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ABSTRACT 

Ortlieb, L. and Macharé, J., 1993. Former El Niño events: records from western South America. Global Planet. Change, 7: 
18 1-202. 

The quasi-periodic alterations of the climate in South America and of the oceanographical conditions in the eastern 
Pacific Ocean, referred to as the “El Niño” phenomenon, are part of a global anomaly in the ocean-atmosphere interactive 
system (the El Niño-Southern Oscillation, ENSO). As this phenomenon is responsible for the major interannual climatic 
variability and has a great potential to document links between the atmospheric and oceanic circulations, it is important to 
understand its mechanism, its boundary conditions and the causes of the variations of its intensity. Many answers to such 
questions can be sought in the historical and geological record of El Niño occurrences. 

Former impacts of the El Niño phenomenon along the western coast of South America are documented by remnants of 
catastrophic rainfalls and associated river floods, records of lake salinity variations, beach ridge sequences and numerous 
evidences of alterations in the biotic and physical coastal environment. For the last millennium or so, relatively precise 
(although discontinuous) archaeological and historical data are available. Continuous, high-resolution, proxy records are 
provided by glaciological data (last 1500 yr) from the Quelccaya ice cap of southern Peru and are potentially available from 
coral cores from the Galapagos Islands. No marine varves that would permit a detailed and sequential study of El 
Niño-related oceanographic anomalies during the late Quaternary have yet been obtained off western South America. The 
reconstruction of the sequence of the main ENSO events during the last millennia is thus hampered by the fact that there 
are too few continuous records and that these have not necessarily registered every El Niño occurrence and/or the relative 
intensity of each event. The discontinuous records of major El Niño events are more numerous, but often lack the required 
chronological accuracy. Obviously, both series of data need to be cross-checked and compared with information (e.g. 
dendroclimatology and marine varves) from other regions of the globe where climate teleconnections with the ENSO 
phenomenon can be assessed. 

Introduction 

El Niña, ENSO and the ocean-atmosphere inter- 
action 

The EI Niño-Southern Oscillation (ENSO) sys- 
tem is commonly considered as the best example 
of ocean/atmosphere interaction and one of the 
most relevant manifestations of interannual vari- 
ability in the global climate system. Although the 
ENSO phenomenon is primarily observed in the 
equatorial Pacific Ocean and the bordering land 
areas, it has been shown that it induces world- 

wide climatic anomalies (teleconnections) in trop- 
ical and extra-tropical areas (Walker and Bliss, 
1932; Bjerknes, 1969; Barnett, 1981; Hore1 and 
Wallace, 1981; Rasmusson, 1985; Ropelewski and 
Halpert, 1987; Kiladis and Diaz, 1989). These 
characteristics and the fact that many impacts 
and consequences of the ENSO/El Niño anoma- 
lies are catastrophic, explain that the phe- 
nomenon has received a particular attention in 
major current research programs (IGBP-“Global 
Change”, Research Program on the World Cli- 
mate, Tropical Ocean-Global Atmosphere pro- 
ject, etc.). 1- 
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In the last few decades, progress has been 
made in the monitoring of the oceanic and atmo- 
spheric conditions in the intertropical areas and 
in the understanding of some of the typical ENSO 
processes and interactions (Rasmusson, 1984; En- 
field, 1987; Philander, 1989), as well as in the 
modeling of the phenomenon (Cane and Zebiak, 
1985; Vallis, 1986; Zebiak and Cane, 1987; Sper- 
ber et al., 1987; Graham and White, 1988; Philan- 
der et al., 1989). However, numerous questions 
about the mechanisms and parameters involved 
in the ENSO/El Niño anomalies remain to be 
answered. For instance, we still do not know the 
ultimate causes of the ENSO phenomenon and 
which fundamental process drives the system. 
There are still discussions about the theory of a 
closed, internal, system that would mainly rely on 
feedback mechanisms. The role of lithospheric 
processes, such as variations in the earth rate of 
rotation or volcanic activity, that may trigger and 
enhance major ENSO events, needs to be better 
defined. Similarly, it is necessary to assess the 
importance of the extra-terrestrial, astronomical, 
forcing on ENSO. Finally, there is much practical 
interest in determining the processes and factors 
that control the variability in the intensity of 
ENSO events and more generally in improving 
our forecast capability. 

The term “ENSO” is commonly used for large 
scale (intertropical, inter-oceanic, or global) fea- 
tures related to the Southern Oscillation “see- 
saw” system, while the term “El Niño” refers 
more specifically to the regional manifestations of 
the oceano-climatic phenomenon centered on the 
eastern Pacific and western South America. Here, 
we are mainly concerned with the former mani- 
festations of El Niño activity, as the eastern com- 
ponent of the ENSO phenomenon. As El Niño 
impacts on landforms, sediments, fauna and flora 
of many regions of South America, notably in its 
birthplace in the Piura region of northern Peru 
and distinct kinds of historical/archaeological 
records of former El Niño events have been in- 
vestigated in recent years (see: Devries, 1987; 
Enfield, 1989; Ortlieb and Machart, 1989, 1992; 
Macharé and Ortlieb, 19921, it may be useful to 
review the most significant results obtained and 
try to delineate future directions of research. 

Manifestations of the El Niño anomaly 

The main climate anomalies that characterize 
the El Niño phenomenon in South America are 
related to a modification of the Walker circula- 
tion and to a southern shift of the Intertropical 
Convergence Zone. They include the following 
manifestations: 

- exceptional precipitations in the normally 
arid/semi-arid coastal regions of northwestern 
Peru and southernmost Ecuador (Eguiguren, 
1894; Petersen, 1935; Murphy, 1925,1926; Waylen 
and Caviedes, 1986); 

- increased precipitations in central Chile, 
Paraguay and northern Argentina (Walker and 
Bliss, 1932; Berlage, 1966; Quinn et al., 1978; 
Pittock, 1980; Quinn and Neal, 1983; Kousky et 
al., 1984; Ruttlant, 1985; Ropelewski and Halpert, 
1987; Depetris and Kempe, 1990; Rutllant and 
Fuenzalida, 1991); 

- significant rainfall deficits in the Altiplano 
of southeastern Peru and Bolivia, the Brazilian 
Nordeste, northernmost South America and 
southern Central America (Caviedes, 1973, 1975, 
1984; Hastenrath and Heller, 1977; Francou and 
Pizarro, 1985; Ropelewski and Halpert, 1987; 
Aceituno, 1987, 1988; Rogers, 1988; Quinn and 
Neal, 1992). 

From an oceanographic point of view, the 
ENSO phenomenon is characterized by an eleva- 
tion of the sea surface temperature (SST) in the 
equatorial Pacific Ocean (east of 130”W) and 
along the South American coast, an important 
lowering of the thermocline accompanied by an 
alteration of the upwelling system and a decrease 
in the primary productivity. The biological im- 
pacts of these anomalous conditions are numer- 
ous, especially along the Peruvian coast: high 
mortality at all levels of the trophic chain, dis- 
placement of pelagic species and ecological stress 
on most marine organisms (Barber and Chavez, 
1983; Arntz, 1986; Arntz and Tarazona, 1990). 
The main markers of these short-term oceano- 
graphic alterations, of varying intensity, include 
the presence/ absence of organisms in sedimen- 
tary sequences and biochemical modifications 
recorded by skeletal marine organisms like corals, 
molluscs, foraminifera, dinoflagellates (Druffel, 
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1985; Rollins et al., 1987; Ochoa and Gomez, 
1987; Shen et al., 1988, 1992; Earley et al., 1991; 
Juillet et al., 1991; Perrier et al., 1992). 

Variability in the frequency and intensity of the El 
Nirio phenomenon 

The recurrence of the El Niño/ENSO phe- 
nomenon is about 3-7 years. The major effects of 
ENSO events typically last several months, cen- 
tered on the austral summer, but may encompass 
two years, like in 1982-1983. One of the main 
characteristics of the phenomenon is its large 
variability in intensity. The classical intensity scale 
comprises four levels: very strong, strong, moder- 
ate and weak (Quinn’et al., 1978, 1987). Even for 
modern EI Niño events, this classification is not 
always easy, depending on the site of observation 
and the oceanographic or climatic component 
considered. At the lower end of the variability 
range, the occurrence/non-occurrence of an El 
Niño event may be debatable. The intensity of 
strong (e.g. 1991-1992) and very strong (1982- 
1983) events is generally easier to establish. 

A better understanding of the mechanisms, 
boundary conditions and rhythm of the ENSO 
system, requires that the periodicity of the phe- 
nomenon in the last centuries/millennia and the 
evolution of this periodicity (Trenberth and Shea, 
1987), be determined with some accuracy. For 
instance, precise reconstructions of the recurring 
ENSO events in the recent past can determine 
the influence on the EI Niño system of oscillatory 
phenomena like the Quasi-Biennial Oscillation 
(Van Loon and Labitzke, 1987; Rasmusson et al., 
19901, different types of luni-solar variations 
(Anderson, 1990; Fairbridge, 1990; Barnett, 1990; 
Labitzke and Van Loon, 1990; Lowrie, 1992), or 
shorter-term, intraseasonal, rhythms like the 
Madden-Julian Oscillation (Lau and Chan, 1988; 
Rasmusson, 1990; Weickmann, 1991). 

From a palaeoclimatic point of view there is 
much interest in establishing the relationship be- 
tween EI Niño and longer-term climate phases 
like the Little Ice Age (AD 1500-1900) or the 
Medieval Warm episode (AD 1000-13001, no- 
tably to determine variations in frequency and 
intensity of the El Niño phenomenon. At a longer 

time scale, it remains to establish whether the 
ENSO system is strictly linked to interglacial con- 
ditions and how it behaved during glacial max- 
ima. In an another way, it has been hypothesized 
that climatic variations with durations of the or- 
der of decades/centuries represented “El Niño- 
like conditions”, or “super-ENSOs” (DeVries, 
1987; Martin, 1992a, b; Mörner, 1989, 1992); but 
such concepts still need to be substantiated 
(Markgraf et al., 1992). 

Beside, precise studies on former occurrences 
of the phenomenon are most useful to test the 
forcing of geodynamic agents and processes. A 
detailed chronological reconstruction of former 
EI Niño events (including evaluation of intensi- 
ties) correlated with a historical study of volcanic 
eruptions should help in determining the respec- 
tive influences of volcanic activity and EI Niño 
anomalies (Angell, 1988; Quinn, in press b). De- 
tailed studies on the El Chichón (1982) and Agung 
(1963) eruptions could not firmly establish 
whether large volcanic ash emissions are able to 
trigger and/or intensify El Niño events (Handler, 
1984, 1986; Hirono et al., 1985; Hirono, 1988; 
Handler et al., 1990). The recent (June 1991) 
Pinatubo eruption, which produced aerosols with 
an optical depth about twice that of El Chichón, 
is expected to modify the climate of the next few 
years and to influence the modality of the next EI 
Niño manifestations (Hansen, 1991; Handler and 
Andsager, 1991). 

For many reasons, then, the study of former 
occurrences of El Niño events is compulsory, 
beginning with the key area of the western coast 
of South America. 

Records of El Niiio events in South America 

Last millenniuni events 

Documentary historical sources 
Quinn et al. (1987) developed a chronological 

series of the major El Niño events that probably 
occurred in the last 450 years. This was done 
through a compilation of historical evidence of 
meteorological anomalies in Peru and neighbour- 
ing countries. The Quinn et al. (1987) chronology 
included estimates of event intensity (very strong, 
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strong + , strong and also: moderate ’+ and mod- 
erate for the last two centuries) and a confidence 
rating (5-2) of the evaluation of the event recon- 
struction. This chronological sequence of the main 
El Niño events recorded in western South Amer- 
ica has been for several years the most detailed 
and most complete data set available. The se- 
quence was accepted as standard by numerous 
authors working on palaeo-ENS0 records and 
has been largely used for recurrence studies and 
for calibration purposes (e.g.: Enfield, 1988; Han- 

son et al., 1989; Michaelsen, 1989; Enfield and 
Cid, 1990, 1991; Fairbridge, 1990; Nicholls, 1990; 
Thompson, 1990; Pulwarty and Diaz, 1991). 

Through critical readings of the historical 
sources listed by Quinn et al. (1987) and by taking 
into account a few additional texts, Hoc- 
quenghem and Ortlieb (1990, 1992) suggested 
that the first two events of the sequence (AD 
1525-1526 and 1531-1532) as well as some other 
episodes should be eliminated and that for a 
series of other historical events the intensities 

TABLE 1 
Chronological sequences of strong EI Niño events since early 16th century, reconstructed from historical data, according to diverse 
sources: Eguiguren (1894) (period 1791-1891), Hamilton and Garcia (1986) (period 1525-19821, Quinn et al. (1987) (period 
1525-1986), Hocquenghem and Ortlieb (1992) (period 1525-18911, Quinn (in press b) (period 1525-1992). 

Abundant rains 
in northern Peru 
(Eguiguren, 1984) 

O 

D 

A 

T 

A 

Major events 
in Peru 
Hamilton and 
Garcia, 1986) 

1541 

1578 

1614 

1624 

1652 

1701 

1720 

Very strong and 
strong events in 
W South America 
(Quinn et al., 1978) 

1525-26 
1531-32 

1552 

1574 
* 1578 * 

1567-68 

1591-92 

1607 
1614 

1624 
1634 

1652 
1660 

1671 
1681 

1618-19 

1687-88 

1696 
1701 
1707-08 
1714-15 

1720 

Confirmed strong 
and very strong 
events in Peru 
(Hocquenghem 
and Ortlieb, 1992) 

* 1578 * 

1593 
1596 

1624 

1686 

1701 

1720 

1546-47 
1552 

1574 
1567-68 

* 1578-E79 * 

1600 

1614 

1624 

1635 
1652 

1661 
1671 
1681 

1687 
1692 

1701 

1607-08 

1618-19 

1715-16 
* 1720 * 

b 

Very strong and 
strong “regional” 
El Nino events 
(Quinn, in press b) 

i 
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TABLE 1 (continued) 

Abundant rains 
in northern Peru 
(Eguiguren, 1984) 

1791 
1804 
1814 
1828 
1845 
1864 
1871 

1884 
* 1891 * 

1877-78 

Major events 
in Peru 
Hamilton and 
Garcia, 1986) 

1728 

1747 

1763 
1770 

1791 
1804 
1814 
1828 

1891 

1925 

1982 

NO 

Very strong and 
strong events in 
W South America 
(Quinn et al., 1978) 

* 1728 * 

1747 
1761 

1775 

1785-86 

* 1791 * 

1814 
* 1828 * 

1864 
1871 

* 1877-78 * 
1884 

* 1891 * 

1803-04 

1844-45 

1899-1900 
1911-12 
1917 

1932 
* 1925-26 * 

1940-41 
1957-58 
1972-73 
1982-83 

ATA ’I 

* (year) *: Very strong events. 
E: early, M: middle, L late. 

evaluated by Quinn et al. (1987) should be ques- 
tioned. The discussion bears upon: (1) the validity 
of some historical sources, (2) the criteria used 
for the identification of some EI Niño events and, 
(3) the general problem of evaluation of event 
intensity. A major point that requires further 
investigation concerns all the cases for which 
there are no indication in historical documents of 
precipitation in northern Peru and instead only 
sparse information from the central or southern 
Peruvian coast. The Quinn et al. (1987) chronol- 
ogy includes several so-called “El Niño events” 
that were only identified on the basis of a notice 

Confirmed strong 
and very strong 
events in Peru 
(Hocquenghem 
and Ortlieb, 1992) 

* 1728 * 

1747-48 

1791 

1828 

1871 

1884 
* 1891 * 

1877-78 

Very strong and 
strong “regional” 
EI Nino events 
(Quinn, in press b) 

* 1728 * 
1737 
1747 
1761 

1776-E78 
1782-83 

* 1791 * 

1814 
* 1828 * 

1864 
1871 

1884 
* 1891 * 

1803-04 

1844-E46 ’ 

* 1877-78 * 

1899-El900 

* 1925-26 * 
1932 

L1940-41 
1957-58 
1972-E73 

* L1982-M83 * 
1992 

of a flood of the Rimac River at Lima, or of a 
small rain (at any time of the year, including in 
austral winter), or even some lightnings, in 
south-central Peru. But floods of the Rimac River 
do not seem to be linked to EI Niño conditions 
(and rather to high Andes thunderstorms fed by 
Atlantic air masses) and small rains are not un- 
common during anti-El Niño episodes in south- 
ern Peru. 

Thus, according to Hocquenghem and Ortlieb 
(1992), the number of well-identified El Niño 
events should be lower than interpreted by Quinn 
et al. (1987) and the intensity of the events was in 
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many cases minor than previously evaluated (Ta- 
ble l). The lack of anomalous rainfalls in north- 
ern Peru during the Conquest by Pizarro (AD 
1531-1532) seems now well established (see also: 
Petersen, 1935 and Hamilton and Garcia, 1986). 
It is suggested here that most of the discrepancies 
observed in cross-correlations between the classi- 
cal historical chronology of El Niño and other 
proxy records, such as tree-ring data or the Quel- 
ccaya ice core records (e.g. Micliaelsen, 19901, 
heavily depend on the utilization of the over- 
estimated number (and over-rated intensity) of El 
Niño events listed by Quinn and co-workers. 

Recently, Quinn and Neal (1992) and Quinn 
(in press a, b), extended the chronology of ENSO 
occurrences back to AD 622, by adding records 
from the Nile floods (low floods, due to deficits in 
monsoonal rainfall in Ethiopia, are correlated 
with ENSO episodes). This longer chronology, 
based upon data from a much wider geographical 
area and involving several sets of teleconnected 
climatic anomalies, may be viewed of global sig- 
nificance. However, it should be noted that this 
new chronology relies on a very limited number 
of historical sources (much less than the EI Niño 
record in Peru). 

Tree ring record 
Another approach to reconstruct annual 

records of El Niño chronologies lies upon den- 
droclimatic analyses. For several reasons, though, 
there are no dendrochronological records from 
the regions in western South America most di- 
rectly affected by EI Niño impacts. On one hand, 
tree growth in tropical regions has proved to be 
too irregular to provide reliable palaeoclimatic 
signals (Fritts, 1976; Bormann and Berlyn, 1981; 
Norton, 1988; Lough and Fritts, 1990). On an- 
other hand, it has been shown that wood from 
these areas presented a reduced accuracy in ra- 
diocarbon dating, thus hampering precise age de- 
termination (Norton, 1988). Moreover, the center 
of the region affected by the EI Niño phe- 
nomenon, in northern Peru, is arid and may be 
devoid of trees suitable for dendrochronologic 
analysis (although preliminary studies are being 
conducted in the area, see: Rodriguez, 1992; Ro- 
driguez et al., 1992). 

L. ORTLIEB AND J. MACHARÉ 

The tree ring information extracted from South 
America remains largely incipient and up to now 
has been of little help for the record of El Niño 
past events (LaMarche et al., 1979a, b; Bonin- 
segna and Holmes, 1985; Lough and Fritts, 1985; 
Norton, 1988; Prieto and Boninsegna, 1992). Ac- 
tually, tree ring data that are being used for the 
reconstruction of former ENSO events come from 
temperate (mid-latitude) regions, particularly 
western North America. The well-developed tree 
ring studies in the western US tend to indicate 
that dendrochronological data on the last 400 yr 
satisfactorily record the Southern Oscillation ex- 
tremes (Michaelsen, 1989) and even allow a re- 
construction of the Southern Oscillation Index 
(Lough and Fritts, 1990). In fact, tree rings stud- 
ies of ENSO-related climatic features constitute a 
good example of the teleconnections which link 
some extra-tropical areas and the equatorial Pa- 
cific in the course of ENSO forcing conditions. 

Glaciological record 
Ice sheets and ice caps offer a reliable docu- 

mentation on annual changes in the atmosphere 
composition and circulation pattern. The Quelc- 
caya ice cap, in the high Andes of southern Peru 
(13”56’S, 7O05O’W), has become a classical source 
of information for climate variability in the last 
1500 yr (Thompson et al., 1985, 1986, 1988; 
Thompson and Mosley-Thompson, 1989). The 
conspicuous annual ice layers and the inclusion of 
historically well-dated markers (i.e. volcanic ashes 
of the AD 1600 Huaynaputina eruption) provide 
a solid chronological scale for this type of high- 
resolution palaeoclimatic record. The Quelccaya 
ice cap is located in the high Andes area where 
El Niño events are characterized by droughts. 
Annual rain deficits and lower levels of Lake 
Titicaca correlate with minor amounts of snow in 
the Quelccaya area (Newell, 1949; Thompson and 
Mosley-Thompson, 1989). Thus, cores from this 
ice cap may be of great help to reconstruct, in a 
continuous manner, a sequence of hydrological 
parameters. 

In the Quelccaya ice cores, the Little Ice Age 
(LIA) period (Fig. 1) is identified by an increase 
in the dust content (from AD 1490 to 1880), a 
decrease in the 160/180 values (from AD 1520 
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Fig. 1. Upper part of the Quelccaya ice core (southern Peruvian Andes) covering the period AD 1450-1983: Comparison between 
the historical chronologies of strong and very strong El Niiio events, according to Quinn et al. (1987) (horizontal ticks) and 
Hocquenghem and Ortlieb (1992) for the period 16-19th centuries (small arrows for strong events and large arrows for very strong 
events), with annual fluctuations in oxygen-isotope, ice accumulation (standard deviation), microparticle content, and conductivity 

I (modified from Thompson, 1990). The Little Ice Age period covers the span 1490-1880 (see text). 
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to 1900) and an initial increase in net ice accumu- 
lation (AD 1500-1720) followed by a dry period 
(AD 1720-1860) (Thompson et al., 1986). As an 
illustration of the ice core chronological accuracy, 
it may be mentioned that the onset and termina- 
tion of the LIA were determined at, respectively, 
AD 1486-1489 and AD 1880 (Thompson and 
Mosley-Thompson, 1987, 1989). The ice cores 
seem to record strong and very strong El Niño 
events during the whole LIA (Fig. l), thus sug- 
gesting that the two types of climatic anomalies 
pertain to distinct, relatively independent, sys- 
tems. 

The main expressions of the EI Niño climatic 
anomaly as recorded in the Quelccaya ice core 
involve a less negative l60/l8o composition, a 
reduced ice accumulation, a high concentration 
in particles and a high conductivity level (Thomp- 
son, 1990), but these combined indications are 
not sufficient per se to identify former occur- 
rences of the phenomenon (Fig. 1). On the other 
hand, a comparison of the Quinn et al. (1987) and 
Hocquenghem and Ortlieb (1992) historical series 
of El Niño with the Quelccaya summit ice core 
data does not show a strong year-to-year correla- 
tion (Fig. 1). The ice. record suggests instead the 

existence of relatively long-lasting “El Niño-like 
conditions” in the course of the last few cen- 
turies. We interpret that the Quelccaya ice cap 
data may not register perfectly El Niño atmo- 
spheric anomalies because the area is primarily 
under the influence of the Atlantic system (from 
which it receives the precipitations), even if it is 
also affected by alterations of the Pacific system. 
The high resolution of the Quelccaya data yields 
a most valuable year-to-year information that we 
may not be ready to use until we understand 
better atmospheric circulation patterns over South 
America. 

Coral reef record 
Because of their high sensitivity to environ- 

mental changes combined to a regular growth 
pattern, coral reefs from the equatorial Pacific 
constitute an appropriate material for the recog- 
nition of EI Niño effects in the past. Long-lived 
reef corals from SE Asia, central Pacific islands 
and NW South America currently provide 50-300 
yr records with a resolution that can be monthly 
at best. Seasonal banding patterns generally allow 
a better than annual accuracy in core studies. 
Corals provide palaeoclimatic and palaeoceano- 

O El Niño events v 

SST 
v v v v 

24 

al 
m 

1 
1965 1970 1975 1980 

Fig. 2. Barium and cadmium concentrations in modern scleractinian corals (Puuonu cluuzu) from Punta Pitt, Galapagos Is., 
compared with sea-surface temperature measured at Academy Bay (Galapagos Is.) (redrawn from Lea et al., 1989, and Shen and 
Sanford, 1990). EI Niño (warmer) years are: 1965 (moderate), 1969 (weak), 1972 (strong) and 1976 (moderate)(black triangles). 
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graphic information through distinct methodolog- 
ical approaches: stable isotope geochemistry 
(Weber and Woodhead, 1972; Dunbar and 
Wellington, 1981; Carriquiri et al., 1988; Cole and 
Fairbanks, 1990; Cole et al., 1992, in press), study 
of growth parameters such as density and band 
width, fluorescence banding (Isdale, 1984) and 
trace elements (Cd, Ba, Mn, Sr) content (Shen et 
al., 1987, 1991; Lea et al., 1989; Linn et al., 1990; 
Shen and Sanford, 1990; Beck et al., in press) 
(Fig. 2). Oxygen isotope ratios provide records of 
sea water temperature and salinity and also of 
changes in evaporation and rainfall precipitation, 
whereas trace metals record productivity and up- 
welling conditions (Cd, Mn) or enrichment in 
freshwater (Ba). Sr/Ca ratios measured through 
thermal ionization mass spectrometry record 
mean monthly SST with an accuracy of better 
than 0.5"C. 

Reef coral cores are particularly suitable for 
the study of global ENSO records because this 
material register distinct and complementary en- 
vironmental parameters in the western, central 
and eastern equatorial Packc region. In Central 
America and in the Galapagos Islands, a combi- 
nation of the distinct tracers, particularly the 
stable isotopes and Cd/Ca ratio, allows the iden- 
tification of El Niño occurrences of the last 50 
years through departures from normal SST and 
upwelling conditions (Linsley et al., 1991; Shen et 
al. 1992a, b; Cole et al., 1992). After the reliabil- 
ity of this type of record has been carefully estab- 
lished, there is much expectation for correlation 
of coral cores spanning several centuries and 
obtained from widely separated localities across 
the whole Pacific basin. Actually, long cores from 
reef corals on both sides of the equatorial Pacific 
may provide in a near future the key proxy record 
of ENSO in the last few centuries. 

* 

f 

Holocene and late Quaternary events 
I 

Marine varves and sedimentary records 
Marine depositional processes may record with 

a good accuracy short-term oceanic/climatic al- 
terations, provided that there is a combination of 
a high and stable sedimentation rate, a significant 
climatic signal and a subsequent preservation of 

the sequence. Such exceptional conditions have 
not yet been foundoffshore western South Amer- 
ica, although laminated sediments of Plio- 
Quaternary age observed on the Peruvian margin 
are currently studied (Kemp and Brodie, 1992). 
Marine varves that comply with the above men- 
tioned requisites are reported from off-California 
(notably the Santa Barbara Basin) and in the 
Gulf of California (Guaymas Basin) (Soutar and 
Crill, 1977; Anderson et al., 1987; Baumgartner 
et al., 1985, 1991a, b). In these two favorable 
regions, calibration studies carried on the upper 
part of hydraulic piston cores showed that the 
high-resolution sedimentary sequences record en- 
vironmental changes indirectly related to El Niño 
episodes (Baumgartner et al., 1985, 1989; Wein- 
heimer et al., 1986; Anderson et al., 1989; 
Gorsline and Christensen, 1992). In these se- 
quences, the ENSO events are recognized by 
indicators of reduced productivity (I3C-depleted 
phytoplankton: Schimmelmann and Tegner, 
1991), or variations in radiolarian (Ciccateri and 
Casey, 1991; Weinheimer et al., 1986; Wein- 
heimer, 1991) and planktonic foraminiferan as- 
semblages (Earley et al., 1991). 

Another recently developed method that is 
able to provide an annually resolved record of 
oceanic temperatures is based on the degree of 
alkenone unsaturation (U& values) (McCaffrey et 
al., 1989, 1990). According to studies offshore 
California (Santa Barbara Basin) and preliminary 
work on the Peruvian shelf, alkenone concentra- 
tions in recent sediments record SST variations of 
the order of 1°C that correlate with EI Niño 
events during the 20th century (Farrington et al., 
1984; Kennedy and Brassell, 1992). 

Flood deposits 
In the valley of Rio Casma (9"S, 400 km NNW 

of Lima), where current precipitation does not 
exceed 5 mm/yr, Wells (1987, 1990) distinguished 
18 Holocene flood events and a few late Pleis- 
tocene flood remnants. Thirteen out of the 18 
Holocene flood deposits were formed in the last 
3200 yrs. Wells (1990) correlated two flood events 
(radiocarbon-dated AD 1750 34, mean value of 
ten clustered results) and the 1728 and 1791 
events of the historical sequence of EI Niño 
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Fig. 3. Locati0.n of the major sequences of Holocene beach ridges in northern Peru. The three northernmost sequences, that all 
comprise 8-10 ridges, record the high runoff and large sediment supply of the Chira and Piura rivers provoked by particularly 
heavy rains that occurred during very strong El Niño events, in the second half of the Holocene. See Fig. 4 for more details on the 
Chira and Colan'sequences. The Santa beach ridge sequence is less directly related to El Niño effects (see text). 
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(Quinn et al., 1987) (Table 1). Another correla- 
tion was attempted between a flood deposit dated 
AD 1330k35 and the historical Naylamp flood 
(Nials et al., 1979; Craig and Shimada, 1986; 
Pozorski, 1987). Two other flood deposits (AD 
16 k 163, 1240 k 45 BC) were tentatively corre- 
lated with transitions between archaeological pe- 
riods. The exceptional heavy rains and large floods 
which occurred during past El Niño events pro- 
voked much damage in the irrigation systems of 
the Peruvian coastal desert and thus played a 
major role in the land use and political history of 
the region (Kosok, 1965; Nials et al., 1979; Mose- 
ley et al., 1981, 1992; Pozorski, 1987). Conse- 
quently, the archeology played also an important 
role in the identification of former climatic 
anomalies in coastal Peru. 

According to Wells' (1990) study, the mean 
frequency of major El Niño events during the last 
7000 yrs (i.e. since the Holocene high sealevel 
maximum) is of the order of one episode every 
1000 yr, although many more flooding events 
were registered in the last few thousand years. 
For the last 40,000 yrs, Wells (1987) had esti- 
mated a total number of about a hundred El 
Nifio events, based on the number of flood de- 
posits preserved in the arid north central Peru- 
vian coast. 

The evaluation of relative intensity of past El 
Niño events on basis of flood evidence is certainly 
not straightforward, but may be attempted in 
some cases. Combined geomorphological, geolog- 
ical and archaeological data from coastal Peru 
seem to indicate that three or four unusually 
strong events (= as strong, or stronger, than the 
1925 and 1982-1983 episodes) occurred in the 
last 2500 yr or so. Similar preliminary results are 
obtained from stratigraphic studies in the lower 

1992) and in eastern Amazonia (Absy, 1979; Per- 
ota, 1992; Martin et al., 1992a, 1992b) but in 

as drought episodes. Undoubtedly, it would be 
most useful to firmly establish (or disclose) this 
kind of teleconnections based on river floods/ 
droughts within South America, with the help 
of precise radiochronological determination. It 
would be of much value to determine the time 

6 

7 Magdalena Basin of northern Columbia (Dueñas, 

these regions El Niño major events are recorded d 

scale (a few years or decades/centuries?) of these 
short-term major climatic anomalies. 

Lacustrine cores 
The absence of lakes in the arid northwestern 

Peru is unfortunate since it prevents us from 
obtaining lacustrine core data in the most sensi- 
ble area. However, a preliminary study in the 
Ecuadorian Lake Yambo, located in an intra- 
andean semi-arid ' depression, that is affected by 
the large rainfalls accompanying strong EI Niño 
events showed major salinity variations during the 
last 2500 yr (Steinitz-Kannan et al., 1992). The 
diatom record is interpreted to register the 
strongest historical El Niño events and about 15 
older episodes (pre-AD 1578) (Steinitz-Kannan et 
al., 1992). Other lakes from western South Amer- 
ica may yield comparable data and should be 
investigated (Markgraf, 1989; Markgraf et al., 
1992). 

The High Andes and altiplano lakes, like Titi- 
caca, may record level lowering during strong El 
Niño events. Holocene fluctuations of Bolivian 
lake levels are currently studied, notably through 
detailed ostracod analysis (Mourguiart, 1987; 
Mourguiart and ROUX, 1990). 

Beach ridge sequences of nortlzem Peru 
Along the northern coast of Peru, Holocene 

beach-ridge sequences may record major EI Niño 
events that occurred in the last few thousands 
years. Heavy rainfalls, exceptional runoff, largely 
increased sediment supply of coastal rivers, to- 
gether with rough sea conditions and short-lived 
sea-level elevation, all processes that characterize 
strong EI Niño events in northern Peru, are also 
favorable to the formation of beach ridge se- 
quences. Three of these coastal features are lo- 
cated at the mouth of the three major rivers of 
northern Peru (Santa: Chira and Piura), down- 
drift from the northbound longshore drift (Fig. 3) 
(Richardson, 1983; Sandweiss, 1986; Rollins et 
al., 1986; Wells, 1988; Macharé and Ortlieb, 1990; 
DeVries and Wells, 1990; Moseley et al., 1992). 
In a fourth case, at Colan (5"S, 10 km NW of 
Paita), a sequence of 8 ridges is preserved at the 
foot of a 70-m high abandonned seacliff. The 
ridges are formed by shingles derived from a 
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conglomerate unit that crops out in the upper 
part of the dead seacliff (Ortlieb et al., 1989, 
1992; Macharé and Ortlieb, 1990). In this particu- 
lar case, the erosion of the pebbles, their trans- 
port to former shorelines and, finally their accu- 
mulation as beach-ridges above the sandy strand- 
plain, imply the Co-occurrence of heavy rains 

(strong enough to erode the conglomerate bed) 
and of nearshore energetic conditions and higher 
sealevel that is only met during very strong EI 
Niiio events (Ortlieb et al., 1989, 1992). 

Chronological analyses of fossil shells and ar- 
chaeological charcoal in the two northernmost 
Peruvian beach-ridge sequences (Fig. 4, Table 21, 

TABLE 2 

Radiocarbon dates from northern Peru sequences of beach ridges, at Colan and north of the Chira River mouth (simplified from 
Ortlieb et al., 1992), for location see Figs. 3 and 4. In the beach ridges at Colan, the dated material are shells and reworked small 
charcoal remains that were sedimented in the ridges: thus they pre-date the ridge formation. In the Chira sequence, the 
geochronological data are from midden shells and archaeological hearth material (associated shells and charcoal, coming from the 
same hearth, and thus supposedly contemporaneous, are in bold) that post-dates the ridge formation (see discussion in Ortlieb et 
al., 1992). 

TABLE 2A 
Chira sequence of beach-ridges 

Beach-ridge# Nature of Measured Normalized 

Ortlieb Richardson, 
et al. 1992 1983 

sample I4C age (B.P.) ‘ 4 ~  age 
(yr B.P.) 

“J” IX shells 4210f 40 4630k 40 
charcoal 4570f 50 4540+ 50 
shells 3230k 40 3640+ 40 
charcoal 4485+ 80 
charocal 4255k 65 
charcoal 3985-k 80 

“K’ VI11 shells 3310f 40 3720k 40 
charcoal 3520k 50 3490f 50 
shells 3060k 30 3480f 30 
charcoal 3490f 80 

Interridge in situ shells 34104 40 3840f 40 
in situ shells 3370f 40 3790f 40 

“L” VI1 shells 3210k 35 3620f 35 
charcoal 3190+ 45 31602 45 
shells 26102 35 3020f 35 
shells 2600 f 150 3030 & 150 
shells 3500 f 160 

“ M Y  VI shells 2540+ 40 2950k 40 
charcoal 2760k 40 2730f 40 
charcoal 2685 f 105 
charcoal 2485f 70 

V charcoal 1955 + 100 

IV shells 1550 + 110 

III charcoal 1405f 75 
charcoal 1305 f 100 

t 

II charcoal 805k 60 

Last I shells 460k 40 870k 40 
ridge charcoal 380k 40 350f 40 
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TABLE 2B 
Colan sequence of beach-ridges 

Beach-ridge# Nature of Measured Normalized 
sample 14C age (B.P.) 14c age (B.P.) 

#8 charcoal 3170 k 300 3130 f 300 
shells 2890 f 250 3300 f 250 
shells 3020 k 250 3450 f 250 

#8N charcoal 
shells 
shells 

3340f 45 
3210f 40 
3210+ 50 

3310f 45 
3630f 40 
3640f 50 

#7 shells 2760 f 210 3190 210 

charcoal 2550 f 490 2520 f 490 #5 
shells 2510 f 250 2920 f 250 

#4 shells 2150 f 170 2560 f 170 
#3 charcoal 2080 f 540 2050 f 540 

charcoal 2040 f 380 2010 + 380 
shells 2170 f 300 2600 f 300 

#3a shells 1660 f 180 2090 + 180 
#2 shells 1450 f 180 1880 f 180 

* ’  

#lN shells 960 f 230 1390 f 230 

#1S shells 790 & 210 1200 * 210 
N flat in situ shells 730 + 190 1150 f 190 
shell-line shells 180 + 160 590 f 160 
and site C charcoal 620 & 290 590 + 290 

in the core of the El Niño region, strongly suggest 
that these coastal features formed at the same 
time in the course of the last 4500 yr, with an 
approximate recurrence of 400-500 yr (Ortlieb et 
al., 1989, 1992; Macharé et al., 1992). Limitations 
of the radiocarbon method (involving problems of 
reservoir effect possibly related to upwelling 
anomalies) unfortunately prevented a precise 14C 
age determination of the formation of each ridge. 
The long sandy beach ridges that formed north of 
the Chira River mouth and the smaller shingle 
ridges of Colan are interpreted to constitute two 
types of coastal features associated with very 
strong El Niño episodes: the Chira ridges reflect 
episodes of exceptional sand discharge of the 
Chira River following heavy inland rains, while 
the Colan ridges result from episodes of sudden 
availability of pebbles fallen downcliff also re- 
lated to very strong rains. We infer that, in both 
cases, the ridges record the strongest El Niño 

f 

events of the second half of the Holocene 
(Macharé and Ortlieb, 1990; Ortlieb et al., 1992). 
The duration of such episodes and their strength 
with respect to the historical intensity scale (very 
strong us. “super” or “mega” EI Niños) are still 
under debate (Macharé et al., 1992; Martin et al., 
1992a, 1992b; Mörner, in press). 

The relationship between former El Niño oc- 
currences and the beach ridge sequence formed 
at the mouth of the Santa River, on the central 
coast of Peru, are more controversial (Sandweiss 
et al., 1983; Sandweiss, 1986; Wells, 1988; 
DeVries and Wells, 1990; Moseley et al., 1992; 
Macharé et al., 1992). No clear indication was 
obtained that the ridges formed during El Niño 
events: the cobble ridges indicate discrete 
episodes of high energy in the nearshore area 
during the last 4000 yr, but there may be no 
direct time-correlation between the pulses of 
coarse-grained sediment supply at the river mouth 
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C H l R A  

Fig. 4. Beach ridge sequences on both sides of the Chira River mouth, northern Peru (for location see Fig. 3): sketch maps and 
cross-sections, with identification of the ridges indicated in Table 2. At Chira, north of the river mouth, the ridges are made of 
reworked fluvial sand, and were protected from erosion by a cover of midden shells (see chronological data, Table 2). At Colan, the 
ridges are largely made of pebbles inherited from a conglomerate bed that crops out at about +50 m up the abandonned seacliff. 
Although the beach ridges differ by their size (length, height, width), sediment nature, and formation processes, it is interpreted 
that they were formed coevally, during the strongest El Niño events of the last 4500 yrs. 

and El Niño events. The Santa River regime is 
much less controlled by El Niño precipitation 
than the northern Peru rivers of Chira and Piura. 

Plio-Pleistocene events 

The modern oceanic circulation of the Pacific 
Basin has existed for about the last 3 m.y., namely 
since the final closure of the Isthmus of Panama 
(Keigwin, 1978; Romine, 1982; Keller et al., 1989) 
and after the thermal gradients were set up across 
the Pacific (Romine, 1982; Hays et al. 1979). On 
paleogeographical grounds, then, the Southern 
Oscillation may have been active since the late 
Pliocene. On another hand, radiolarian data from 
the US Pacific coast suggested that El Niño-like 
episodes may have existed since 8 m.y. and that 
proper (?) El Niño events were apparently regis- 
tered off California for the last 5.5 m.y. (Nelson, 
1989). Pre-late Quaternary ENSO activity still 
remains to be assessed with high-resolution sedi- 
mentary records. 

What happened with the ENSO cycle during 
the glacial/interglacial climatic fluctuations of the 
Pleistocene? Some authors hypothesized that 
during glacial sea-level lowstands, the ocean/ at- 
mosphere conditions in the Indonesian region 
prevented the functioning of the ENSO system 
(Quinn, 1971; Salinger, 1981). Several oceano- 
graphic and palaeoclimatic indicators from the 
inter-tropical Pacific Ocean and surrounding ar- 
eas seemed to confirm that the last glacial period 
was characterized by a reduction of the mon- 
soonal rains, a decrease of the upwelling, drier 
atmospheric conditions and more generally a re- 
duction of the Southern Oscillation (Colinvaux, 
1972, 1984; CLIMAP members, 1981; Romine 
and Moore, 1981; Rea et al., 1986; COHMAP 
members, 1988). Off California, late Quaternary 
marine varves in the oxygen-minimum zone (at 
ca. -700 m depth), that suggest increased up- 
welling and high productivity, were interpreted as 
indicative of an anti-El Niño regime (Anderson et 
al., 1990). From 25,000 yrs records  of^ silicoflagel- 
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late assemblages of laminated sediments in the 
Gulf of California, it has been inferred that EI 
Niño events were stronger and/or more frequent 
in the last 8000 yr (Murray, 1992). 

Limited data exist from the Peruvian continen- 
tal margin. At sites 680, 681 and 686 of ODP Leg 
112 off central Peru, advanced hydraulic piston 
cores were obtained and provided a productivity 
and coastal upwelling record of the last 400,000 
yrs on decadal and centennial time-scales; ac- 
cording this record, upwelling activity was maxi- 
mal during interglacial stages 1, (late) 5 and 7 and 
during the interstadial 3, but also partly during 

Nevertheless, the greater than decadal resolution 
of the record and the fact that no data is avail- 
able for the last 100 yr (thus impeding proper 
calibration), hamper a positive recognition of El 
Niño activity. 

It seems reasonable to infer from these sparse 
data that the ENSO system was probably opera- 
tive during middle-late Pleistocene interglacials 
and warm interstadials and inversely that it was 
largely reduced, or totally lacking, during glacial 
maxima (Colgan, 1989; Ortlieb and Macharé, 
1989; Anderson et al., 1990; Mörer,  1992, in 
press; Markgraf et al., 1992). 

t glacial stages 6 and 8 (Oberhänsli et al., 1990). 

. 

Conclusion 

, Historical, archaeological and geological stud- 
ies documenting past El Niño events have greatly 
increased during the last years, as a result of 
growing interest in this major oceano-climatic 
anomaly. Recent occurrences of the El Niño phe- 
nomenon, including the very strong 1982-1983 
episode, provided the opportunity to appreciate 
the range of variability of the biological and phys- 
ical (not to mention societal) impacts of oceanic 
and meteorologic alterations along the Pacific 
coast of South America. 

In the case of sedimentary or ice cores, recent 
work concentrated on the identification of the 
physical, .chemical and bio-geochemical variables 
that reflect characteristic El Niño alterations of 
the environment. This was done through compar- 
isons and “calibrations” with instrumental records 
of climatic and oceanographic parameters avail- 

P 

able for the last few decades, before the data 
could be extrapolated in the past. For the rela- 
tively short duration of the El Niño phenomenon 
(from a geological point of view) and because of 
the variability in the intensity of the phenomena 
and processes from one event to the other, the 
task is uneasy and requires records with a high 
(seasonal) resolution and very sensitive variables. 
Necessarily, these prerequisites limit the search 
to some types of record, namely: ice cores, tree 
rings, coral reefs and varved sediments and fur- 
thermore imply that only a small number of sam- 
pling locations are suitable. 

The western coast of South-America is the 
area of the globe where the El Niño anomaly was 
first defined and where the intensity of modern 
events is currently determined. Quite naturally, 
thus, it is viewed as an appropriate area for 
recurrence and palaeo-intensity studies of the 
ENSO phenomenon. Nevertheless, this short re- 
view indicates that, for diverse methodological 
reasons, marine varves and dendroclimatic 
records from western North America have yielded 
up to now more reliable results than South Amer- 
ica. In South America and in the eastern Pacific, 
it seems that the glaciological and coral reef 
records present the best potential for the recon- 
struction of palaeoclimatic and palaeoceano- 
graphic anomalies on a century scale. A combina- 
tion of these sets of records should constitute a 
solid basis for a chronological sequence of EI 
Niño events. The establishing of a standard se- 
quence will still require substantial efforts, since 
the coral data for the last few centuries only 
begin to be available and because we need to 
improve our understanding of the atmospheric 
circulation patterns over South America in rela- 
tionship with the Quelccaya ice cap formation. 

The unraveling of interferences between cli- 
mate anomalies at distinct time scales, like the 
Little Ice Age and El Niño, still requires further 
investigation. Available proxy records provide 
contradictory indications regarding changes in the 
recurrence and strength of the El Niño events 
during the LIA, with respect to the last century: 
some data suggest that the variability of El Niño 
remained unchanged during and after the LIA, 
while other proxies seem to indicate that it dif- 
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fered significantly. We consider that this impor- 
tant point should be resolved through a close 
scrutinization of biological and physico-chemical 
records, followed by cross-correlations of these 
data. 

It was stressed here that the classical EI Niño 
chronology of the last 450 yr based on documen- 
tary sources (Quinn et al., 1987) apparently in- 
volved more numerous and stronger, events than 
those that really occurred (particularly in the 
16-18th centuries) and thus that it biased earlier 
calibrations of other types of ENSO records. The 
El Niño chronology published in 1987 should not 
be accepted any more at face value, without some 
caution, especially for recurrence studies of the 
phenomenon, or for straightforward calibration 
of other proxies. 

For the time span of the late Quaternary-Ho- 
locene, relevant palaeoclimatic data are still very 
fragmentary. The available information comes 
from flood deposits, beach ridges, short se- 
quences of laminated sediments, lake level fluctu- 
ations or faunal associations. This kind of dis- 
crete record is useful but needs to rely on precise 
dating, so that special efforts should be made in 
this direction (AMs radiocarbon dating and other 
isotopic methods). Catastrophic events related to 
intense precipitation, or to important alterations 
of the nearshore (or offshore, or inland) environ- 
ment and which left geological remnants, offer 
opportunities to evaluate paleo-intensities of El 
Niño events. Evidences on short term climate/ 
environmental alterations are also of special in- 
terest in establishing former teleconnections be- 
tween areas of South America which registered in 
distinct manners the El Niño phenomenon. 
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