Beneficial effects of *Enterobacter cloacae* and *Pseudomonas* mendocina for biocontrol of Meloidogyne incognita with the endospore-forming bacterium Pasteuria penetrans

Robin DUPONNOIS¹, Amadou M. BÂ² and Thierry MATEILLE³

¹ ORSTOM, Laboratoire de Bio-Pédologie, B.P. 1386, Dakar, Sénégal; ² ISRA, U.R.A. Productions Forestiéres, B.P. 2312, Dakar, Sénégal; ³ ORSTOM, Laboratoire de Nématologie, B.P. 1386, Dakar, Sénégal

Accepted for publication: 12 May 1998

(2)(4)

Summary – Two rhizosphere bacteria. Enterobacter cloacae and Pseudomonas mendocina, were isolated from the rhizosphere of tomato plants growing in a soil heavily infested with both root-knot nematodes and the parasitoid endospore-forming bacterium Pasteuria penetrans. Bacteria E. cloacae and P. mendocina stimulated plant growth, inhibited the reproduction of the root knot nematode Meloidogyne incognita, and increased the attachment of the endospores of P. penetrans on the nematodes in vitro. E. cloacae significantly increased the reproduction of P. penetrans in plant roots. Consequently, the introduction of such bacteria in soils, or cultural practices aimed to increase the activity of native strains of these bacteria, could greatly contribute to the efficiency of nematode biocontrol with P. penetrans.

Résumé – Stimulation de l'activité antagoniste de Pasteuria penetrans envers Meloidogyne incognita par Enterobacter cloacae et Pseudomonas mendocina – Deux bactéries rhizosphériques, Enterobacter cloacae et Pseudomonas mendocina, ont été isolées à partir de la rhizosphère de plants de tomate prélevés dans un sol très infesté par des nématodes à galles et l'actinomycète Pasteuria penetrans. Les deux souches bactériennes ont stimulé la croissance de la plante, inhibé le développement du nématode Meloidogyne incognita et augmenté in vitro l'attachement des spores de P. penetrans sur la cuticule des nématodes. E. cloacae a significativement stimulé la multiplication de P. penetrans dans les racines. En conséquence, l'utilisation de telles bactéries pourrait améliorer de manière importante l'efficacité de P. penetrans contre les nématodes du genre Meloidogyne.

Keywords: biocontrol, Enterobacter cloacae, Meloidogyne incognita, Pasteuria penetrans, Pseudomonas mendocina.

The actinomycete Pasteuria penetrans is a Gram-positive endospore-forming bacterium and is an obligate endoparasite of nematodes. It has been shown that this microorganism has potential as a biological control agent (Oostendorp et al., 1991; Zaki & Maqbool, 1992). The physiology of the relationship between P. penetrans and root knot nematodes is well documented (Davies et al., 1992; Davies & Danks, 1993; Afolabi et al., 1995) but knowledge about the ecology of this antagonistic association is limited to the effects of soil moisture (Stirling & Wachtel, 1980: Brown & Smart, 1984; Oostendorp et al., 1991) and temperature (Stirling, 1981; Hatz & Dickson, 1992). Some research has been conducted on the effects of abiotic soil factors involved in the availability of the spores of P. penetrans for attachment to nematodes (Spaull, 1984; Oostendorp et al., 1990; Singh & Dhawan, 1992; Mateille et al., 1995, 1996). However information about the potential effects of biotic factors which would be able to interact with attachment is only now being demon-

© Koninklijke Brill NV, Leiden, 1999

strated by Duponnois *et al.* (1997). These authors have shown that the soil microflora could stimulate the attachment of the spores on the juveniles and consequently reduce the invasion of the roots of tomato plants by the root knot nematodes. To study interactions of rhizosphere bacterial isolates with the efficacy of *P. penetrans*, effects of some rhizosphere bacterial strains on attachment of *P. penetrans* spores to the root-knot nematode, *Meloidogyne incognita*, and on the density of *P. penetrans* were studied.

Materials and methods

NEMATODES

A population of *Meloidogyne incognita* was cultured for 2 months on tomato cv. Roma in a heat sterilised soil (140°C, 40 min). Then the tomato roots were harvested, cut into short pieces and placed in a mist chamber (Sein-

R. Duponnois et al.

horst, 1950) for 1 week to collect second stage juveniles (J2).

PASTEURIA PENETRANS ENDOSPORES

The endospores of *Pasteuria penetrans* were produced in females of *M. incognita* infecting tomato plants. The females of *M. incognita* were extracted from root galls (Hussey, 1971), washed in distilled water, crushed into Eppendorf tubes with a small pestle to release the spores of *P. penetrans*, and finally centrifugated (15000 g, 15 min). The supernatant was discarded and the pellet was resuspended in 1 ml alcohol 70% for 72 h in the dark at room temperature to obtain spores free of contaminant microflora, and centrifugated (15 000 g, 15 min) three times to replace the alcohol with sterile distilled water.

BACTERIA

Bacterial strains were isolated from the rhizosphere of tomato plants growing in a field heavily infested with *M. javanica* and *P. penetrans* (20 000 J2 per dm³ of soil, 80% of infected J2) and characterized by a sandy-clay soil (sand 84.7%; silt 4.1%; clay 11.2%; C/N 7.5; pH_{H2O} 7.6). Pieces of roots were blended in sterile distilled water using an Ultraturax blender. Serial dilutions of the suspension were plated on 0.3% TSA medium (Tryptic Soy Agar, Difco) and, after 48 h incubation at 25°C in the dark, 43 distinctive colonies were isolated and subcultured on the same medium.

ATTACHMENT OF *PASTEURIA PENETRANS* SPORES TO J2 OF *MELOIDOGYNE INCOGNITA*

The 43 bacterial strains were grown in 0.3% tryptic soy broth (Martin, 1975) for 8 days at 25°C. The bacterial suspensions (more than 10⁸ cells·ml⁻¹) were centrifugated (2400 g, 20 min) and the pellets were resuspended in 0.1 M MgSO₄. The spores of *P. penetrans* (100 μ l sterile distilled water with 10⁵ spores) were incubated with each bacterial strain (1 ml of the MgSO4 suspension) in small glass tubes $(7 \times 1 \text{ cm})$ for 1 week at 25°C in the dark. Control treatments consisted of P. penetrans only. The attachment tests were performed adding 100 J2 of M. incog*nita* in 100 μ l of distilled water into each tube. The J2 were not surface disinfested and probably have contaminant bacteria. However, there was no carbon or nitrogen source for bacterial growth in the tubes and it could be admitted that the density of contaminant bacteria was insignificant regarding the inoculated bacterial suspension.

The microbial suspensions were removed from each tube after 12 h of incubation at 25°C and the numbers of spores of *P. penetrans* per J2 were determined on twenty J2s randomly chosen by examining each J2 under a microscope (×450). There were five replicates per treatment. Data were statistically analysed according to the Man Whitney U test ($P \leq 0.05$).

IDENTIFICATION OF TWO BACTERIAL STRAINS

Out of 43 isolates tested, isolates B22 and B23 were chosen for their ability to improve the attachment of the endospores. In order to characterize these two bacterial strains, the choice of a type of API gallery (API System SA, BioMérieux, Lyon, France) was determined with Gram staining and two tests performed on bacterial colonies: action of β -galactosidase (ONPG: Ref 55601, BioMérieux, Lyon, France) and presence of cytochrome oxidase (Ox: Ref 55922, BioMérieux, Lyon, France). The Gram negative isolates were examined using the API 20NE test system (API 2005) which tests the following activities: nitrate reductase (NIT); tryptophanase (TRP); production of acid metabolites from glucose (GLU); arginine dihydrolase (ADH); urease (URE); β -glucosidase (ESC); proteolysis of gelatin (GEL); β -galactosidase (ONPG); use as carbon sources of glucose (GLU), arabinose (ARA), mannose (MNE), mannitol (MAN), Nacetyl-glucosamine (NAG), maltose (MAL), gluconate (GNT), caprate (CAP), adipate (ADI), malate (MLT), citrate (CIT), phenylacetate (PAC), presence of cytochrome oxidase (OX). The Gram positive isolates were examined using the API 50 CHB test system (API 5043) which tests the production of acid metabolites from the carbohydrates glycerol (GLY), erythrol (ERY), D-arabinose (D ARA), L-arabinose (L ARA), ribose (RIB), D-xylose (D XYL), L-xylose (L XYL), adonitol (ADO), β -methyl-D-xyloside (MDX), galactose (GAL), glucose (GLU), fructose (FRU), mannose (MNE), sorbose (SBE), rhamnose (RHA), dulcitol (DUL), inositol (INO), mannitol (MAN), sorbitol (SOR), α -methyl-D-mannoside (MDM), α -methyl-D-glucoside (MDG), N-acetyl glucosamine (NAG), amygdaline (AMY), arbutine (ARB), esculine (ESC), salicine (SAL), cellobiose (CEL), maltose (MAL), lactose (LAC), melibiose (MEL), sucrose (SAC), trehalose (TRE), inuline (INU), melezitose (MLZ), raffinose (RAF), starch (AMD), glycogene (GLG), xylitol (XLT), gentiobiose (GEN), D-turanose (D TUR), D-lyxose (D LYX), D-tagatose (D TAG), D-fucose (D FUC), L-fucose (L FUC), D-arabitol (D AR), L-arabitol (L AR), glu-

ŝ

conate (GNT), 2 keto-gluconate (2KG), 5 keto-gluconate (5KG).

REPRODUCTION OF *MELOIDOGYNE INCOGNITA* AND SPORE DENSITY OF *PASTEURIA PENETRANS* ON TOMATO PLANTS

Two week-old seedlings of tomato cv. Roma were transplanted in 60 cm³ pots filled with a sandy soil (sand 92.8%; silt 2%: clay 5.2%; pH H₂O 7.1) which was previously autoclaved (140°C, 40 min). One week after transplanting, the plants were inoculated with 5 ml suspensions containing either 0 or 100 J2s of M. incognita in distilled water, 5 ml suspensions of each bacterial strain, B22 or B23 (about 10^9 cfu·ml⁻¹), in 0.1 M MgSO₄, and 5 ml suspensions of either 0 or 10⁵ spores of P. penetrans in distilled water. These suspensions were injected by a syringe into a hole near the plant in each pot. The plants which were not inoculated with bacteria received only 5 ml of 0.1 M MgSO₄. The plants were randomly placed in a glasshouse (30°C day, 25°C night, 12 h photoperiod) and watered daily without fertilisation. There were eighteen replicates per treatment.

Five of the plants inoculated with *M. incognita* with or without *P. penetrans* and with or without bacteria were uprooted 9 days after inoculation, and the entire root systems stained with acid fuchsin (Byrd *et al.*, 1983) to estimate the number of J2s which penetrated into the roots.

Eight of the plants were uprooted 1 month after inoculation, and the galls with and without egg masses were numbered. Then the roots were cut into short lengths and placed in a mist chamber (Seinhorst, 1950) for 3 weeks to collect J2s from egg hatching. After 5 or 6 days, the number of spores attached on twenty hatched J2s randomly chosen from the mist chamber were determined. Data were statistically analysed according to the Man Whitney U test ($P \le 0.05$). Proportions were transformed by Arcsin(sqrt) before analysis. Finally, the oven-dried weights of roots and shoots (1 week at 65°C) were measured. Data were compared using a one-way analysis of variance ($P \le 0.05$).

The five remaining plants were uprooted one month after inoculation. Their roots were cut into short lengths and blended in distilled water. The suspensions were sieved using a bank of sieves. Spores were collected on the finest (0.45 μ m). Then, the spores of *P. penetrans* were counted per root system. Data were statistically analysed according to the Man Whitney U test ($P \leq 0.05$).

Vol. 1(1), 1999

Biocontrol of Meloidogyne incognita with Pasteuria penetrans

Results

ATTACHMENT TESTS

Among the 43 bacterial strains tested, nine (B5, B11, B22, B23, B24, B32, B33, B34 and B41) increased the percentages of spore-infested J2 and nine (B16, B22, B23, B24, B32, B33, B41, B42, B43) increased the mean number of spores per J2 (Table 1). No bacterial isolates decreased the attachment.

CHARACTERIZATION OF THE TWO BACTERIAL STRAINS B22 AND B23 (TABLE 2)

Bacterial strain B22 was gram-positive and, according to the API 50CH test, was identified as *Enterobacter cloacae*. The bacterial strain B23 was gram-negative and, according to the API 20NE test, was identified as *Pseudomonas mendocina*.

DEVELOPMENT OF PASTEURIA PENETRANS

After a 1 month culture of *P. penetrans* on tomato plants, the number of spores extracted from the blended roots was ten times greater when the inoculum of *M. incognita* and *P. penetrans* was supplemented with *E. cloacae* (Fig. 1). The production of spores was not changed when *P. mendocina* was added. When the roots of plants

Fig. 1. Effect of Enterobacter cloacae and Pseudomonas mendocina on the reproduction of the spores of Pasteuria penetrans (Bars indexed by the same letter are not significantly different, $P \leq 0.05$).

97

R. Duponnois et al.

Table 1. Influence of the bacterial strains on the proportions of
Meloidogyne incognita juveniles infested by Pasteuria penetrans
and on the number of spores per juvenile

Bacterial strains	Infested juveniles (%)	Spores per juveniles
Control	-32.4	2.31
Bl	54.4	2.82
B2	49.3	2.22
B3	45.2	3.00
B4	29.4	2.69
B5	81.4 *	2.69
B6	80.3	1.97
B7	32.6	1.97
B8	29.2	2.55
B9	43.2	2.32
B10	46.1	1.92
B11	84.1 *	3.30
B12	70.4	2.78
B13	57.0	1.95
B14	57.3	2.16
B15	70.3	2.97
B16	71.9	4.29 *
B17	19.9	1.60
B18	16.7	1.47
B19	24.9	2.10
B20	34.2	1.76
B21	55.2	1.87
B22	89.9 *	7.70 *
B23	86.6 *	10.09 *
B24	88.0 *	6.72 *
B25	74.8	3.20
B26	43.7	2.08
B27	39.1	2.25
B28	30.2	1.79
B29	45.2	1.50
B30	42.7	2.99
B31	78.9	4.20
B32	81.8 *	6.44 *
B33	82.3 *	6.39 *
B34	87.1 *	4.76
B35	67.8	4.00
B36	60.6	2.74
B37	47.6	1.76
B38	36.8	1.87
B39	46.1	2.28
B40	39.0	1 46
B41	916*	10.2 *
B42	79.4	676*
B43	77 9	6 35 *
1J-TJ	11.1	0.00

* = significantly different from the control according to Mann Whitney U test ($P \leq 0.05$).

Table	2.	Physiological	characteristics	of the	bacterial	strains
<i>B22 (</i> E	Ente	erobacter cload	cae) and B23 (F	seudon	ionas men	docina)
accora	ling	g to the API 50	CH and API 20	ONE test	ts respecti	vely

فالأم الشقلين

API 50CH test				API 20NE test	
GLY	+	SAL	+	NIT +	-
ERY	⊷	CEL	+	TRP –	
D ARA	_	MAL	+	GLU –	
L ARA	+	LAC ·		ADH +	
RIB	+	MEL	-	ure –	
D XYL	+	SAC	+	ESC –	
L XYL	_	TRE	+	GEL –	
ADO	_	INU		ONPG –	
MDX	—	MLZ	-	GLU +	
GAL	+	RAF		ARA —	
GLU	. +	AMD	_	MNE –	
FRU	+	GLG		MAN –	
MNE	+	XLT		NAG	
SBE		GEN	+	MAL –	
RHA	+	D TUR		GNT +	
DUL		D LYX	+	CAP +	
INO	+	D TAG	·	ADI –	
MAN	+	D FUC		MLT +	
SOR	+	L FUC	_	CIT +	
MDM	—	D AR		PAC –	
MDG	+	L AR		OX +	
NAG	+	GNT	+		
AMY		2 KG	+		
ARB	+	5 KG			
ESC	+ .			•	

were placed in the mist chamber, the J2s which hatched had more spores per J2 when E. cloacae had been added (Fig. 2).

DEVELOPMENT OF MELOIDOGYNE INCOGNITA

Nine days after the inoculation of M. incognita, about 33% of the J2 penetrated into the roots, whether or not P. penetrans was present (Table 3). When E. cloacae or P. mendocina were inoculated with the J2 of M. incognita, almost all of the J2 penetrated into the roots. When J2 and E. cloacae or P. mendocina were added, the penetration rate was significantly lower with P. penetrans than without P. penetrans (56-70 vs 96-100%).

One month after the J2 inoculation, the number of root galls was the same with or without P. penetrans only, but gall number was greater when other bacteria were added (Table 3). Egg masses were detected among 88% of the galls on the plants inoculated with M. incognita alone (Table 3). In the other treatments, the proportion of galls with egg masses was lower when P. penetrans

Nematology

Biocontrol of Meloidogyne incognita with Pasteuria penetrans

Fig. 2. Mean number of spores of Pasteuria penetrans per J2 of Meloidogyne incognita hatched from the roots of the tomato plants co-inoculated with Enterobacter cloacae or with Pseudomonas mendocina (For each sampling date, data followed by the same letter are not significantly different, $P \leq 0.05$).

of resource period and on the development of the nematodes per plant					
Inoculum	Penetration rate (% of the inoculum)	Number of galls	Number of egg masses	Number of egg masses/number of galls (%)	Number of juveniles
M. incognita	35.1 d	33.1 <i>b</i>	29.0 a	87.6 a	10991.0 a
M. incognita + E. cloaceae	96.0 <i>ab</i>	55.9 a	20.9 <i>b</i>	37.4 <i>b</i>	2493.5 b
M. incognita + P. mendocina	100.0 <i>a</i>	58.8 a	24.7 ab	42.0 <i>b</i>	2350.5 b
M. incognita + P. penetrans	33.1 <i>d</i>	40.4 <i>b</i>	20.0 b	49.5 <i>b</i>	6890.2 ab
M. incognita + P. penetrans + E. cloaceae	56.0 <i>cd</i>	54.9 a	12.8 c	23.3 b	3500.3 <i>b</i>
M. incognita + P. penetrans + P. mendocina	69.5 <i>bc</i>	57.1 a	19.3 <i>b</i>	33.8 b	3692.5 b

 Table 3. Effect of Enterobacter cloacae and Pseudomonas mendocina inoculated with juveniles of Meloidogyne incognita and spores of Pasteuria penetrans on the development of the nematodes per plant

(Data in the same column followed by the same letter are not significantly different, $P \leq 0.05$).

Vol. 1(1), 1999

99

Fig. 3. Effect of inoculations combining Meloidogyne incognita, Pasteuria penetrans, Enterobacter cloacae and Pseudomonas mendocina on the plant growth (For each parameter, data followed by the same letter are not significantly different, $P \leq 0.05$).

or the bacteria were added together or separately. Finally, many new generation J2s were recovered from the plants inoculated with *M. incognita* with or without *P. penetrans*, but significantly fewer J2s were recovered from the plants co-inoculated with *E. cloacae* or *P. mendocina* (Table 3).

PLANT GROWTH

There were no significant differences between the growth of the non-inoculated plants (control), the growth of the plants inoculated with *M. incognita* only, and the growth of the plants inoculated with both *M. incognita* and *P. penetrans* (Fig. 3). Plants inoculated with *E. cloacae* or *P. mendocina* only were larger than the control plants. The largest shoot growth was obtained when the plants were inoculated with both *M. incognita* and *E. cloacae* or *P. mendocina*, with or without *P. penetrans*.

Discussion

These results show that some rhizosphere bacteria, including *Enterobacter cloacae* and *Pseudomonas mendocina*, can interact positively with the development of all the components of the life cycle of *P. penetrans*: the host plant, the nematode and *P. penetrans*.

The two bacterial strains have stimulated the growth of the tomato plants. It is well known that some rhizobacteria have a beneficial effect on crop development, which are called plant growth-promoting rhizobacteria or (PGPR) (Kloepper *et al.*, 1989).

This PGPR effect would increase the number of short roots and, consequently, the number of potential sites of penetration for the J2 which would explain the higher penetration rates and the higher number of galls per plant obtained when the bacteria were inoculated. However the number of egg masses which correspond to living females is inhibited by the two bacterial strains. These bacteria induce physiological modifications of the plant roots which interact negatively with the development of the root-knot nematodes. It has been demonstrated recently that the presence of rhizosphere bacteria induce a resistance mechanism toward the potato cyst nematode Globodera pallida (Hasky & Sikora, 1995). The fecundity of the females was also reduced. The bacteria could damage the eggshell, principally composed of chitin which is a nitrogenous polysaccharide (polymer of N-acetylglucosamine) and consequently could inhibit the hatching of the juveniles.

The reproduction of *P. penetrans* has two phases: *i*) the attachment of the spores on the cuticle of the nematode, and *ii*) the germination and penetration of the spores into the nematode, its vegetative growth and the sporegenesis (Sayre & Vergin, 1977). In axenic conditions, the two bacterial strains significantly stimulated the spore attachment. The structure of the free spores of *P. penetrans* could be modified by the bacteria. In particular, the sporangial wall and the exosporium could be changed exposing the parasporal fibres and allowing them to make contact with the nematode cuticle.

Although the two bacterial strains stimulated the attachment of the spores on the cuticle of the nematodes, only *E. cloacae* significantly increased the number of *P. penetrans* spores per plant. This bacteria could act on the penetration and the vegetative growth of *P. penetrans* inside the nematode.

E. cloacae can promote the development of *P. penetrans*. Such bacteria would be representative of more promising micro-organisms which have to be considered in order to improve the biocontrol of nematodes with *P. penetrans*. However before the use of this kind of bacteria, the mechanisms must be elucidated in order to provide explanations for these results and to identify more efficient bacteria.

, ໂ ຊື່ງ

Biocontrol of Meloidogyne incognita with Pasteuria penetrans

References

- AFOLABI, P., DAVIES, K.G. & O'SHEA P.S. (1995). The electrostatic nature of the spore of *Pasteuria penetrans*, the bacterial parasite of root-knot nematodes. *Journal of Applied Bacteriology* 79, 244-249.
- BROWN, S.M. & SMART, G.C. (1985). Root penetration by Meloidogyne incognita juveniles infected with Bacillus penetrans. Journal of Nematology 17, 123-126.
- BYRD, D.W., KIRKPATRICK, T. & BARKER, K.R. (1983). An improved technique for clearing and staining plant tissue for detection of nematodes. *Journal of Nematology* 15, 142-143.
- DAVIES, K.G. & DANKS, C. (1993). Interspecific differences in the nematode surface coat between *Meloidogyne incognita* and *M. arenaria* related to the adhesion of the bacterium *Pasteuria penetrans. Parasitology* 105, 475-480.
- DAVIES, K.G., ROBINSON, M.P. & LAIRD, V. (1992). Proteins involved in the attachment of a hyperparasite *Pasteuria penetrans* to its plant-parasitic nematode host *Meloidogyne incognita. Journal of Invertebrate Pathology* 59, 18-23.
- DUPONNOIS, R., NETSCHER, C. & MATEILLE, T. (1997). Effect of the rhizosphere microflora on Pasteuria penetrans parasitizing Meloidogyne graminicola. Nematologia Mediterranea 25, 99-109.
- HASKY, K. & SIKORA, R.A. (1995). Induced resistance a mechanism induced systematically throughout the root system by rhizosphere bacteria towards the potato cyst nematode *Globodera pallida*. *Nematologica* 41, 306.
- HATZ, B. & DICKSON, D.W. (1992). Effect of temperature on attachment development and interactions of *Pasteuria penetrans* on *Meloidogyne arenaria*. *Journal of Nematology* 24, 512-521.
- HUSSEY, R.S. (1971). A technique for obtaining quantities of living *Meloidogyne* females. *Journal of Nematology* 3, 99-100.
- KLOEPPER, J.W., LIFSHITZ, R. & ZABLOTOWICZ, R.M. (1989). Freeliving bacterial inocula for enhancing crop productivity. *Trends in Biotechnology* 7, 39-43.
- MARTIN, J.K. (1975). Comparison of agar media for counts of viable soil bacteria. *Soil Biology and Biochemistry* 7, 401-402.

- MATEILLE, T., DUPONNOIS, R. & DIOP, M.T. (1995). Influence des facteurs telluriques abiotiques et de la plante hôte sur l'infection des nématodes phytoparasites du genre *Meloidogyne* par l'actinomycète parasitoïde *Pasteuria penetrans. Agronomie* 15, 581-591.
- MATEILLE, T., DUPONNOIS, R., DABIRÉ, K., N'DIAYE, S. & DIOP, M.T. (1996). Influence of the soil on the transport of the spores of *Pasteuria penetrans*, parasite of nematodes of the genus *Meloidogyne*. *European Journal of Soil Biology* 32, 81-88.
- OOSTENDORP, M., DICKSON, D.W. & MITCHEL, D.J. (1990). Host range and ecology of isolates of *Pasteuria* spp. from the southeastern United States. *Journal of Nematology* 22, 525-531.
- OOSTENDORP, M., DICKSON, D.W. & MITCHELL, D.J. (1991). Population development of *Pasteuria penetrans* on *Meloidogyne arenaria. Journal of Nematology* 23, 58-64.
- SAYRE, R.M. & VERGIN, W.P. (1977). Bacterial parasite of a plant nematode: morphology and ultrastructure. *Journal of Bacteriology* 129, 1091-1101.
- SEINHORST, J.W. (1950). De betekenis van de toestand von de grond voor het optreden van aanstasting door het stengelaaltje (*Ditylenchus dipsaci* (Kühn) Filipjev). *Tijdschrift over Plantenziekten* 56, 292-349.
- SINGH, B. & DHAWAN, S.C. (1992). Effect of soil texture on attachment of bacterial spores of *Pasteuria penetrans* to the second-stage juveniles of *Heterodera cajani*. *Indian Journal* of Nematology 22, 72-74.
- SPAULL, V.W. (1984). Observations on *Bacillus penetrans* infecting *Meloidogyne* in surgarcane fields in South Africa. *Revue de Nématologie* 7, 277-282.
- STIRLING, G.R. (1981). Effect of temperature on infection of Meloidogyne javanica by Bacillus penetrans. Nematologica 27, 458-462.
- STIRLING, G.R. & WACHTEL, M.F. (1980). Mass production of *Bacillus penetrans* for the biological control of root-knot nematodes. *Nematologica* 26, 308-312.
- ZAKI, M.J. & MAQBOOL, M.A. (1992). Effect of spore concentrations of *Pasteuria penetrans* on the attachment of *Meloidogyne* larvae and growth of okra plants. *Pakistan Journal of Nematology* 10, 69-73.

Nematology

International Journal of Fundamental and Applied Nematological Research

CONTENTS

.

1

.

T	• .	•	•
HO	170	T10	L
1.41	11.17	110	L
			-

Articles

BEEN, Thomas H. & Corrie H. SCHOMAKER, Fumigation of marine clay soils infested with Globodera nallida and G rostochiensis using 1.3-dichloropropene and additional top soil	
treatments	3
VANCOPPENOLLE, Bart, Gaëtan BORGONIE & August COOMANS, Generation times of some	2
free-living nematodes cultured at three temperatures	15
SCHOMAKER, Corrie H. & Thomas H. BEEN, Compound models describing the relationship	
between dosage of (Z)- or (E)-isomers of 1,3-dichloropropene and hatching behaviour of	
Globodera rostochiensis	19
JANSSEN, Richard, Cor H. van SILFHOUT & J. (Coosje) HOOGENDOORN, Production of	
species-specific Meloidogyne populations for the identification of resistance in germplasm	
collections	31
PENEVA, Vlada, Roy NEILSON & Sevdan NEDELCHEV, Mononchid nematodes from oak forests in	
Bulgaria. 1. The subfamily Anatonchinae Jairajpuri, 1969 with descriptions of Anatonchus	
genovi sp. n. and Tigronchoides quercus sp. n.	37
LOOF, Pieter A.A. & Qi-wen CHEN, A revised polytomous key for the identification of species of	
the genus Longidorus Micoletzky, 1922 (Nematoda: Dorylaimoidea). Supplement 1	55
SOLOMON, Aharon, Ilan PAPERNA & Itamar GLAZER, Desiccation survival of the	
entomopathogenic nematode Steinernema feltiae: Induction of anhydrobiosis	61
FINNEGAN, Michelle M., Martin J. DOWNES, Myra O'REGAN & Christine T. GRIFFIN, Effect of	
salt and temperature stresses on survival and infectivity of Heterorhabditis spp. IJs	69
MANI, Annamalai, Survival of the root-lesion nematode Pratylenchus jordanensis Hashim in a	
fallow field after harvest of alfalfa	79
COOMANS, August, Pieter A.A. LOOF & Michel LUC, Redescription of Xiphinema nigeriense Luc,	
1961 and observations on X. dihysterum Lamberti et al., 1995 and X. mampara Heyns, 1979	
(Nematoda: Dorylaimida)	85
DUPONNOIS, Robin, Amadou M. BÂ & Thierry MATEILLE, Beneficial effects of Enterobacter	
cloacae and Pseudomonas mendocina for biocontrol of Meloidogyne incognita with the	
endospore-forming bacterium Pasteuria penetrans	95
BLAIR, Lynsey, Roland N. PERRY, Karl OPARKA & John T. JONES, Activation of transcription	
during the hatching process of the potato cyst nematode <i>Globodera rostochiensis</i>	103