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Two strains of simian immunodeficiency viruses (SIV) isolated from chimpanzées (SIVerz.cap and SlVepz.aass) Originating
from Gabon have previously been genetically characterized and shown to belong phylogenetically to the same lineage
as the human immunodeficiency virus type 1 (HIV-1). We describe the sequence analysis of a third HiV-1-related virus,
SIVepz.an, isolated from a wild captured chimpanzee originating from Zaire. This virus displayed the same genetic organiza-
tion as HIV-1 and was found to fall on the same lineage as HIV-1 and SIVgpzcas. Protein sequence identity with SIVeez.cas
ranged from 72% (Pol) to 48% (Env) for the structural proteins, while a particularly divergent Vpu was found (only 25%
identity 1o SlVgrz.as). The V3 regions of the SIVcy; isolates were exceptionally conserved in contrast to the high divergence
of V3 among HIV-1 isolates. However, SIV¢p.ant did not show a greater degree of sequence similarity with SIVgrz-gas than
with HIV-1 isolates and represents a quite divergent outgroup of the HIV-1 lineage. Our data suggest multiple introductions

of HIV—1 in the human populatlon and shed new light on the origin.of the HIV-1 pandemlc

Lentiviruses have been isolated from a variety of pri-
mate species and constitute human immunodeficiency
virus types 1 and 2 (HIV-1 and HIV-2, which cause AIDS)
and simian immunodeficiency viruses (SIV) isolated from
nonhuman primates. Phylogenetic analysis indicates that
these viruses form five major lineages, with the two hu-
man viruses falling into different lineages (7, 2). HIV-2 is
most closely related to SIVgy, isolated from sooty manga-
beys, and various lines of evidence suggest that HIV-2
has arisen through cross-species transmission of SIV
from sooty mangabeys in West Africa (3-5).
’“Th’e‘”é“rié’i'ri"bf HIV-1 is less clear. Two closely related
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been suggested that most SIV (including viruses from
chimpanzees, African green monkeys, and sooty manga-
beys) may have arisen through cross-species transmis-
sion from humans (70, 77). Phylogenetic analyses of re-
cently isolated HIV-1 variants reveal that there are two
major lineages, named groups M and O: the two Gabo-
nese chimpanzee viruses cluster with group M (7} and
thus within the HIV-1 radiation. While this relationship
would indeed seem to be most simply explained by hu-
man-to-chimpanzee transmission, it has been pointed
out that cross- species transmission of primate lentivi-
ruses has been frequent enough to undermine the parsi-
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TABLE 1

Amino Acid Sequence Identity (%) between SVepz.ant: SIVerzcas, and Prototype HIV/SIV Isolates®

StVepz.ant
compared ,
with® GAG POL VIF VPR VPU TAT ENV REV NEF

SIVerz.can 65 72 52 62 25 57 48 42 51
HiVin (M) 59 71 54 61 17 61 47 37 47
HIVanto (O) 63 ° 70 50 61 19 52 43 57 53
SlVaem 52 80 26 - - 34 36 31 43
SVaumm 51 58 32 46 - 39 37 17 41
SIViuno 51 58 27 48 - 42 31 20 31
SIVevx 48 54 28 25 — 40 41 34 38

¢ Chromosomal DNA was prepared from human lymphocytes infected in vitro with the SIVgezant Virus isolate. Regions highly conserved between
HIV-1 and SlVee.cas Were chosen to design oligonucieotides (and nested oligonucleotides) to prime the reactions. In later experiments, reactions
were primed using oligonucleotides derived from the SVqez.ant Sequences themselves, In most cases, the following reaction conditions were used:
a 1-min denaturation step at 95°C, a 2-min annealing step at 37°C or 50°C, and 1- to 2-min elongation step at 72°C. For the majority of the regions,
a PCR consisting of 30 cycles was insufficient and a second PCR of 30 cycles was needed, using a nested primer pair. The resulting amplification
products were tested upon hybridization with HIV-1 probes under low stringency conditions as described (28). Sequence analysis was periormed
on cloned PCR fragments using the dideoxy chain termination method (29), and the sequence has been deposited in the GenBank/EMBL database

(accession number U42720).

® Sequences were aligned using the program Palign (PCgene software package, structure-genetic matrix). The program parameters open gap
penalty and unit gap penalty were both set at five. For each alignment, the SIVgpz.ant protein sequence was compared individually 1o the corresponding
protein of the following strains: SlVeez.cas, HIVun (representative of group M within the HIV-1 lineage), HIVantro (representative of group O within

the HIV-1 lineage), SVasm mrvoy SIVsum an: SIVano e and SlVsvkxen)-

with serological.data which also indicate that this virus
belongs to the HIV-1 family (74). Although we do not
know whether the sequence described here represents a
bioclogically functional clone, virus can readily be isolated
from the infected animal (75). As within primate lentivi-
ruses in general, the proteins encoded by gag and pol/
are more conserved than the envelope or regulatory pro-
teins (Table 1). From these protein sequence compari-
sons, SlVepz.ant 18 Clearly more similar t0 SiVgpz.gag @and
HIV-1 than to representatives of the other four major
lineages but, surprisingly, SIVgezant does not seem 1o
be more srmllar 1o SIVCPZ A8 than to H!V-1 Jsolates We

protein is remarkable for two reasons: first, compared to
SIVerzgar, fOur extra cysteine residues are present at
positions 614, 623, 706, and 788 (Fig. 2A); second, only
four cysteine residues are found at equivalent positions
when both SIV envelope proteins are aligned (residues
581, 597, 776, and 795). The only SIV subtype currently
known to contain a larger number of cysteine residues
in its transmembrane protein is SlVagm. Whereas in some
primary HIV-1 isolates extra cysteine residues have also
been observed (76). The structural implications resulting
from these changes are presently unknown. The addi-
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FIG. 1. Phylogenetlc relationship of SIVeezant to representative primate lentiviruses. Predicted Gag, Pol, and Env protein sequences were aligned
and then concatenated; pairwise distances were calculated by Kimure's method (30), and the phylogeny was estimated by the neighbor-joining
method (37) with 1000 bootstraps; these methods were implemented using CLUSTAL W (32). The tree is midpoint rooted. Horizontal branch lengths
are 1o scale: the bar indicates 10% (0.10 amino acid replacements per site). Al clusters within the HIV-1/8IVee; lineage were found in 100% of
bootstraps The same branching order within the HIV-1/SIVce; lineage was found in trees estimated from Gag, Pol, and Env-proteins analyzed
individually and in trees estimated by the maximurn parsimony and weighted parsimony methods.
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A SIVCPZ-ANT MINIFEYAFLAFS-IVLWIICIP--ILYKLYKIYKQQQIDNKRNQRI

SIVCPZ-GAB MTLLVGLVLILVG-LIAWNICIWGYIIKWGYRRYKRHRLETEI-ERL
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FIG. 3. Vpu protein of SIVcezanr. (A) Alignment of Vpu proteins from SIVepzant, SIVerz-eas, HIV-1 M, and HIV-1 O isolates using CLUSTAL W.
Residues identical across all four sequences are indicated by *. The HIV-1 conserved Vpu motif is underlined. (B) Hydropathy profiles of the
SWVepzant (left) and SIVerzcag (right) Vpu proteins were calculated according to Kyte and Doolittle (34). Positive scores are hydrophobic and the
amino acid number is indicated on the X-axis. .

not at the same position (Fig. 2). The WDINDL box which
is located at the C-terminus of the protein has also been
described as critical for the functioning of Vpu (27). This
motif is conserved in group M isolates, but not in the

with their comp[ete envelope proteins. The similarity be-
tween the two SIVepy sequences does not exitend beyond
the V3 loop and therefore seems unlikely to be due to
recombination between these two lineages. Variation is

also limited in the V3 sequences of isolates obtained
from one infected animal as shown in a study of consecu-
tive isolates obtained from the SIVepzanr-infected chim-
panzee (75). Noting that, unlike HIV-1, the V3 domain in
SIVuac from macagues is not involved in neutralization

(18), these observations raise the question whether the -

V3 domain in SiVgez is functionally equivalent to the PND
of HIV-1. The low degree of variation found in the V3
region_of HIV-1 viruses.upon infection of chimpanzegs

SlVepz isolates or in group O strains (2). This observation
is in keeping with previous data which indicate that pro-
teins with identical or similar functions and structure do
not need sharing of extensive sequence similarity (22).
in conclusion, as part of an ongoing international effort
to document the genetic variation of SIV and HIV, we
have studied a new lentivirus, SIVepz.ant, iS0lated from a
wild captured chimpanzee. While this virus clearly be-
longs_to_the HIV-1 lineage of primate_lentiviruses, it.is__.
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panzees argues against it. The alternative remains that
both humans and chimpanzees have acquired their len-
tiviruses from an as yet unidentified third species of Afri-
can primate. In this scenario, there would also have been
two independent introductions into the chimpanzee pop-
ulation. The apparent frequency of cross-species trans-
mission of primate etroviruses (72, 23) suggests that this
is not unlikely. Exactly when (or where on the phyloge-
netic tree) these transfers might have occurred remains
open to question: thus, whether the SlVgpz.ant lineage
might have infected chimpanzees only recently, or at a
more ancient time near the node connecting that branch
to others in the phylogeny, must still be resolved. If it is
assumed that a long-term relationship between a patho-
gen and its host leads to loss of pathogenicity (24), then
the apparent lack of an AlDS-like pathology in chimpan-
zees and the failure of HIV-1 o cause disease in chim-
panzees (25, 26) could be interpreted as an indication
that SIV infection of this species is not a recent phenome-
non. However, the recent reports of an AlDS-like pathol-
ogy occurring in an HIV-1-infected chimpanzee {27) may
require reconsideration of the latter argument.
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