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Abstract. The stomatal response to air humidity has been recently reinterpreted in the 
sense that stomata seem to respond to the rate of transpiration rather to air humidity per 
se. Monteith suggested that the relation between canopy stomatal resistance r, and canopy 
transpiration E can be written as r,/r,, = 1/(1 - EIE,), where r,,, is a notional 
minimum canopy resistance, obtained by extrapolation to zero transpiration, and E, is a 
notional maximum transpiration rate, obtained by extrapolation to infinite resistance. The 
exact significance and possible values of these parameters have not been specified yet. In 
this study we show that this apparently new relation can be inferred from the common 
Jarvis-type models, in which canopy stomatal resistance is expressed in the form of a 
minimal resistance multiplied by a product of independent stress functions (each one 
representing the influence of one factor). This is made possible by replacing leaf water 
potential in the corresponding stress function by its dependence on transpiration and soil 
water potential. The matching of the two formulations (Monteith and Jarvis) allows one to 
express the two parameters rsn and E, in terms of the functions and parameters making 
up the Jarvis-type models; r,,, appears to depend upon solar radiation and soil water 
potential: it represents the canopy stomatal resistance when the leaf water potential is 
equal to the soil water potential, all other conditions being equal. E, depends upon soil 
water potential and represents the maximum flux of water which can be extracted from 
the soil by the canopy.. 

1. Introduction 
Any natural surface partitions the net supply of radiative 

energy into sensible and latent heat flux. In the case of vege- 
tation the key factor in this partitioning is the stomatal behav- 
ior. Among numerous approaches allowing the calculation of 
this partitioning over vegetation, the “big leaf” model, as for- 
mulated by the Penman-Monteith equation [Monteitlz, 19811, 
has acquired a wide acceptance by its simplicity and its perfor- 
mance. In this approach the bulk behavior of stomata is rep- 
resented by a canopy stomatal resistance assumed to be com- 
parable with that of a single leaf and influenced by the same 
factors. 

The stomatal resistance, at leaf scale as well as at canopy 
scale, has been correlated with many environmental conditions 
and plant factors such as solar radiation, air humidity, air 
temperature, ambient carbon dioxide, leaf water potential, or 
soil water potential. So far, however, no mechanistic model has 
been developed to describe the stomatal aperture, and only 
empirical approaches are available. For more than 20 years the 
most common approach to parameterize the effect of environ- 
mental factors on stomatal behaviour has been the so-called 
Jarvis-type models [Jawis, 1976; Stewart, 19881, in which sto- 
matal resistance is expressed as a minimum resistance multi- 
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plied by a series of independent stress functions combined in a 
multiplicative way (each function representing the influence of 
one factor). The response of stomata to solar radiation, tem- 
perature, and carbon dioxide concentration can be easily in- 
terpreted in terms of the process of photosynthesis. On the 
other hand, it has never been possible to understand the phys- 
iological basis for a direct effect of atmospheric humidity on 
stomatal resistance. No consensus has ever emerged as to the 
mechanism involved in this effect. 

Recently, the response of stomata to humidity has been 
reinterpreted in a different way: it seems that the correlation 
between stomatal resistance and atmospheric humidity is 
purely empirical and that the mechanism underneath is based 
on the water-loss rate of the leaf [Mott and Parkhurst, 19911. 
Stomata appear to respond to the rate of transpiration rather 
to air humidity per se. Reanalyzing 52 sets of measurements on 
16 species, Moriteitlz [1995a] showed that the leaf stomatal 
conductance can be interpreted as a linear decreasing function 
of transpiration with two empirical coefficients: a maximum 
conductance (obtained by extrapolation to zero transpiration) 
and a maximum rate of transpiration (obtained by extrapola- 
tion to zero conductance). Morzteith [1995b] suggested also that 
+his relationship between stomatal conductance and transpira- 
tiun rate could be up-scaled from leaf to canopy, in the same 
way as the Jarvis model. However, little has been said about 
the significance and calculation of these parameters (maximum 
conductance and maximum transpiration) at canopy scale. 

The aim of this paper is to assess and discuss this new 
formulation of stomatal behavior proposed by Moizteitlz 
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[I995133 and to interpret the parameters at canopy scale. The 
plan is as follows. Sections 2 and 3 examine respectively Mon- 
teitlz’s [1995b] and Jawis’ [1976] formulations. Section 4 shows 
how Monteith’s formulation can be inferred from Jarvis’ one 
and what is the expression of the two scaling parameters (in 
terms of the functions making up the Jarvis-type models). 
Section 5 is dedicated to numerical results obtained by simu- 
lation. Incorporating the stomatal resistance model of Monte- 
ith within a one-dimensional boundary layer model allows one 
to visualize and analyze the diurnal behavior of canopy resis- 
tance. 

2. Monteith’s Formulation of Canopy 
Resistance 

The Penman-Monteith single-source model [Monteith, 19811 
gives the flux of evaporation from a fully covering canopy in 
the form of 

where A = R,, - G is the available energy (with R, the net 
radiation and G the soil heat flux), D = q*(0) - q is the 
potential saturation deficit of the air (with 0 the air tempera- 
ture and q the specific humidity of the air), E is the dimension- 
less slope of the saturation specific humidity q * and varies with 
air temperature, r, is the bulk aerodynamic resistance to heat 
and water vapor transfer through the surface layer, r, is the 
bulk surface resistance to water vapour transfer, p is the air 
density, and A is the latent heat of vaporisation. Defining po- 
tential evaporation from a given vegetation canopy (denoted 
by E p )  as the evaporation from this canopy when all the ex- 
change surfaces are saturated, i.e., when r, = O [Lhomme, 
1997a1, one can write 

EA + pADIr, 
& + l  AE, = 

and combining (1) and (2) ,  evaporation can also be expressed 
as a function of Ep as 

(3) 

According to Monteith [1995a, b] the canopy conductance g, 
(=l/r,) is a linear function of transpiration E with the general 
form 

g,lg, = 1 - EIE, (4) 
where g, and E, are two parameters empirically determined. 
The maximum conductance g, is obtained by extrapolation to 
zero transpiration, and the maximum rate of transpiration E, is 
obtained by extrapolation to zero conductance. In terms of 
surface resistance, (4) is equivalent to 

r,lr,,, = Ed(E, - E )  (5) 

where r,, = lfgs,. In this analysis, soil evaporation is assumed 
to be negligible, which means that transpiration rate in (4)  or 
(5) is strictly the same as canopy evaporation in (1) or (3). 
Consequently, combining (3), expressing the thermodynamic 
dependence of E on r,, with (9, expressing the physiological 
dependence of E on i-,, leads to a quadratic expression for r,, 
which can be put in the following form: 

X2 + [(l + E)r,(l’- E,IE,) - rs,,]X - (1 + &)r,rs,l = O (6) 
I 

X = r, 

The appropriate root of (6) is 

r, = [- A + ,/Az + 4(1 + s)ror,,,]/2 

A = (1 + E)r,(l - E,IE.J - r,,, 
When the quadratic equation obtained by combining (3) with 
(5) is solved in E instead of r,, the appropriate root gives 
[Monteith, 1995bl 

E = [E, + .,,E, - J ( E ,  + a,,E,)”- 4E,E,]/2 (8) 5 

1 rsn 
a,, = 1 + -- &-I-1 r, 

The limit rate of transpiration E, is a notional maximum 
rate of water supply, the precise significance of which is not 
known. However, a simple physical interpretation can be in- 
ferred from (8). When atmospheric demand becomes very 
large, i.e., when E p  tends to infinity (all other parameters being 
kept constant), it can be shown from (8) that evaporation tends 
to E, (this result is obtained by noticing that the square root in 
(8) is equivalent to Ep + anEx - 2E,, when Ep tends to +m). 
So, E, can be interpreted as the limit value of actual evapo- 
ration when the atmospheric demand tends to infinity. In other 
words, it is a notional maximum amount of water available in 
the soil for extraction by the canopy per unit time. It is worth- 
while stressing that E ,  cannot be parameterized as a function 
of Ep in the form of (3), i.e., E, = k,Ep with k, a constànt 
depending on soil water availability (O 5 k, 5 1). If it were 
the case, (7) shows that canopy resistance would no longer 
depend upon transpiration rate. 

Little is known also on the significance and possible values of 
rs,. Monteith [1995b], without clear justifications, parameter- 
ized r,, as a function of solar radiation S in the following way: 
r,, decreases from +a down to a threshold of 50 s m-’, when 
S increases from O to So = 400 W mu*, and then remains 
constant at 50 s m-l, when S > So. 

. 

. 

, 

3. The Jarvis-Type Representation 
of Canopy Resistance 

So far, the Jarvis-type models [Jawis, 1976; Stewart, 19881 
have represented the most common way of parameterizing the 
response of stomata to environmental factors, at leaf scale as 
well as at canopy scale. They describe this response in the form 
of a minimal resistance multiplied by the product of indepen- 
dent stress functions interacting without synergy [Jacobs, 19941 

’ 

r, = r, ,,,inF1(S) FdT)FO)Fdqd (9) 

Here, r, min is the minimum stomatal resistance observed in 
optimal conditions, i.e., if none of the controlling variables is 
limiting. S is the incoming solar radiation, T is the air temper- 
ature, D is the water vapor saturation deficit, and ?If, is the leaf 
water potential, which at the scale of a stand of vegetation is 
often replaced by the bulk soil water potential or the soil water 
content averaged over the root zone. The influence of CO, is 
generally omitted because its concentration is almost constant 
during the diurnal part of the day. Each function (Fi) varies 
from unity to infinity. Their form is established in controlled 
environments, and the parameters of the functions are deter- 

. 
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mined from statistical analysis of measurements covering a 
wide range of the relevant variables. Kelliher ,et al. [1995] 
showed that r, takes average values of 30 and 50 s m-’, 
respectively, for agricultural crops and natural vegetation. 

The influence of solar radiation is crucial and cannot be 
skipped. It can be expressed in terms of an exponential func- 
tion [Fisher el al., 19811 or a hyperbolic function of the form 
[Stewart, 19881 

Fi(S) = (C + S ) / ( d S )  (10) 

where d is obtained from d = 1 + c/lOOO. When S is 
expressed in W m-’, Stewart [1988] derived a mean value of 
about 100 for c in the case of a pine forest in England, and 
Stewart and Gay [1989] derived a mean value of about 400 in 
the case of the Konsa Prairie in Kansas (First International 
Satellite Land Surface Climatology Project Field Experiment 
(FIFE) data). The response of stomata to temperature may be 
represented by an exponential function [Jarvis, 19761 or a 
power function [Stewart, 19881. A simpler representation 
[Dickinson, 1984; Noilhan arid Planton, 19891 is written as 

F,(í”) = [l - kT(T, - T)’]-’ (11) 

with k ,  = 0.0016 and T, = 298 K. However, in many 
parameterizations of stomatal resistance the effect of temper- 
ature is neglected [Deardorff, 1978; Stewart and Gay, 1989; 
Lynn and Carlson, 1990; Mascart et al., 1991; de Ridder aiid 
Schayes, 19971. In our analysis, for the sake of convenience, we 
also assume that ambient temperature has no effect on stoma- 
tal resistance, and thus k ,  = O and F,(T) = l. As to the 
dependence on saturation deficit F,(D), the common form 
generally adopted is a linear decrease of stomatal conductance 
with D [Ja~nlvis, 1976; Stewart, 1988; Noilhan and Planton, 19891 
leading to 

F3(D) = (1 - (YD)-’ O < D < l / ( ~  (12) 

For the Konza Prairie in Kansas (FIFE data), Stewart and Gay 
[1989] give a mean value,of about 24 to the empirical coeffi- 
cient (Y, with D expressed in kg kg-’. Noilltan and Planton 
[1989], give the value of (Y (derived for a coniferous forest from 
the Hydrologic Atmospheric Pilot Experiment/Modelisation 
du Bilan Hydrique (HAPEX-MOBILHY) data set) as 41. Sev- 
eral stomatal models do not take into account the effect of 
saturation deficit [Deardog, 1978; Mascart et al., 1991; de Rid- 
der and Sckayes, 19971. Moreover, Lynn and Carlson [1990, p. 
171 question the real effect of air humidity on stomatal resistance: 

After reviewing the many stomatal resistance formulations sum- 
marised in Table 1 113 references], we were unable to understand 
the basis for a direct effect of vapour pressure deficit on stomatal 
resistance. It may be possible to explain the response of the 
stomata to [O] as a response of the guard cells to epidermal leaf 
water potential. 

They think the role played by the saturation deficit is indirect. 
An increase of D will damp the leaf water potential which, in 
turn, will be responsible for an increase of stomatal resistance, 
as specified hereafter. 

The dependence of stomatal resistance on leaf water poten- 
tial can be expressed in different ways. Jarvis [1976] suggested 
a negative exponential relationship between stomatal conduc- 
tance and leaf water potential. Choiidhury arid Idso [1985] 
derived the following empirical function from data obtained on 
field-grown wheat 

25 1 q LI” 20 

-1 -5 -9 -1 3 -1 7 -21 
Leaf water potential (bar) 

Figure 1. Comparison of the two curves F4(Yrl) represent- 
ing the stress function for leaf water potential in Jarvis’ param- 
eterization of canopy resistance: (1) equation (13a) and (2) 
equation (13b), with qCr = - 14.5 bars and qcc = -25 bars. 
qCr = 14.5 bars corresponds to the best fit between the two 
curves over the range [-1, -241 for a fixed value of TCc of -25 
bars. 

where qI is the bulk leaf water potential and qcr is a critical 
leaf watqr potential giving the limit beyond which the transpi- 
ration rate is strongly limited by water stress (about -20 bars 
for a cereal crop). When leaf water potential is not available, it 
is often replaced by soil moisture deficit [Stewart, 1988; Noilhan 
and Planton, 19891 or simply disregarded [Stewart arid Gay, 
19891. Lynn and Carlson [1990] proposed a “discontinuous 
linear model” similar to that discussed by Fisher et al. [1981], 
where the exponential behavior of F 4 ( q I )  is represented by a 
pair of straight lines whose intersection defines a critical value 
qCr. Mascart et al. [1991] used the same formulation as 
Choud1iury and Idso [1985]. In their Institut d’Astronomie et 
de Géophysique Georges Lemaître (IAGL) land surface 
model, de Ridder and Schayes [1997] employ an hyperbolic 
dependence of the form 

where qcc represents the value of leaf water potential at which 
a complete stomatal closure occurs (Tee = -25 bars). Figure 
1 compares the shape of the two curves proposed for F ,  (equa- 
tions (13a) and (13b)) for fixed values of qcr and Tee. On the 
operational range of leaf water potential the two curves appear 
to be very close. 

4. Matching the Two Formulations 
A precise insight into the significance of the two parameters 

(E, and rsn) of Monteith’s model can be obtained by matching 
the two formulations of canopy resistance (Monteith’s one and 
Jarvis’ one). In this section we show how the Jarvis model can 
be transformed and put in the same form as the Monteith 
model. 

The bulk leaf water potential 9, is related to the bulk soil 
water potential !Ps by means of the Ohm’s law type equation 
originally proposed by van den Honert [1948] 
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. I  Table 1. Base Values of the Variables and Coefficients Used in the Numerical 
Simulations 

Variable Significance Value and Unit 

rrs root-stem resistance 0.05 bar (W m-')-' 
ZUJ effective rooting depth l m  
Ks,, 
q'S.,l soil water potential at saturation -0.03 bar 
b coefficient in the relation K, = f(.\y,) 7.1 , 
I; mm minimal stomatal resistance in Jarvis' formulation 40 s m-] I 

soil hydraulic conductivity at saturation 6.3 X lo-' ni s-' 

c coefficient in the stress function F , ( S )  400 i 
k ,  coefficient in the stress function F,(T) O l 

I 

(Y coefficient in the stress function F,(D) 24 1 

'Pee 

ro canopy aerodynamic resistar, .e 50 s m-' i 

6 day length 12 hours 
t 0  initial time for the CBL development simulation 6 hours 

A x  maximum value of available energy 500 W m-' 
T ratio between available energy and solar radiation 0.7 

leaf water potential for a complete closure of stomata -25 bars I 

8 

(in F'dYI.1)) 

E dimensionless slope of the saturation specific humidity 2.8 at e = 25°C 

ho CBL height at t = to 10 m 

W, = W, - r,hE (14) 

where rsp is the total soil-plant resistance and E is the water 
flux through the soil-plant system, assumed here to be equal to 
the total evaporation rate. The significance and value of rsp 
have been extensively discussed by Lynn and Carlson [1990]. 
The parameter rsf is the sum of a soil-root interface resistance 
(r,,) and of a root-stem resistance (rrs): rsp = r,, + r,. The 
plant component of rsf (r,,) remains relatively constant over a 
large range of leaf water potential: a typical value is 0.047 (Y 
being expressed in bar and hE in W m-"). The soil component 
of rsp(rs,.) expresses the resistance of the flow of liquid water 
from the soil to the roots. Its formulation was adapted by 
Choudhy aizd Idso [1985] from a model originally proposed 
by Feddes and Rijtema [1972]: 

r, = 0.0013k,/(Zef~,) (15) 
where 0.0013 (m2) is the ratio of a parameter relating root 
distance and geometry to the reciprocal of the effective rooting 
depth; k l  is a conversion factor equal to 0.4 X 10-l' when r,, 
is expressed in bar (W m-')-'; 2, is the effective rooting 
depth (m), assumed to be 1 m in our analysis; K, is the soil 
hydraulic conductivity (m s-'), which is linked to the soil water 
potential by [Campbell, 19741 

K, = Ksat(WsatlYs)3'b+2 (16) 
where K,,, and Tsat are the conductivity and the water poten- 
tial, respectively, at field saturation. The soil hydraulic param- 
eters K,,,, W,,,, and b have been determined by .Clapp and 
Homberger [1978] for the 11 soil types of the U.S. Department 
of Agriculture (USDA) textural classification: b varies from 
4.05 for sand to 11.4 for clay. The values retained in our 
simulations and shown in Table 1 are those corresponding to a 
sandy clay loam. 

Taking into account (13b) and (14), (9) can be rewritten as 

(17) 
r123 r, = 

1 - (*, - rsphE)l*cc 

r123 = rsm~nFl(S) F 2 ( T )  F 3 ( D )  

Rearranging (17) leads to 

which is an expression similar and functionally equivalent to 
(5), when rewritten as r, = rsn/( 1 - EIE,). Matching term by 
term these two equations leads to 

I 

AEA = (9, - *cc)lrsp (20) 

Consequently, it appears that Monteith's parameterization of 
canopy stómatal resistance is not different from the Jarvis 
approach since the former can be inferred from the latter. 
However, the perfect match between the two models (equa- . 
tions (19) and (20)) can be achieved only if F4(WI) is given by 
(13b) (from a strict mathematical standpoint it is worthwhile 
stressing that the specific match selected is logical, but not 
necessarily the only possible one). If iristead of (13b), (13a) is 
chosen for expressing the dependence upon leaf water poten- 
tial, the perfect matching shown above is not attainable. Nev- 
ertheless, in this case also, it is possible to infer similar expres- 
sions for r,, and E,, as detailed in Appendix A. Therefore we 
can state that the two parameters (rsn and E,) of Monteith's 
relationship are always interpretable in terms of the parame- 
ters and functions making up the Jarvis model: r,, is expressed 
as r123F4(Ws) and hE, as ( W ,  - Wcc)/rSp, whatever the 
mathematical expression given to F4(Wl). Their physical sig- 
nificance appears now clearly. The parameter r,, represents 
the canopy stomatal resistance when the leaf water potential is 
equal to the soil water potential (Y! = *,), i.e., at zero 
transpiration (conditions experimentally encountered at pre- 
dawn). E, represents the flux of water extracted from the soil 

(i.e., its lowest possible value according to the parameteriza- 
tion used for F 4 ) .  It is the maximum flux of water the canopy 
can potentially extract from the soil. As the Jarvis models are 
functionally equivalent to Monteith's model, (7) linking canopy 
resistance to potential evaporation is also valid for the Jarvis 
models, with rsn and E, given by (19) and (20). 

when the leaf water potential is equal to the limit value WCc ! 
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The issue that arises now is the dependence of the canopy 
minimal stomatal resistance rsn upon water vapor saturation 
deficit. To Monteith's mind, r,, cannot depend upon satura- 
tion deficit, since in (5) the dependence of canopy resistance 
upon transpiration theoretically replaces the dependence upon 
saturation deficit. However, the matching of the two models 
leads to this apparent double dependence (rAlz is a function of 
r,23 and then of F3(D) ,  as shown by (17)). It is possible to 
keep only one dependence (that upon transpiration), either by 
assuming with Lynn and Carlson [1990] that stomata do not 
respond directly to D (but indirectly through Y,) and by put- 
ting then F,(D) = 1 or by replacing the dependence of r,,, 
upon D by a dependence upon E in the way described in 
Appendix B. In this last case the equation obtained for rs is 
very different and far more complex than the one proposed by 
Monteith. Nevertheless, the numerical simulations performed 
further (Figure 4) show that assuming F,(D) = 1 does not 
lead to significant differences with the case F,(D) Z 1. From 
a pragmatic viewpoint it seems recommendable to share the 
idea of Lynn and Carlson [1990] by opting for F,(D) = 1. In 
effect, this alternative leads to a sound and simple interpretion 
of the action of saturation deficit on stomatal aperture: When 
D increases, transpiration increases and consequently leaf wa- 
ter potential decreases according to (14) (assuming qs and rsp 
to remain constant), which provokes a stronger stomatal clo- 
sure. 

5. Numerical Results 
The maximum canopy transpiration E, is expressed by (20). 

For a particular type of soil, characterized by fixed values of 
K,,,, and b, and a given vegetation, characterized by fixed 
values of qcc, r,, and 2, (see Table l), the soil-plant resis- 
tance rsp and then the maximum canopy transpiration XE, 
depend only upon the soil water potential qs. Figure 2a shows 
the variation of AE, as a function of qS for different values of 
the limit leaf water potential qcc. AE, is an increasing func- 
tion of qs: When ?Ir, passes from O to -20 bars, AE, is divided 
by 10, passing from 500 to 50 W m-' (for qcc = -25 bars); 
and for a given value of Ts, AE, increases when the limit leaf 

500 

400 
Y 
E 
3300 

w" 
d200 

v 

1 O0 

O< 
-0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 

Soil water potential (bar) 

Figure 2a. Maximum canopy evaporation AE, (given by 
equation (20)) versus soil water potential qS for different 
values of the leaf water potential PCc corresponding to a com- 
plete stomatal closure (defined by equation (13b)). 

900 , 
ao0 

700 

,7600 
E 
3 500 

$400 

300 

200 

1 O0 

Y 

-0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 
Soil water potential (bar) 

Figure 2b. Maximum canopy evaporation AE, versus soil 
water potential Ts for different values of the root-stem resis- 
tance rrs. 

water potential qcc decreases. The parameter AE, is also a 
function of the root-stem resistance as illustrated in Figure 2b. 
Figure 3 gives the variation of the minimum stomatal resis- 
tance rsn as a function of solar radiation S for different values 
of soil water potential. In the expression of r,, given by (19) it 
is assumed that F,(T) = F,(D) = 1, which means that 

= rl  = rs m,Jl(S). In this way, the minimum canopy 
resistance r,,, depends only upon solar radiation through 
F ,  (S) and soil water potential 9,. The parameter rsp appears 
to be a decreasing function of both solar radiation and soil 
water potential. 

There is a permanent interaction and feedback between the 
transpiring vegetation and thecharacteristics of the convective 
boundary layer (specific humidity and temperature). In the rest 
of the section we examine the diurnal behavior of the stomatal 
resistance and of the evaporation when Monteith's resistance 
formulation (with the coefficients derived above) is coupled 
with a convective boundary layer (CBL) modeI. The CBL 
model used is described in Appendix C. It represents an ad- 

400 ys=-15 R 
300 - 

r 

E 

2 

u) 
7 2 0 0  

1 O0 

50 200 350 500 650 800 950 
Solar radiation (W m-*) 

Figure 3. Minimum canopy resistance r,,, (given by equation 
(19)) versus solar radiation S for different values of the soil 
water potential q~y. 

I 
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aptation of the slab model originally devised by McNaughton 
and Spiiggs [1986], where the CBL is seen as a well-mixed layer 
with a potential temperature 8 and a specific humidity q con- 
stanì with height, topped by the undisturbed atmosphere, 
whose properties are determined by synoptic scale processes 
[McNauglzton, 19891. Between the ground surface and the well- 
mixed layer, there is a relatively thin surface layer, where the 
gradients of temperature and humidity may be significanì. Fig- 
ure 4a exemplifies the diurnal course of the canopy resistance 
r, as expressed by the Monteith relationship. The minimal 
canopy resistance r,, (given by (19)) is also shown. Curve (1) 
is plotted with F,(D) = 1, which means that r,,, and conse- 
quently r,, do not depend directly upon saturation deficit. 
Curve (2) is plotted with the dependence of r,, on saturation 
deficit (F,(D) is given by (12)). The two curves are not too 
different. The maximum difference between r, (1) and r, (2) 
is about 50 s m-l, at the end of the diurnal period, when the 
saturation deficit is maximum. Figure 4b shows the impact of 
this difference on the diurnal course of canopy evaporation. 
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- 
'E 400 

5 
x 
3 300 

'P 
c 
> 
a ; 200 

1 O0 

6 8 10 12 14 16 18 
Time (hr) 

Figure 4b. Diurnal course of canopy evaporation and avail- 
able energyA in the same conditions. 
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Figure 5. Diurnal course of canopy resistance for three dif- 
ferent values (-1, -10, -15 bars) of soil water potential P,, 
with the values of the base parameters given in Table 1. 

'The maximum difference between the two curves represents 
about 20 W m-', which is rather weak. The fact that the effect 
of F,(D) is fairly slight provides an additional reason to think 
with Lynn and Carlson [1990] that stomata respond indirectly 
to saturation deficit through leaf water potential, which would 
legitimize the assumption that F,(D) = .l. In Figure 5 the 
diurnal course of canopy resistance is plotted for three differ- 
ent values of soil water potential. For P, = - 1 bar the canopy 
resistance is nearly constaflt during the central hours of the day 
(around 120 s m-l). In this case the evaporation follows the 
available energy. For P, = -15 bars, r, experiences a big 
increase in the middle of the day (up to around 900 s m-l), 
which leads to a transpiration plateau (the increase in r, offsets 
the increase in A ) .  Y, = - 10 bars corresponds to an inter- 
mediate case with a relatively small increase of canopy resis- 
tance in the middle of the day. In Figure 6 the diurnal course 
of canopy resistance is plotted for two different values of the 
maximum available energy A,, which occurs at midday (300 
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Figure 6. Diurnal course of canopy resistance for two differ- 
ent values of the maximum available energyA, (300 and 600 W 
m-') with the values of the base parameters given in Table 1 
and P, = -5 bars. 
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r, = rIz3{1 + (Y,/YCr)”[1 - (1 - 9,,/WJ E/E,’J”} and 600 W m-’). When the available energy is weak, the 
canopy resistance is relatively constant in the central hours 
(around 150 s m-I), whereas for a strong available energy 
(which means a strong evaporative demand), r, increases up to 
about 230 s m-l. 

6. Conclusion 
The formulation of canopy resistance recently proposed by 

Monteith [1995b] expresses the idea (supported by many ex- 
perimental evidences) that stomata respond to the rate of 
transpiration rather than to air humidity per se. In terms of 
resistance it reads as r,/r,, = (1 - E/E, ) - ’ ,  where r,, and 
E,  are two coefficients assumed to be functions of environ- 
mental or plant variables. This formulation has been examined 
and compared to the more commpn Jarvis-type parameteriza- 
tions, where stomatal resistance is expressed as a minimal 
canopy resistance multiplied by various stress functions, each 
one representing the influence of one environmental or plant 
factor. It appears that Monteith’s formulation of canopy resis- 
tance is not fundamentally new and can be inferred from 
Jarvis’ one when the stress function F4(Y[), involving leaf 
water potential, is expressed in the form of a hyperbolic func- 
tion (equation (13b)). The perfect matching requires also that 
stomata do not respond directly to air humidity but indirectly 
through transpiration and leaf water potential. This means that 
the stress function for air humidity F,(D)  (in the Jarvis for- 
mulation) equals unity. In the light of our analysis this last 
assumption, shared by other authors [Lynn ai7d Carlson, 19901, 
seems sound and convincing. 

It has been shown also that physical expressions can be 
derived for the two coefficients of Monteith’s relationship, 
whatever the mathematical form given to the stress function 
F 4 ( 9 ) ) .  In all circumstances the minimum stomatal resistance 
r,, represents the canopy stomatal resistance when the leaf 
water potential is equal to the soil water potential (q) = 9, 
and E = O) ,  all other conditions being equal; and the maxi- 
mum rate of transpiration E, represents the flux of water 
extracted from the soil when the leaf water potential reaches 
its lowest possible value (according to the parameterization 
used for F4):  It is the maximum flux of water which can be 
extracted from the soil by the canopy. 

Appendix A Expressing r,, and E, 
When F4(Wl) Is Given by Equation (13a) 

When (13a) is used to express the dependence of stomatal 
resistance on leaf water potential, r, is written as 

r, = r d 1  + (9~/~cr)”l r123 = r s , iP~(S)F2(T)F3(D)  (Al)  

Replacing 9, by its expression as a function of evaporation 
(equation (14)) and rearranging leads to 

r, = r123[1 -t (9,/9cr)”(l - rSphE/W,)”] (A2) 

which shows that canopy stomatal resistance is an increasing 
function of transpiration, as already attested by (5 )  or (18). 
Defining Ycc strictly in the same way as in (I%), i.e., as the limit 
value of leaf water potential at which a complete stomatal closure 
occurs, the maximum canopy transpiration can’be written as 

AE, = (Y, - 9cc)/r,, ,  (A31 

Replacing in (A2) rsl, by its expression as a function of E, leads to 

I l  which can be considered as the equation equivalent to (18). 
Because of the mathematical form of F4(Y,), it is not con- 

(equation (tï)), as we did with F4(YI) expressed by (13b). ’ 

However, the mínimum canopy resistance rSll can be inferred 
in the following way. When evaporation is nil, i-, = rAn accord- 
ing to (9, which means by matching (5) and (A4) that 

ceivable to put (A4) in the exact form of Monteith’s expression I I  

I I  

r,,, = r d 1  + ( * s / ~ c r ) ” l  = r1z3F4(9s) (A51 

When evaporation is equal to E,, the surface resistance r, be- 
comes very high, and its value is given by r12,[1 + (Ycc/Pcr)’7. 

It is easy to anticipate that the same type of expression, with 
the same physical meaning, can be inferred for r,, and E,, 
whatever the mathematical form of the stress function F4(Yl). 

/ ’  

I Appendix B: Expression of r, as a Function 
of Canopy Transpiration 

The saturation deficit of the air D can be expressed as a 
function of canopy evaporation E by inverting (1). This leads 
to the following expression of F,: 

I 
where E,, is the equilibrium evaporation ( = d / [ h ( l  + E ) ] ) .  / 

I 

$1 1 Combining (Bl) with (17) and (20) leads to a quadratic equa- 
tion for r,, which can be put in the form 

aEr: - [p - a(& + l )r , (E - Eeq)]r, 
I 

where r , 2  = r, mi , ,Fl(S)F2(T).  The appropriate root of (B2) 
is 

with 

r = p - ( Y ( E  + l )r , (E - Eeq) 034) 

Equation (B3) (which is strictly equivalent to (18) with 
F,(D) # 1 given by (12)) represents,the exact dependence of 
r, on canopy evaporation in the Jarvis-type models without 
interference with the saturation deficit. 

Appendix C: Convective Boundary Layer Modeling 
The inversion cap of the CBL, whose height h grows during 

the daytime, is not impermeable. The incorporation of a thin 
layer of air of thickness d h ,  potential temperature 6 + ( h ) ,  and 
humidity q,(h) into the mixed layer with potential tempera- 
ture 6 and specific humidity q leads to the following differential 
equations for sensible heat and water vapor, respectively [Mc- 
Nuughton and Sprigs, 19861: 

d 0  d h  
-= H + pcp(e+ - e) dt  
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where H is the sensible heat flux (obtained from the energy 
balance equation H = A - AE) and E is the evaporation flux 
at the surface given by (i) (in which D is the potential satura- 
tion deficit within the mixed layer). Generally, 0 + ( h )  > 0 and 
q+(h)  < q, which means that entrainment tends to raise the 
temperature and to decrease the humidity within the CBL, 
both factors contributing to increase the evaporation rate. The 
rate of growth of the CBL is parameterized according to the 
“encroachment model” proposed by McNauglztoiz aiid Spriggs 
[1986]: 

where ye is the gradient of potential temperature just above 
the inversion base. The vertical profiles of potential tempera- 
ture and specific humidity in the undisturbed atmosphere are 
assumed to be linear e+(í!) = y# + and q+(z) = 
y,z + q+o, where y, is the gradient of specific humidity just 
above the CBL, and q+o are the potential temperature 
and the specific humidity above the CBL extrapolated a t z  = 
O. Equations (Cl), (C2), and (C3) have three dependent vari- 
ables ( 0 ( t ) ,  q(t), h ( t ) )  forming a set of three coupled first- 
order differential equations, which are solved using the Runge- 
Kutta numerical method. The calculation is initiated with a 
fixed value of the CBL height ho, and the initial values of 
potential temperature Bo and specific humidity qo are taken to 
be equal respectively to O+(lzO) and q+(ho). p, A ,  cp, ye, y,, 

and q+o are taken as constant, and E varies with the 
potential temperature 0 of the mixed layer. 

Available energyA(t) = R,(t) - G ( t )  is assumed to vary 
as a parabolic curve, which intends to simulate its diurnal 
behaviour over the day length 6 [Lhomnze, 1997b]:A(t) = O at 
the initial time t = to and at the time t = to + 6, andA(t)  = 
A, (a maximum value) at the time t = to + S/2. Under these 
conditions, A ( t )  can be written as 

A ( t )  = AxF(t) F ( t )  = -4[t2 - (S + 2tO)t + to(t0 + S)]/S’ 

(C4) 

In the simulations performed, S = 1 2  hours and to = 6 hours 
(local time), and a simple relationship of the type A = qS 
(with q = 0.7) is assumed between available energy and solar 
radiation. The evaporation rate at the surface is computed by 
(8) with r,, and E, given by (19) and ‘(20), respectively. The 
aerodynamic resistance r, is assumed to keep a constant value 
of 50 s m-l. The standard profiles of potential temperature 
and specific humidity above the CBL used in the simulations 
are the so-called McClatchey profiles as cited by Jacobs [1994]. 
They represent average atmospheric conditions in terms of 
latitude and season. Only one case has been considered here, 
the midlatitude summer case (MLS), and linear equations have 
been fitted to the curves given by Jacobs [1994, p. 1561: 

0+ = 4.782 + 293.6 

with z expressed in km, 0 in K, and q in kg kg-’. 

q+ = -0.002852 + 0.01166 (C5) 
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