonal ice cover in Hudson Bay. 
J Geophys Res 96(C7):12711-12724 

Markham WE (1986) The ice cover. In: Martini IP (ed) Canadian 
Inland Seas. Elsevier Oceanography, Series 44. Elsevier., Amster- 
dam, pp 101-117 

Markham WE (1988) Ice atlas: Hudson Bay and approaches. 

d Copeia 3:598-602 

42~999-1006 

14:167-182 

271367-375 

Environment Canada, Atmospheric Environment Service, pp 123 
Morin R, Dodson JJ (1986) The ecology of fishes in James Bay, 

Hudson Bay and Hudson Strait. In: Martini IP (ed) Canadian 
Inland Seas. Elsevier Oceanography, Series 44, Elsevier, Amster- 
dam, pp 293-325 

Morin R, Dodson JJ, Power G (1980) Estuarine fish communities of 
the eastern James-Hudson Bay coast. Env Biol Fish 5:135-141 

Morin R, Dodson JJ, Power G (1981) The migrations of anadromous 
cisco (Coregonus nrtedii) and lake whitefish (C. clupeaforniis) in 
estuaries of eastern James Bay. Can J Zoo1 59:1600-1607 

Ochman S, Dodson JJ (1982) Composition and structure of the larval 
and juvenile fish community of the Eastmain River and estuary, 
James Bay. Nat Can 109:803-813 

Ponton D, Fortier L (1992). Vertical distribution and foraging of 
marine fish larvae under the ice cover of southeastern Hudson 
Bay. Mar Eco1 Prog Ser 81:215-227 

Potter DC, Lough RG (1987) Vertical distribution and sampling 
variability of larval and juvenile sand lance (Aminodytes sp.) on 
Nantucket shoals and Georges Bank. J Northw At1 Fish Sci 

Prinsenberg SJ (1986) The circulation pattern and current structure 
of Hudson Bay. In: Martini IP (ed) Canadian Inland Seas. 
Elsevier Oceanography, Series 44, Elsevier, Amsterdam, 

Raciborski K (1984) Migration, reproduction, growth and feeding of 
Myoxocephalus scorpius (L.) in Gdansk Bay (South Baltic). Pol 
Arch Hydrobiol 31:109-118 

Rass TS (1968) Spawning and development of polar cod. Rapp. P.-v. 
Réun. Cons Perm Int Explor Mer 10335-137 

Richards SW (1982) Aspects of the biology of Aniinodytes aniericaiius 
from St. Lawrence River to Chesapeake Bay, 1972-75, including 
a comparison of the Long Island Sound postlarvae with Aniniody- 
tes dubius. J Northw At1 Fish Sci 3:93-104 

Runge JA, Ingram RG (1988) Underice grazing by planktonic 
calanoid copepods in relation to a bloom of ice microalgae in 
southeastern Hudson Bay. Limnol Oceanogr 33:280-286 

Runge JA, Therriault J-C, Legendre L, Ingram RG, Demers S (1991) 
Coupling between ice microalgal productivity and the pelagic, 
metazoan food web in southeastern Hudson Bay: a synthesis of 
results. In: Sakshaug E, Hopkins CCE, Oritsland NA (eds) Proc. 
Pro Mare Symp. on Polar Marine Ecology, Trondheim, 12-16 
May 1990. Polar Res 10325-338 

Russel FS (1976) The eggs and planktonic stages of British marine 
fishes. Academic Press, London pp 524 

Scott JS (1972) Eggs and larvae of northern sand lance (Ammodytes 
dubius) from the Scotian Shelf. J Fish Res Bd Canada 

Scott WB, Scott MG (1988) Atlantic Fishes ofCanada. Can Bull Fish 
Aquat Sci 219, pp 731 

Sekerak AD (1982) Young-of-the-year cod (Boreogadus) in Lancaster 
Sound and Western Baffin Bay. Arctic 35:75-87 

Smigielski AS, Halavik TA, Buckley LJ, Drew SM, Lawrence GC 
(1984) Spawning, embryo development and growth of the Ameri- 
can sand lance Anznzodytes arnericanus in the laboratory. Mar 
Eco1 Prog Ser 14287-292 

Tourangeau S, Runge JA (1991) Reproduction of Calanus glacialis 
under ice in spring in southeastern Hudson Bay, Canada. Mar 
Biol 108:227-233 

Vladykov VD (1933) Biological and oceanographic conditions in 
Hudson Bay. 9. Fishes from Hudson Bay region (except the 
Coregonidae). Contrib Can Biol 8:15-49 

Westin L (1969) The mode of fertilization, parental behaviour, and 
time of egg development in fourhorn sculpin, Myoxoceplialus 
quadricoriiis (L.). Inst Freshwat Res Drottningholm Rept 

Wilson CV (1973) The climate of Québec. Part 1. Climatic atlas of the 
province of Québec. Canadian Meteorological Service, Climato- 
logical Studies 11, pp 350 

Winters GH (1989) Life history parameters ofsand lance (Amnzodytes 
spp.) from the coastal waters of eastern Newfoundland. J Northw 
At1 Fish Sci 9:5-11 

7:107-116 

pp 187-204 

29~1667-1671 

49~175-182 


