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Abstract 

Geomorphic distribution and petrological differentiation pattems of ferricretes widespread on 
landsurfaces were studied in the Dembia-Zemio area, southeastem Central African Republic. Four 
types of ferricretes are distributed on high plateaux, hillslopes and low plateaux. The main contrast 
corresponds to the differentiation between ferricretes of high plateaux rich in poorly hydrated 
minerals, hematite and kaolinite, and those covering hillslopes and low plateaux richer in hydrated 
minerals, goethite and gibbsite. A Principal Component Analysis of geochemical and mineralogi- 
cal data was used to characterize the main differentiation pattems of ferricretes in relation with 
their petrographic facies and the geomorphic features of the landscape. The distribution of 
secondary minerals and their relationships to trace elements within and between the ferricrete 
types reflects differences, in weathering and erosion processes. Our results document that the 
petrological pattems and the distribution of ferricretes are related to geomorphic features depend- 
ing on hydroclimatic variations that govern the landscape evolution of many tropical shields. 

c Keywords: ferricrete; Central Africa ; petrology; geochemistry; geomorphology 

i 
1. Introduction 

In southeastern Central African Republic, the bedrock is deeply weathered and 
uniformly covered by thick ferricretes. The weathering profiles developing from differ- 
ent parent rocks always exhibit the following upward succession of layers: saprolite, 
mottled clay and ferricrete (Tardy and Nahon, 1985; Nahon, 1986). The geochemical 
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processes involved in the weathering profile development imply complete leaching of 
alkalis and earth-alkalis, partial desilication from the parent-rock minerals, and thus. 
relative accumulations of iron and aluminium (Delvigne, 1965: Tardy. 1969: Millot. 
1970: Nahon, 1991). In contrast. the minor transition elements are generally trapped in 
the secondary Al- and Fe-oxihydroxides and clay minerals (Trescases. 1975: Schwert- 
mann and Taylor. 1977: Mosser. 1980). which are, in turn, the main components of 
ferricretes (Nahon. 1976: Leprun. 1979; Tardy and Nahon. 1985: Tardy et al., I988a). 
Under tropical climates with a pronounced dry season. bio-physical processes are often 
involved in the reworking of weathering profiles. implying either the dispersion of the 
heavy minerals and relict quartz onto the landsurface. or the vertical translocation 
through the macropores of weathering profiles (Brimhall and Dietrich. 1987: Butt and 
Zeegers, 1989; Freyssinet et al.. 1989; Freyssinet, 199Q: Lecomte and Colin. 1989; Colin 
and Vieillard. 1991: Colin et al., 1993). Geochemical and mineral prospecting in lateritic 
environments requires knowledge of the nature, the distribution and the geochemical 
pattoms of lateritic formations concealing the parent rocks (Nalovic, 1977: Davies and 
Bloxham. 1979: Zeegers and Leprun, 1979: Matheis, 1981: Matheis and Pearson. 1982: 
Butt, 1987; Butt and Zeegers. 1989: Roquin et al., 1989: Boski and Herbosch. 1990). 

Many studies have addressed the influence of parent rocks on the petrological 
differentiation patterns of vertical weathering profiles capped with old pedogenic 
fenricretes (Leprun, 1979: Zeegers and Leprun, 1979: Matheis. 1981: Ambrosi and 
Nahon. 1986: Nahon, 1991), but the processes governing the spatial distribution of 
ferricretes onto landsurfaces were rarely investigated (Butt and Zeegers, 1989: Roquin et 
al., 1989). However. more attention has been paid recently to the regional distribution of 
ferricretes tempering their effective relationships to parent rock variations and inferring 
that their mineralogical variation pattems over the world might be considered as 
retlecting climatic changes driven by continental plate drift (Tardy et al.. 1988b.1991). 
Although the saprolite and the mottled clay layers of weathering profiles often relate to 
the parent-rock geochemistry (Ambrosi and Nahon. 1986: Nahon. 199 1 : Tardy. 1993 1. 
the ferricretes can lose this geochemical inheritance under the influence of environmen- 
tal factors governing landscape evolution (Boeglin and Mazaltarini, 1989: Tardy et al., 
1988a). Considering that the bedrock of our study area is composed of undifferentiated 
basic metamorphic rocks (Mestraud, 1982: Beauvais. 1991 1- we explore the relations 
between the ferricrete petrological differentiation pattems and their geomorphic distribu- 
tion in the landscape. 

2. Geographic features of the study area 

The study area of 260 km’ around the village of Guinekoumba between Dembia and 
=mio (Figs. 1 and 2) forms part of the African shield. thought to have been tectonically 
stable for 70 My (Boulvert. 1996). This area is included in a wider geomorphic region of 
3000 km’ known as “Haut-Mbomou plateau” which was investigated for geological 
mapping and base metal prospection (Mestraud. 1982). The Haut-Mhoniou plateau is 
extensively covered by ferricretes and the geological substratum corresponds to a large 
complex of basic rocks, named Complex of Mbomou and composed of metamorphic 
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. volcano-sedimentary formations corresponding to amphibolite and green-schist facies 
crossed by elongated granitic intrusions and dykes of dolerites in the southwestem area 
of the Haut-Mbomou plateau (Mestraud, 1982). Although the extensive lateritic cover 
masks the parent rocks in our field area, some fresh rocks collected at the surface of 
plateaux and hillslopes are amphibole schists. Similar rocks were also identified in-some 
deeply incised thalwegs. Hence, we consider these amphibole schists as the parent rocks 
in our study area. 

This region has a tropical humid climate characterized by (1) a short dry season from 
December to February, a long wet season from May to October, and 3 months of 
interseason, in November, March and April; (2) a mean annual rainfall of 1600 mm; (3) 
a mean annual temperature of 25°C; and (4) a mean annual relative humidity of 80% 
ranging from 50% to 95% (Boulvert, 1986; Franquin et al., 1988; Beauvais, 1991). The 
vegetation cover consists of a semi-humid forested savanna. Large stretches of grass and 
bare lands alternate on the plateaux and hillslopes, while a dense humid forest occupies 
the valleys and the high plateau edges (Fig. 2). 

Three main landform units were distinguished in the study area: high plateaux, 
hillslopes and low plateaux (Fig. 2). All three are armoured by 3 to 5 metres of 
ferricretes capping lateritic weathering profiles exhibiting thicknesses of several tens of 
metres (Beauvais, 1991). These geomorphic units are representative of the Haut-Mbomou 
plateau extending on several square kilometres. There is no evidence in the field to 
relate the geomorphic patterns to differentiation of the geological basement. The high 
plateaux as a whole form a regional warped erosion surface with many points culminat- 
ing at 650 m above sea level (a.s.1.). This landsurface envelope gently slopes down (0.1 
to 0.2%) towards the main hydrographic channels, the Ouara river to the West and the 
Mbomou river to the South. Individual high plateaux are limited by an erosion scarp of 
one metre height, and surrounded with a ring of dense semi-humid forest. Further 
downslope, another metric scarp separates the forested hillslope from the bare hillslope. 
The high plateau landsurface is globally planconvex with some concave area, while the 
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Fig. 1. Location of the study area in Central African Republic. 
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DARE HII.I.SI.OPES FORESTED HII.I,SI,OI’ES Protopisolitic ferricretes HIGH PIAI’EAUS 
massive and protonodular 
ferrisretes . .  . . - degraded ferricretes 

FORESTED VAI , I .EYS 
degraded ferricretes 

LOW PLATEAU§ 
vermiform ferricretes 

Fig. 2. Geomorphological map and spatial distribution of fenicrete facies. 
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hillslopes present straight and concave profiles with gradients ranging from 5% on the 
bare hillslope to 10% on the forested hillslope. In contrast, the low plateaux are 
planconcave and they are always separated from high plateaux by a thalweg or a 
hillslope (Fig. 2). Hillslope and low plateau landsurfaces are densely covered by 
termitaria (i.e., 1 per square metre, on average), whose the soft clayey-silty material is 
dispersed downslope by overland flow. During the rainy season, “swampy” area take 
place on concave surfaces by subsurface saturation flow. 

3. Methods 

The mapping of geomorphic units and associated lateritic formations was first 
realized at a 1 : 50000 scale from field and aerial photograph observations (Boulvert, 
1976; Beauvais, 199 1). The lateritic landsurface was then investigzted and ferricretes 
were sampled to characterize their petrological differentiation patterns. Petrographic 
facies, mineralogical and chemical compositions were analysed for 204 samples and 
compared to the geomorphic, hydrologic and phytogeographic characteristics recorded at 
each sampling site. Ferricrete blocks of at least 1000 cm3 were regularly collected on 
each landform unit at a depth ranging from 10 cm to 50 cm. Petrographic facies were 
described from macroscopic and microscopic observations. Each sample was then 
crushed to 5 mm and sorted to produce 100 g of powder with a sieve size ranging from 
64 to 120 p m  for chemical and mineralogical analysis. 

Major element contents analysed by spark emission spectrometry (SiO,, Al,03, 
Fe,O,, MgO, Cao, P,O,, Tio,) and by flame emission spectrometry (Na,O, K,O) are 
given in oxide percent. Trace elements analysed by plasma emission spectrometry ICP 
(Sr, Ba, V, Ni, Co, Cr, Cu, Zn, Sc, Y, Zr, Mn, La, Yb, and Nb) are given in ppm. 
Samples were dried prior to the analysis and weight 16ss on ignition (LOI) was 
measured after a 1000°C calcination. Elements with concentrations systematically below 
detection limits (d.1.) were neglected. Those are MgO (d.1. = 0.02%), Ca0  (d.1. = 0.20%), 
Na,O and K,O (d.1. = O.Ol%), Eu (d.1. = 10 ppm) and Lu (d.1. = 1 ppm). 

The mineralogical analyses were obtained from X-ray diffraction (XRD) of unori- 
ented powder preparations. Mineral contents were estimated measuring characteristic 
intensity of X-ray peak weighted by a calibration coefficient defined for each mineral, 
employing normative calculations (Mazaltarim, 1989). The error in estimation ranges 
from 1 to 3%. Therefore, each sample was defined by seven mineralogical variables, 
corresponding to the estimated contents of kaolinite (Kaol), quartz (Quar), gibbsite 
(Gib), goethite (Goet), hematite (Hema), and the ratios, RHG equal to 
100 * hematite/(goethite + hematite), and RKGi equal to 100 * kaolinite/(gibbsite + 
kaolinite). 

The differentiation patterns for the whole set of ferricrete samples were defined 
applying a Principal Component Analysis (PCA) to geochemical and mineralogical data 
(SAS, 1985). This statistical procedure is based on the determination of eigenvectors 
with their associated eigenvalues from the correlation matrix, followed here by an 
application of the varimax rotation procedure (Lebart et al., 1979). The main differentia- 
tion trends in the data set are expressed by the first factors (i.e., the principal 
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components) which are new independent synthetic variables characterized by their 
association with some elements and/or minerals, as it was successfully applied to soils 
and weathering system studies (Litaor et al.. 1989; Boski and Herbosch, 1990: Roquin et 
al., 1990: Donkin and Fey, 1991). Within each factor. for each element and mineral, the 
correlation loadings ranging from -0.4 to 0.4 were considered as non-significant. A 
representation of samples on factor score diagrams illustrates the ferricretes differentia- 
tion patterns within and between morpho-petrological categories identified in the field. 

4. Field characteristics of ferricretes 

4. I .  Description qf ferricretes 

Four ferricrete facies were identified based on both macroscopic descriptions (Fig. 3). 
according to the typologic nomenclature recently proposed by Tardy (1993), and on 
previous microscopic observations (Beauvais, 1991 ; Beauvais and Colin. 1993). 

(a) The massive ferricretes exhibit an indurated compact hematitic matrix purple-re- 
ddish coloured, with a fine porosity but without nodules or obviously defined geometric 
elements (Fig. 3a). 

a. 

Fig. 

C. 

3. Petrographical sketches of the four ferricrete 

d. 

facies sampled on the landsurface. (a) massive; (b) 
protonodular; (c) protopisolitic: (d! vermiform. (Hm = Hematitic matrix: Hn = hematitic nodular domain: 
m = clayey ferruginous matrix; V = vacuole; Hp = Hematitic protopisolite; rg = goethitic rim; Gm = goethitic 
matrix; a = argilan: T = tubule.) 
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(b) The protonodular ferricretes show large coalescent purple-reddish hematitic 
nodular domains ( > 1 cm), coexisting with a slightly indurated clayey-ferruginous 
matrix crossed by small vacuoles (< 1 cm) (Fig. 3b). This facies may also exhibit small 
goethitic rims around the hematitic domains, and also some gibbsite scattered within the 
matrix. In both (a) and (b) facies, the ferruginous matrix is rich in hematite and kaolinite 
booklets of 100-200 p m  in length, deriving from pseudomorphic weathering of micas, 
felspars and amphiboles. 

(c) The protopisolitic femcretes generally present purple-reddish hematitic protopiso- 
lites outlined by peripheral goethitic rims and cortex. The protopisolites have sizes 
approximating 1 cm and they are enclosed within a red-yellowish clayey-ferruginous 
matrix crossed by cm-sized vacuoles (Fig. 3c). Microscopic observations revealed the 
development of secondary gibbsite through the matrix and within the vacuoles. Also, we 
have observed some relics of ilmenite showing partial dissolution features. 

(d) The vermiform ferricrete is essentially characterized by a yellow-brown matrix 
composed of microcrystalline mixture of kaolinite and goethite, with a few centimetre- 
length diffuse hematitic domains and some relics of quartz. The ferruginous matrix is 
intersected by a dense network of centimetric vacuoles and tubules, which are often 
filled with a white fine clayey matrix, and outlined by argillans and brown goethitic rims 
(Fig. 3d). To a lesser extent, manganesiferous concretions mainly composed of lithio- 
phorite were also identified in facies (c) and (d), and some relics of micas or feldspars 
were observed under the microscope in facies (b), (c) and (d), although these minerals 
were never detected from XRD analyses. 

4.2. Regional distribution of ferricretes 

The regional distribution of ferricretes is shown on the morphopetrographic map (Fig. 
2). About 80% of the total field mapped landsurface (TFML) is covered by ferricretes, 
while the remaining 20% correspond to forested areas wherein the ferricretes are 
degraded (Beauvais and Tardy, 1993). Four ferricrete facies, massive, protonodular, 
protopisolitic and vermiform were differentiated by their petrographic features, and by 
their location in the landscape. 31 samples of massive and 29 samples of protonodular 
ferricretes were collected on high plateaux representing 10.5% of TFML; 52 samples of 
protopisolitic ferricretes were collected on the hillslopes occupying 32% of TFML; 64 
samples of protopisolitic ferricretes were sampled on the low plateaux representing 3 1 % 
of TFML; 28 samples of vermiform ferricretes outcrop on the low plateaux occupying 
6.5% of TFML. The protopisolitic ferricretes are widespread on the hillslopes and on the 
low plateaux, representing 61% of the sampling set. The massive and the protonodular 
ferricretes are the only two facies covering the surface of the high plateaux and they 
represent 26% of the sampling. The protopisolitic ferricrete layer of hillslopes may 
comprise blocks of massive ferricrete with decimetric sizes that exhibit a peripheral 
brown cortex of goethite. The vermiform femcretes only outcrop on the low plateaux, 
and represent 13% of the sampling. This facies is also well developed within the 
weathering profiles of the hillslopes and low plateaux capped by a protopisolitic 
ferricrete (Beauvais, 1991; Beauvais and Colin, 1993). 
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5. Analytical results 

5.1. Petrological patterns of ferricreta 

The mean and standard deviation values of elements and minerals for the four main 
petrographic facies distributed on the three geomorphic units are presented in Table 1. 
At first glance, the mean geochemical compositions indicate that the contents of 
transition elements versus earth alkalis and rare earth elements do not permit to 

Tahle 1 
Comparison of mean chemical and mineralngical compositions of fenicretes according to their petrographic 
facies and geomorphic location ( 1 2  = number of samples; M = massive; PN = protonoduiar; PP = protopisolitic; 
V = vermiform; m = mean; s = standard deviation; LOI = lost on ignition (1000°C); RHG = 
100* hematite/hematite + goethite; RKGi = l00+ kaolinite/kaolinite +gibhsite) 

Location: High plateaux Hillslopes Low plateaux 

facies: M PN PP PP V 
n: 31 29 52 64 28 

m 3 m S m S m S m 5 

SiO, (Ol) 15.2 11.7 2.9 10.9 2.6 10.6 3.3 15.3 
A1203 16.3 
Fe,% 57.2 
Tia, I .7 
PZO, 0.39 
LOI 8.8 

Sr(ppm) 54 
Ba 47 
V 1372 
M n  21 1 
Ni 40 
Co 15 
Cr 330 
Zn 52 
CU I 00 
s c  46 
Y 9 
Zr 3 09 
La 52 
Ce 72 
Yb 1.6 
Nb I6 

Quartz(%) 1 
Kaolinite 35 
Hematite 48 
Goethite 12 
Gibbsite 5 

RHG 81 
RKGi 90 

3.4 
2.8 
6.3 
0.3 
0.14 
1.5 

49 
36 

423 
16.7 

7 
5 

212 
21 
44 
12 
3 

32 
45 
0.5 
4 

1 
9 

1 c1 
8 
5 

I I  
1 o 

7n 

15.8 
61.2 

1.6 
0.4 
9.0 

30 
28 

I569 
222 
43 
14 

555 
59 
95 
47 
8 

299 
30 
53 

IS 

1 
28 
51 
13 
7 

80 
81 

1.4 

2.0 
4.9 
0.3 
0. 1 
1.1 

25 
19 

286 
1 06 

9 
4 

187 
20 
33 
12 
2 

68 
17 
35 
0.4 
4 

1 
!) 

10 
5 
5 

8 
I2 

16.6 
59.7 

1.4 
0.5 

10.6 

24 
93 

1-11? 
683 
59 
27 

567 
74 

193 
50 
11 

278 
27 

101 

16 

3 
23 
34 
30 
I0 

54 
71 

I .8 

2.9 
4.5 
0.3 
0.2 
I .s 

26 
239 
363 

1169 
30 
17 

243 
49 

173 
I 8  
5 

80 
30 

I61 
0.7 
5 

4 
10 
14 
18 
8 

22 
22 

17.2 
58.4 

1.3 
0.4 

11.4 

13 
54 

1325 
612 
58 
18 

609 
82 

274 
62 
I2 

282 
20 

127 

17 

3 
20 
28 
36 
12 

44 
63 

1.4 

2.4 17.6 
4.9 52.6 
0.3 1.4 
0.1 0.37 
1.6 12.4 

16 12 
138 39 
306 12001 

1132 376 
29 61 
I0  19 

214 372 
41 101 

178 528 
18 73 
4 I3 
61 271 
18 20 

171 87 
I 2.1 
5 15 

3 3 
7 26 

12 I0 
13 58 
7 3 

19 I5 
I9 P I  

3.5 
3.1 
6.9 
0.4 
0.16 
0.7 

8 
57 

330 
521 
37 
17 

159 
51 

264 
18 
4 

121 
10 

1 I9 
1 
5 

7 
8 
7 

13 
5 

12 
I2 
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20 30 40 50 60 70 80 90 100 110 
(KaolinitelKaolinite + Gibbsite) * 1 O0 

Fig. 4. Mineralogical variation pattern of ferricrete facies according to their geomorphological location ( W 
massive and O protonodular of high plateaux; protopisolitic of A hillslopes and A low plateaux; O 
vermiform of low plateaux). 

distinguish different parent rocks for the different ferricrete facies. From the high 
plateaux to the low plateaux, the kaolinite and hematite contents progressively decrease 
while the goethite content increases with the highest value in the vermiform facies. The 
protopisolitic ferricretes exhibit the highest gibbsite content. The variations of ferricrete 
mineralogical composition are represented in a rectangular diagram, RHG versus RKGi 
(Fig. 4). The vermiform facies of low plateaux is relatively rich in goethite and poor in 
hematite and clearly separated from the massive and protonodular facies of high 
plateaux, which are defined by higher contents of hematite. Both are relatively high in 
kaolinite. Samples of protopisolitic facies of hillslopes and low plateaux present a wide 
range of composition between the ferricretes of high plateaux and the vermiform facies 
of low plateaux. 

The mineralogical variations were also analysed by examining the moving average of 
each mineral abundance for classes of 5% Fe,O, and Alzo, with a re-covering step of 
2.5%, i.e. for Fe,O, amounts ranging from 40% to 45%, then from 42.5% to 47.5% and 
so for th... (Figs. 5 and 6). Three main trends are evidenced on these diagrams, justifying 
the distinction of three ferricrete categories, that is consistent with the differentiation 
pattems yielded by the Fig. 4. 

The first category (I) corresponds to the massive and protonodular ferricretes of high 
plateaux which are, on the average, the richest in hematite and kaolinite, and the poorest 
in goethite (Table 1 and Fig. 4). When the iron content increases and the alumina 
decreases, the hematite content increases, the kaolinite and gibbsite contents decrease 
while quartz and goethite remain roughly constant (Figs. 5 and 6). For the two facies of 
high plateaux, the evolution curves of gibbsite and kaolinite versus Alzo, are not 
parallel, an increase in Alzo3 for the massive fenicretes corresponding to an increase in 
gibbsite rather than in kaolinite (Fig. 6). 
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The second category (II) is composed of protopisolitic ferricretes of hillslopes and 
low plateaux that are less hematitic but more goethitic. This facies presents the highest 
gibbsite contents. and also some quartz (Table 1 and Figs. 5 and 6). For these ferricretes. 
an increase in iron content is related to hematite rather than to goethite (Fig. 5 ) ,  while an 
increase in aluminium content reflects an enrichment in gibbsite rather than in kaolinite 
(Fig. 6). Although the mineralogical evolution curves of the protopisolitic facies of 
hillslopes and low plateaux are very similar. the ferricretes of low plateaux are slightly 
richer in goethite and gibbsite and poorer in hematite and kaolinite than those of 
hillslopes (Table 1 and Fig. 6).  

The third category (III). corresponds to the vermiform ferricretes of low plateaux that 
are the richest in goethite. the poorest in hematite and the less ferruginous (Table 1 ). In 
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contrast with the protopisolitic facies, an increase in iron content and a decrease in 
alumina are related to an increase in goethite and a loss of kaolinite (Figs. 5 and 6). This 
ferricrete facies contains. small amounts of quartz and gibbsite related to iron and 
alumïnium contents respectively (Figs. 5 and 6). 

For the massive and protonodular ferricretes of the high plateaux, iron is mainly 
related to the hematite content, while for the vermiform facies of low plateaux it is 
related to the goethite content (Fig. 5). For the protopisolitic ferricrete of hillslopes and 
low plateaux, the iron content decreases with the transformation of hematite to goethite. 
In contrast with the other facies, the decrease in iron content for the protopisolitic facies 
of hillslopes is also related to a loss of kaolinite and a strong increase in gibbsite (Fig. 
5). 
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5.13. Geocheriiical difierentintion contrasts De fiveen tke . fcrricretes 

A more synthetic analysis of petrological differentiation contrasts is given in Fig. 7 
for the three categories of ferricretes described above: ( I )  massive and protonodular 
ferricretes of high plateaux: (II?  protopisolitic ferricretes of hillslopes and low plateaux: 
and (III) vermiform ferricretes of low plateaux. A differentiation contrast index Dx,  for 
each chemical and mineral element x was calculated as the standardized deviation of' 
within-group mean for each ferricrete sample category i such that: 

D.vi= (mean(s ) ,  - m( .u))/s(x) t ' )  
where NI( .Y) and .Y( .u) respectively represent the overall mean and standard deviation of 
element x for the whole sample set. A negative or positive value of D.u, indicates the 
depletion or the enrichment contrast of element .u relative to the overall mean of this 
element within a sample category i expressed in unit of standard deviation. The 

.. 
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elements were first ranked according to the decreasing contrast value Dxi for the high 
plateau ferricrete samples, and then allocated to one of the three ferricrete categories 
according to their higher Dxi in each category (Fig. 7). The first group of elements (A) 
is composed of Sr, Tio,, La, V, and also Zr and Nb, associated to hematite and 
kaolinite, which exhibit higher positive Dxi in the ferricretes of high plateaux. In 
contrast, these elements have negative Dxi in the vermiform ferriCretes of low plateaux, 
except for kaolinite. They also tend to be more depleted in the protopisolitic facies. The 
second group of elements (B) is characterized by higher contents of gibbsite in the 
protopisolitic facies contrasting with lower content of kaolinite (Fig. 7). The develop- 
ment of Mn- oxy-hydroxides in this facies is reflected by highest positive Dx,  for Mn 
and associated elements, Ba, Ce, and Co. A relative enrichment of P,O, and Cr can also 
be noticed. The third group of elements (C) corresponds to higher contents of SO, ,  
A1,0,, LOI, and also Cu, Y, Sc, Ni, Zn, Yb associated to goethite enrichment 
characterizing the vermiform ferricretes of the low plateaux. The ferricretes of high 
plateaux are the richest in poorly hydrated minerals, kaolinite and hematite, as well as in 
chemical elements with low mobility, except Sr. In contrast, the protopisolitic and 
vermiform ferricretes of hillslopes and low plateaux are the richest in hydrated minerals, 
gibbsite and goethite respectively, and they are also the richest in chemical elements 
which generally present a higher mobility in the lateritic environments (Tardy, 1969; 
Nalovic, 1977; Davies and Bloxham, 1979; Matheis, 1981; Roquin et al., 1989). 

5.3. Principal contponent analysis 

The principal component analysis (PCA) applied to the whole data set yields six 
independent factors explaining 70.1% of the total variance (Table 2). Comparison of 
results of the Table 2 and Fig. 7 allows to interpret each factor. The first factor 
contributing to 29.5% of the explained variance is positively loaded with the goethite 
correlated to, LOI and trace elements Cu, Sc, Zn, Ni, Y and Yb and negatively loaded 

Table 2 
Correlation of chemical elements and minerals with each factorial axis defined by the Principal Component 
Analysis (LOI = loss on ignition; loading values are given in parentheses) 

Factorial % explained Positive loadings Negative loadings 
axis variance 

F1 29.5 LOI (0.76). Ni (0.561, Zn (0.681, Cu (0.88), 
Y (0.74), Sc (0.74), Yb (0.5), Goethite (0.86) 

Kaolinite (0.46) Fe,03 (0.93) 

Hematite (0.82) 

F2 17.5 SiO, (0.691, Alzo3 (0.81), Zr (0.471, 

F3 12.2 Cr (0.77), Gibbsite (0.7) SiO, ( O S I ) ,  Kaolinite (0.46) 

F4 15.5 Mn (0.93), Ba (0.88), Co (0.651, Ce (0.69) 

F5 12.8 Tio, (0.451, P,05 (0.541, Zr (0.58), Nb (0.75), 

F6 12.5 Sr (0.841, La (0.83), V (0.43) 

Quartz (0.48) 
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with hematite, reflecting the pattems of vermiform facies. The correlation matrix 
indicates that LOI is correlated to each trace element. This factor opposes ferricretes of 
high plateaux to the other ferricretes. Factor 2 contributing to 17.5% of the explained 
variance separates a group composed of AI,O,, SiO, and kaolinite with Zr exhibiting 
positive loadings, from Fe,O, with a negative loading. This factor accounts on the 
undifferentiated ferruginization process of clayey matrices in all ferricrete facies, and 
also the Al-substitution in Fe-oxihydroxides (Beauvais. 199 1 ). Factor 3 representing 
12.2% of the explained variance opposes positive loadings on gibbsite and Cr to 
negative loadings on kaolinite and Si02 reflecting the contrast hetween gibbsite and 
kaolinite formation processes in the protopisolitic facies. Exaniination of the correlation 
shows that gibbsite is relatively correlated to LOI ( r  = 0.3 1). Factor 4 contributing to 
15.5% of the explained variance shows high positive loadings on Mn. Ba. Ce and Co, 
describing the secondary development of Mn-oxyhydroxides, effective in protopisolitic 
and vermiform facies. The analysis of correlations reveals two distinct trends separated 
by a threshold in Mn-content. When Mn-content is lower than 800 ppm. intercorrela- 
tions between Mn, Ba. Co and Ce do not exist, and positive correlations appear between 
Sr, Ba, La and Ce, while the global relationship revealed by the factor 4 is only effective 
when Mn-content is higher than 800 ppm. Factor 5 representing 12.5% of the explained 
variance express the geochemical pattems of residual heavy minerals as shown by the 
positive loadings on Tio2. P,O,. Zr and Nb with quartz, while Factor 4 contributing to 
12.5% of the explained variance exhibits positive loadings on Sr, La and V (Table 21, 
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that reflects higher abundance of relics of feldspars and micas. The first four factors 
contributing to 74.7% of the explained variance are loaded by chemical elements 
showing relationships with minerals depending on lateritic weathering processes, while 
both factors 5 and 6 representing 25.3% of the explained variance are loaded by 
chemical elements with no clear affinities to the lateritic mineral phases. These two 
factors may account on some parent rock inheritance which is better expressed in 
ferricretes of high plateaux than in those of hillslopes and low plateaux (Fig. 7). 

The projections of ferricrete samples on the factor diagrams F1 versus F2 and F1 
versus F3 show the main differentiation trends within and between the ferricrete 
categories (Fig. 8). Three distinct petrological paths are expressed by the factorial axes 
corresponding to the contrasts goethite/hematite, alumina/iron oxide, and 
gibbsite/kaolinite. The first diagram of factor scores, F1 versus F2, highlights differ- 
ences in ferruginization processes discriminating the hematitic ferricretes of high 
plateaux from the vermiform facies of low plateaux which exhibit another trend between 
two end-members, ferruginous-goethitic and aluminous-kaolinitic (Fig. 8a). This also 
may account on the development of goethitic rims and cortex in kaolinitic matrix of 
vermiform facies as well as around hematitic nodules of protopisolitic facies. The 
second diagram of factor scores, F1 versus F3, confirms the results of the Fig. 4, 
showing different contrasts between the petrological differentiation pattems of the three 
ferricrete categories. The ferricretes of high plateaux are represented by an hematite- 
kaolinite pattern, while the protopisolitic and vermiform ferricretes of hillslopes and low 
plateaux are mainly characterized by a goethite-gibbsite and a goethite-kaolinite pattem 
respectively (Fig. 8b). In both factorial diagrams, the protopisolitic ferricrete facies 
define a wide domain ranging from the ferricretes of high plateaux to the vermiform 
ferricretes of low plateaux. 

6. Discussion 

Our results document that the differentiation pattems and distribution of ferricretes in 
the Haut-Mbomou region may be govemed by interactions between geomorphic and 
hydroclimatic processes, once the weathering profiles are sufficiently developed on 
parent amphibole schists. Although less advanced stages of weathering strongly depend 
on parent rock type (Leprun, 1979; Zeegers and Leprun, 1979; Matheis, 1981; Ambrosi 
and Nahon, 1986; Nahon, 1991; Tardy, 19931, the influence of hypothetic lithologic 
variations on relatively old ferricretes is unlikely in our study area. It has been shown 
that the iron-richness and evolution degree (i.e., age) of similar ferricretes of West 
Africa tended to blur parent rock signatures (Tardy et al., 1988a; Boeglin and Mazal- 
tarim, 1989; Roquin et al., 1990). In our field area, the differentiation pattems of 
ferricretes follow the geomorphic evolution of landscape depending on climatic varia- 
tions to humid or to dry tendencies. Climatic factors continuously model the landforms, 
modifying the slope gradients, the biological patterns and drainage conditions in soil 
profiles, which, in tum, influence the way the ferricretes evolve. The actual climatic 
conditions favour the petrological transformations of ferricretes wherever the forest 
grows and the water is seasonally retained on concave surfaces, inviting to consider the 



influence of water activity and organic matter in mineralogical patterns of ferricretes 
(Tardy and Nahon. 1985: Beauvais and Tardy. 1993: Tardy. 1?93). The high plateau 
ferricretes mainly composed of poorly hydrated minerals. hematite and kaolinite, 
generally do not show such transformations. except the protonodular exhibiting sec- 
ondary goethitic rim around hematitic nodules or gibbsite within the ferruginous 
matrices. In contrast. protopisolitic and vermiform ferricretes richer in hydrated minerals 
gibbsite and goethite, respectively. exhibit further petrological variations. As a fact. the 
vestiges of massive hematitic facies within the protopisolitic layers of hillslopes indicate 
pedogenetic and morphogenetic relations between high plateaux and hillslopes. In this 
way, the ferricretes of high plateaux are older than the other facies. and their petrologi- 
cal patterns may reflect past hydroclimatic conditions, while the facies of hillslopes and 
low plateaux exhibit mineralogical patterns related to actual geomorphic and climatic 
conditions. The transformation of hematite into goethite is conditioned by a 
dissolution-reprecipitation mechanism (Schwertmann and Taylor. 1977). while the 
transformation of kaolinite into gibbsite obeys to a desilication mechanism. However, 
these mechanisms depend on both water activity and partial pressure of carbon dioxyde 
produced by the mineralization of organic matter (Tardy. 1993). such as 

CHOH + O, = CO, + H,O (2)  

So. the transformation of hematite and kaolinite under hoth hydration and redox process 
can be described by the following global reactions 

Fe,@, + CO2 + 2 H,O = 2 FeOOH + HCOOH + i O, 
(goethite\ (hematite) 

Si,A1,05( @H)4 + CO, + 2H,O = 2 Al( OHI3 + 3 Si@,(aq.) + HCOOH i- O,  
(kaolinite) (gibhsite 1 

( 4 )  

Beth field observations and results support this model, whose the above equations are 
likely involved in the differentiation patterns of protopisolitic facies, and to a lesser 
extent, in protonodular of high plateaux. However. the formation of gibbsite in the both 
facies is further conditioned by a relatively good drainage on plan surfaces located at the 
edges of high plateaux, and on hillslopes and low plateaux overhanging the valley heads. 
The petrological patterns of ferricretes developed on the planconvex surfaces of high 
plateaux further reveal that dehydration and oxydation precesses have characterized the 
fermginization of kaolinite booklets. by preserving a residual fraction of heavy rriinerals 
containing Ti, Zr and Nb. and silicate minerals bearing Sr. La and V. The petrological 
patterns of vermiform and protopisolitic facies further suggest that local hydrodynamic 
conditions relative to concave surfaces of low plateaux and hillslopes periodically liahle 
to floodings may also influence the trace element behaviour. Indeed, those landsurfaces 
exhibit much more concavities than the high plateaux, and they are also covered hy 
termitaria composed of reworked clayey-silty materials undergone to surface erosion 
processes. 

Previous studies carried out in siniilar environments of West Africa have shown that 
the termitaria materials contained quarta and heavy minerals as ilmenite and zircon. and 
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that they have been likely transported upward by termites through connected macropores 
from underlying mottled and saprolite layers (Eschenbrenner, 1987; Freyssinet, 1990). 
The vermiform facies exhibiting such connected macropores are potential places for 
termite activity. In fact, the development of secondary goethite with Mn, Cu, Ni, Zn, Co, 
Sc, Y and Yb through illuviated clayey matrices of vermiform facies can be enhanced by 
the presence of organic matter (Kgmpf and Schwertmann, 1983; Boski and Herbosch, 
1990) yielding hydromorphic conditions, which prevail on concave surfaces of hillslopes 
and low plateaux (Beauvais, 1991). Both hydrodynamical and hypothetic biophysical 
processes control redox conditions which determine the trace element behaviour and 
their relation to lateritic minerals. Thus, this could explain that Ti, Zr and Nb are 
depleted in protopisolitic and vermiform ferricretes, while Ba, Ce and Co are correlated 
to Mn-oxyhydroxides. This geochemical association is common in lateritic soils (Taylor, 
1968; Childs, 1975) evolving under limited geochemical conditions of Eh and pH (Parc 
et al., 1989; Braun et al., 1990). However, outside those conditions, Mn is depleted, and 
a correlation between Ba, Ce, Sr and La appears, reflecting unweathered relics of micas 
and feldspars. 

Therefore, we are inclined to infer that the actual distribution of ferricrete in the 
Haut-Mbomou region is the result of a long time evolution of complex weathering and 
geomorphic processes driven by the downward reduction of the regolith along with 
climatic evolution from past-drier to actual-wetter conditions. In tum, that leads to the 
progressive disappearance of high plateau ferricretes, and hence, to the loss of parent 
rock signatures. 

,. 4= 
e *  
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7. Conclusion 

Our results indicate that the regional distribution of different ferricrete facies devel- 
oped on tectonically stable cratons reflects the interplay between weathering and erosion 
processes of thick and old lateritic profiles rather than any variety of parent rocks. 
Petrological and geomorphological patterns of ferricrete facies as well as the behaviour 
of trace elements among the different minerals sustain this interpretation revealing that 
high plateau ferricretes could be the oldest, still preserving some geochemical signature 
of amphibole schists. If so, the hillslopes and low plateaux ferricrete facies might be 
younger, deriving from a long time evolution of the landscape under the effects of 
hydroclimatic and geomorphic changes, that tend to blur the parent rock inheritance. 
Although we do not deny the role of parent rock in the first stage of development of 
lateritic weathering profiles, we also believe that variations of climatic and geomorphic 
processes over several million years may influence both the regional distribution and 
petrological pattern of many old ferricretes widespread on ancient tropical shields. r .* 
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