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| and right earlobes, as outlined in Fig. 1. Electrode Cz served as common

reference. Vertical and horizontal electro-oculographic {EOG) dula were
recorded for eye blinks and eve movements. EEG and EOG data were collected
for a total period of 4250ms, beginning 250 ms before visual-stimulus
presentation and continuing for 1,000 ms after the end of a trial. EEG data were
corrected for eye movements and eye blinks®. Data were sampled online at
200 Hz using 2 time constant of 10s.

Data analysis. For off-line data analysis, a current-source density (CSD)
analysis was performed based on a spherical spline interpolation algorithm
using two dlmensmnal Laplace-operators and weighted Legendre poly-
noms¥** in order to maximize the topogrephic specificity of electrical sources
and sinks and 10 obtain reference-free measures for each electrode™. Resulting
CSD waveforms were then submitted to a method of coherence analysis
involving time-varying autoregressive modelling of multivariate time series
based on Kalman filtering’*¥-%. In the case of single-component signals the use
of Kalman filters 1o fit autoregressive models with time-varying coefficients is
common® %, This is possible because such signal models can be given in state-
space form. As the Kalman filter can be designed for multi-companent signals,
we have used a similar state-space form for multi-component autoregressive
models with time-varying coefficients, This enables an adaptive estimation of
.he autoregressive coefficients and dexived spectral parameters (that is, coher-
ence) which is suitable for the analysis of non-stationary signals. An order of 16
was chosen for the fitted autoregressive models.

Coherence was computed separaiely in the bandwidth 37-43 Hz (refs 2,19),
for the delta (0.6-3.5 Hz), theta (3.6~7.5 Hz), alpha 1 {7.6-10Hz) and alpha 2
{10.1-12.3Hz) frequency bands, and for additional bands between 30 and
36Hz, 43 and 48 Hz, and 80 10 100 Hz for the 250-ms time window from 1,250
10 1,500 ms after stimulus onset and the window just before shock onset {that is,
2,750-3,000 ms after stimulus onset). This was also done for the raw EEG. The
pairs of electrodes for which analysis was done covered the ocdipital area {CS”,
C§7), the primary and association somatosensory projection areas (noxious
'stimulus), and the primary motor areas on both sides of the brain and at the
midline. Gamma abundance was also calculated for the frequency band studied
in refs 2, 6 (57-45Hz). Coherence measures were trapsformed using
Fisher’s z-transformation and collapsed to obtain mean coherence measuresfor
each subject, each pair of electrodes and each condition of visual stimulation.
Preference for colours of CS* and CS". Data on colour preference were
obtained by questionnaire for the two colours {red and green) assigned
randomly 10 CS™ and CS™ before, during, and at the end of acquisition and
during and at the end of extinction. The colour-preference data were submitted
1o 2 repeated-measures analysis of variance and analysed as a function of

andition {CS™, CS™), and time {beginning, during and end of acquisition, and
 during and end of extinction). Results were corrected for violation of sphericity
using the Greenhonse—Geisser approach to epsilon correction of degrees of
freedom. There was a significant effect jor condition (F(1,18) = €.64,
P <0.02), time (F(4,72) = 10.43, P < 0.0001, ¢ = 0.60), and the condition
X time interaction (F(4,72) = 9.14, P < 0.0001, ¢ = 8.751), indicating that
~ learning of the association between colour and electric. shock had taken place.

zh  difference in pre{erence for CS” over CS” had almost dxsappeared.
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strain (SIVcpzUS) and have determined, by mitochondrial DNA  codons. Promoter and enhancer elements of the SIVepzUS long
analysis, the subspecies identity of all known SiVepz- -infected  terminal repeat (LTR) were indistinguishable from those of other
chimpanzees. We find that two chimpanzee subspecies in Africa, members of the HIV-1/SIVepz group.

the central P. t. troglodytes and the eastern P. t. schweinfurthii, Only three other SIVcpz strains have been reported, two from
harbour SIVcpz and that their respective viruses form two highly T S

divergent (but’ subspecies-specific) phylogenetic lineages. All a . ] 100 HIV-1/U455
HIV-1 strains known to infect man, including HIV-1 groups M, a7 HIV-1/LAL
N and O, are closely related to just one of these SIVcpz lineages, 100 b HIV-1/ELL
that found in P. £, troglodytes. Moreover, we find that HIV-1 group I IV-1/YBF30
Nisa mosalc of SIVcpzUS- and HIV-1-related sequences, indicat- ) 100 SIVepzGAB1
ingan anoestral recombination event in a chimpanzee host. These ' 931
results, together with the observauon that the natural range of P. £. 100 ' HIV-1/ANTT70
troglodytes coincides umquely with areas of HIV-1 group M, N ‘_TOEEHNMMVPE 80
and O endermcxty, indicate that P. t. troglodytes is the primary . ‘ - SIVEpZANT
reservoir for HIV-1 and has been the source of at Jeast three - StVimnd
independent introductions of STVcpz into the human population. —HIV-2/R0D
Five lines of evidence have been used to substantiate zoonotic 83 Sivem
transmission of primate lentiviruses® first, similerities in viral 1D SiVinac
genome organization; second, phylogenetic relatedness; third, 100
H . e s b H (V- 2/EHO
. preva]ence in the natural host; fourth, geographic coincidence; SNagmVER
@ and fifth, plausible routes of transmission. For HIV-2, a virus 84 SN: iy
{SIVsm) that is genomically indistinguishable and closely related 05 - gm
phylogenetically was found in substantial numbers of wild-living IVagmTAN
sooty mangabeys whose natural habitat coincides with the epicentre : oo Stvsyk
of the HIV-2 epidemic™~". Close contact between sooty mangabeys :
and humans is common because these monkeys are hunted for food b
and kept as pets*’, No fewer than six independent transmissions of _ o
SIVsm to humans have been proposed®®’. In contrast, the origin of £g 0
HIV-1 is much less certain®, HIV-1 is most similar in sequence and S8 0.5
genomic organization to viruses found in chimpanzees SE 0.4
(SIVepz)™®!, but a wide spectrum of diversity between HIV-1 58 -
and SIVcpz", an apparent low prevalence of SIVcpz infection in g5 o
wild-living ammals“u and the presence of chimpanzees in geo- 58 02
graphic regions of Africa® where AIDS was not initially recogmzed Q g1,
have cast doubt on chimpanzees as a natural host and reservoir for o i — : i .
HIV-1. Rather, it has been suggested that another, 2s vet unidenti- 1500 1,000 T1soa 2,o:>oj2.500
fied, primate species could be the natural host for SIcpz and HIV-1 Gag  Pol Armino a~i:gosini:: Net
(refs 1, 11). i '
We recently identified a fourth chimpanzee with natural SIVepz .
infection. This animal (Marilyn} was wild-caught in Africa (country < HIV-1AMVPS180 it /aNT70

of origin unknown), exported 1o the United States a5 zn infant, znd

+ | »ad as a breeding female in a primate facility until her death at age R

J . vears™. During a serosurvey in 1985, Marilyn was the only HIV-1 /LAl SWCpZGAST
\.hunpanzee of 98 tested who had antibodies strong'iy reactive
with HIV-1 by enzyme-linked immunosorbent assay (ELISA) and
western immunoblot>. She had never been used in 'AIDS research
and had not received human blood products after 1969. She died in o Soszls SIVepZANT
1985 after giving birth to still-born twins. An autopsy revealed 4 ﬂ_“' o 010 :‘ IR
— i endometritis, retained- placental elermenits and s sepsisTasTthe finll === "5 R oo
- nuc “relationship-of-{—==
<z we used the polymerase-chain reaction (PCR).to amplify HIV= Or. SiVg p2US 1o other primaie lentivitusés; 1tie tres wes derived by neighbour” | =
SSIVE relatgd:DI\A-‘sequencesdxrecﬂy-ﬁ-om-unaﬂtured_ (ﬁ‘ozen)::;_xommg -analysis™-of fulblength-Pol sequences {frees. derived. by maximum-ikes:
; i’sp}cen_ and-lymph-node_tissne. obtamchatzutopcy in_orderfo ~.lmoou methods? vislgeg very similaF1anologies). Horizontal hranch 18ngths aré:
_T_._cha:actenze_t_he_mfecnon_responsib}e.for_h’lan!}'n s HIV-1 seropo- - drawn id scale with the. bar indicating 01 ammo-acnd repia"emen's pér“sne.

~cause of death: Depletionof lymiphoid fissues was not noted: Here = _Figure 1 Phy.oaenellc aralysxs of SIVEpzZUS &; r’nylooe,

e B v&uua\.Tuxm,.\bp}}:&\.\d"pﬂl ("'66 bp}" feom ments’ revegled—the . 1000 i vhich Ihe cluster 0 1RA Foht e su“nor‘edinn‘vva“ o8 >80ma afeﬂ’\cwr’]
T presence-of a-virds: related tor but “distifict_{fromy; known: SIVepz== Othar SWepz strains closely-or.more disk : pzUS are showri
and.lﬂ_ljtrams:Becauseanmszsolanon:ﬁ'om the Zutopsy tissnes——red-and_ Biie, respacivelye b= Diversiypiot _cf‘ooncatenated_«sll/ﬁﬁz protein=|
p— T unsuccessful,.\~’eiused_PCItlo_mnphfv“and~sequence - four == sequences- Gepizing- ihe- Broponion- Of. sMinc-acid; sequencex: differences——
: ~overlappmg-subgenq;ru_ciragment& thats together coniprised- a==between SVepzUS and SIVepzGABT(Ed) SIVEs2US and-SVopzANT- {blugj=
.- compiete: proviral genome,.wmcn-we.zermectSNcszS ~Analysis =309 SVepzGAB1and SIVepzANT-{black)-celculated-for2 window. o 200 amino |
— —of~potentxa1—codmg‘re«ions—revea]ed the—presence'oﬁa—tpu-aese—aods_movedJn_&eps.an_mrﬂ‘@He aiagrﬁ“néﬁt:(' Bvailable a6
1. {found: only: in-HIV-¥. and-SIV¢pz- viruses)22 7 addition- t0— - Supplament @y Iiormation)- The X-axis shows the-amino-acid ¢ | posiigns slong={-
Tz Tstruetiival anid regulatory genes common to all pnmate“lem:xv.'n'uses—-~ 1he sligniment; The pastions of Bag, Fol, Vit, Env and N&fFegions aré shown: The-{z——=
~:~\one@f the—genes m—SNcsz% contamed -deletions,-insertions.or.—xy-2xis denotes. the distance. between-the virel prmems compared 0= .0% :
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animals wild-caught in Gabon (SIVcpzGAB) and SIVepzGAB2)*
and une from g chbnpanzee eaporled (o Belgium lom Zaire
(SIVcpzANT)’. SIVcpzGAB1 and SIVcpzANT have been sequenced
completely™, but only 280bp of pol sequence are available for
SIVepzGAB2 (ref. 10). To determine the evolutionary relationships
of SIVcpzUS to these and other HIV and SIV sequences, we
performed distance plot and phylogenetic tree analyses using
sequences from the HIV sequence database (ref. 14 a.nd http //

hiv-web lanl.gov/HTML/compendium.html). These analyses identified
SiVepaUS unambiguously as a new member of the HIV-1/SiVeps
group of viruses. A phylogenetic tree of full-length Pol sequences
showed that SIVcpzUS clustered well within this group but was not
particularly closely related to any one human or chimpanzee virus
(Fig. 1a). Trees based on other coding regions yielded virtually
identical topologies (not shown). Comparison of the phylogenetic
position of SIVepzUS with those of the other SIVcpz strains (Fig. 12)
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showed that 91\’chUS was considerably more closdy related to P t. traglodytes and all three groups of HIV-1 formed a single,
IVep=CADD than to SIVepzANT. Diversity plots of full-length  monophyletic lincage which was supporied by highly significant
(concatcnatcd) protein sequences showed that SIVcpzUS was nearly  bootstrap values (>90%). This applied for all coding regions and
twice as different from SIVcpzANT as from SIVepzGAB1 (Fig. 1b).  using different phylogenetic methods (Fig. 1a and data not shown).
When partial Pol sequences of SIVcpzGAB2 were included in  These data indicate strongly that HIV-1 infection of humans
phylogenetic analyses (Fig. 1c), SIVcpzANT remained the outlier, ~occurred as a result of cross-specxes transmission of SIVcpz from
differing from the other SIVcpz strains by 23--24%, as compared with P, &. troglodytes.- .. - -
only 9-13% divergence among SIVcpzUS, SNcszABl and SIVepz- Two additional lines of evxdence supported aPt troglodyzes
GAB2. These findings indicate that naturally occurring SIVcpz strains  origin of HIV-1. First, we found that YBF30, the only fully
fall into two related yet highly divergent phvlogenenc lineages: sequenced example of HIV-1 group N (ref. 23), is a recombinant
Divergent lineages of SIV have also been found in African green . ’
monkeys'>Y, These primates have 2 broad distribution throughout a2 g..

sub-Saharan Africa and have been classified based on phenotypic - verso . /\,\

s

differences into four major species, generally known as vervet 0.5
(Chlorocebus pygerythrus), grivet (C. aethiops), sabaeus (C. sabaeus)
and tantalus (C. tantalus) monkeys (note that the genus designation 0.4+
of the African green monkey as Cercopithecus has recently been
changed to Chlorocebus™®). The many STVagm strains infecting these 0.3
animals cluster in four distinet phylogenetic lineages according to
their species of origin, indicating ancient infection followed by co- 0.2
evolution of virus and host***,

To explore whether a similar host-dependent evolution of SIVcpz 0.1
could account for the axtraordinary diversity between SIVcpzANT

Dislance belwaen viral protelns compared

and the other three SIVcpz strains, we determined the subspecies 07 T T T Tf T T 1\ 1
identity of the animals from which these viruses were derived. Four Ga P:‘oo 1.000 w;sogm ZOOON o 2,500
chimpanzee subspecies with non-overlapping geographic ranges s Amino-acid postions
have been proposed on the basis of genetic differences in mito-
chondrial {mt) DNA sequences™*’. These are the western P, t. verus,
the Nigerian P, t. vellerosus, the central P. t. troglodytes, and the b 1-1400 1401-2391
eastern P. t. schweinfurthii (Fig. 2a). We amplified and sequenced a 1oo—AU455 ] 100— A" 92UG037]
498-bp fragment of mitochondrial control region (D-loop) AS2UGO37 "E AU455
sequences from peripheral-blood mononudlear cell (PBMC) or c:Coz20 100 , _
spleen DNA of the four SIVcpz-infected chimpanzees. Comparison j - ‘f_"'Ec‘gaBmzz’
of these newly derived mtDNA sequences to representative 1938025 c:c2220
sequences from the four chimpanzee subspecies revealed that the 100 - H'S0CF056 y L H:90CFOS6 |
three chimpanzees infected with the more closely related SIViepz- - ——— F:93BR020 o F-83BRO20
GAB1 (GAB1), SIVcpzGAB2 (GAB2), and SIVcpzUS (Marilyn) D:94UG 114
strains all belonged to the P. 1. troglodytes subspecies (Fig. 2b). In 100 DE.-
contrast, the animal infected with the highly divergent SIVcpzANT -
strain {Noah) was identified as a member of the P. t. schweinfurthii 1001 %® BRF
subspecies. Classification of the SIVcpz-infected chimpanzees was - 100L—giLal

: wnambiguous as their mtDNA sequences fell within well-defined ]N ‘ SIVepzG@AB1

ospecies clusters® and was further corroborated by the known SIVepzGABI =1 In
geographic origins of three of the animals (GAB1, GAB2 and L SiVepzUS 10—|0 S ]
Noah)*’, We conclude from these results that, as for SIVagm, ANTTO cpz
there has been host-dependent evolution of SIVepz in chimpanzees. 100 a—‘: 100 ANT70 ]
The discovery of subspecies-specific SIVcpz diversity prompted . MVPS1E0 ) MVP5180

us to re-examine the phylogenetic positions of all known strains of- S eaomTT e . 010

_HIV-1 and SIVcpz, and to look for evidence of cross-species:- : | mm—— e e b —

transmission—G 10bally* circulating”strains- of- HIV-1= have- been™": Figure.3- _Recombinant_origin: of

HlV L’YB=30<(group-N) a._DNe'sny pkns oi..‘ _
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of divergent viral lineages within the HIV-1/S§IVcpz(P.t.1.) group.
Distance plots of full-length {concalenuted) protein sequences
revealed that YBF30 and SIV, cszS were disproportionately more
similar to each other in the 3’ half compared to the 5’ half of their
genome (Fig, 3a). Phylogenetic tree analyses confirmed these dis-
cordant relatxonshlps, showmg that YBF30 fell into significantly
different phylogenetic posmons in different parts of its genome
(Fig. 3b), For example, in gag, pol and the 5° half of vif, YBF30
sequences formed an mdependent lineage more closely related to
HIV-1 group M than to any SIVcpz however, in the 3° half of vif;
and in env and nef, YBF30 clustered most closely with SIVepzUS.
This mosaic genome ‘structure of YBF30 implies prevxous co-
infection and recombination of divergent SIVcpz strains ina £ &
troglodytes host. Second, by carefully analvsmg three full-length
SIVcpz genomes for chimpanzee-specific sxgnature sequences, we
found a single protein domain, the V3 loop region of the extra-
cellular envelope glycoprotein, to be conserved uniquely among all
SIVcpz strains, even the otherwise highly divergent STVepzANT.
This sequence conservation was most evident in the V3 crown
| region which was identical among the three chimpanzee viruses

(GPGMTFYN) and differed by only a single amino-acid residue in
YBF30 (GPAMTFYN). These data indicate that SIVepz viruses, all
of which share this envelope feature, might as a consequence be
uniquely adapted for replication in the chimpanzee host and that
YBF30, by virtue of its similarity to SIVcpz in V3, may represent a
virus lineage most recently transmitted to humans.

As vet, the oldest trace ‘of the AIDS pandemic is from a human
blood sample collected in 1959 from west-central Africa™, although
the precise timing and circumstances of early events in the SIVcpz/
HIV-1 zoonosis remain obscure. Previous studies exploring the
possible origins of HIV-1'made the important dlsgover) y that SIVepz
and HIV-1 are isogenic but provided no convmcmg evidence for
chimpanzees—as opposed to another species—as the natural host
and reservoir for the human virus’. In fact, the extent of sequence
differences that were observed between HIV-1 and SIVcpz, especially in
vpu, led to the conclusion that SIVcpz-infected chimpanzees were
unlikely to be the proximal source of HIV-1 (ref. 1).

We have shown here that all HIV-1 strains are phylogenetically
closely related to SIVcpz strains infecting P. t. troglodytes, a primate
whose natural range coincides precisely with areas of HIV-1 group
M, N, and O endemicity’®**-®, By demonstrating subspecies-

- dependent evolution of SIVcpz, we also provide evidence for
\ thimpanzees as a long-standing natural reservoir possibly dating
to a period before the divergence of P t. troglodytes and P, t.
schweinfurthii, which is believed to have occurred several hundred
thousand years ago™. The detection of recombination among
divergent SIV cpz hnea,,es provides further evidence that SIVcpz
~ |- infection rates in wild-li npan

kY
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)

iving-chimpanzees must-have been (and still-—

other chimpanzee subspecies are also infected with SIVepz (£ .
schivelnfurihii is an example) and have transmitted their viruses to
humans. Such transmissions have not been detected but could have
gone unrecognized because of the explosive spread of HIV-1 group
M and the absence of serological tests to distinguish SIVcpz(P.t.2.)
from other SIVcpz lineages. To understand the full extent of natural
SIVcpz infection, and the frequency of zoonotic transmission to
humans, it will be necessary to screen free-living adult chimpanzees
of all four subspecies as well as human populatxons from corre-
spondmg geographic locales. Such studies will require the coopera-
tion of chimpanzee conservationists, local inhabitants and
virologists with a keen sensitivity to protection of this endangered
species. Notwithstanding these challenges, studies of the natural
history and biology of SIVepz/HIV-1 in chimpanzees and humans
promise to yield new insights into the particular circumstances of
cross-species transmission and the basis for HIV-1 pathogenicity in
humans.

Methods

PCR amplification and sequence analysis of SIVepzUS. A complete
genomic sequence of SIVepzUS was obtained by amplifying four overlapping
subgenomic fragments from uncultured spleen DNA uvsing nested PCR (see
Supplementary Information for details of primer sequences, PCR strategies and
amplification conditions). Amplified fragments were cloned and sequenced
using the primer walking approach, cycle sequencing and dye terminator
methodologies {GenBank accession number AF103818).

PCR amplification and sequence analysis of chimpanzee mitochondrial
DNA. A 498-bp segment of the mitochondrial D-loop region (corresponding to
positions 15,998—16,497 of the human mitochondrial sequence™) was ampli-
fied from PBMC (GAB1, GAB2, Noah) or spleen DNA (Marilyn) using single-
round PCR (see Supplementary Information) and séquenced without interim
cloning (GenBank accession numbers: ‘GAB1/AF102683; GAB2/AF102684;
Marilyn/AF102685; Noah/AF102687).

Sequence comparisons. STVcpzUS-predicted protein sequences were aligned
with those of other HIVand STV reference strains™ using CLUSTAL_X (ref. 26).
Complete proteome alignments were constructed by concatenating Gag, Pol,
Vif, Env and Nef alignments {available as Supplementary Information): in the
regions of gag—pol and pol-vif gene overlap, the Gag and Pol sequences,
respectively, were excluded. Phylogenetic analyses were done using neigh-
bour-joining and maximum-likelihood methods. The neighbour-joining
method” was applied to prolein-sequence distances calculated by the
method of Kimura, with 1,000 bootstrap replicates, as implemented in
CLUSTAL_X. The maximum-likelihood method used the JTT model of
amino-acid replacement, was replicated five times with shuffled input order,
and was implemented in MOLPHYZ. MtDNA reference sequences were
derived from refs 19, 20. 1,. )
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mentation of DNA. It induces purified mitochondria to release the
apoptogenic proteins cytochrome ¢ and caspasc-9. Microinjection
of AIF into the cytoplasm of intact cells induces condensation of
chromatin, dissipation of the mitochondrial transmembrane
potential, and exposure of phosphatidylserine in the plasma
membrane. None of these effects is prevented by the wide-ranging
caspase inhibitor known as Z-VAD. fmk. Overexpressxon of Bd-2,
which controls the openmg 'of mitochondrial permeability transi-
tion pores, prevents the relmse of AIF from the mitochondrion
but does not affect its apoptogemc actmty These results indicate
that AIF is a mitochondrial effector of apoptotic cell death.”
Opemng of the mitochondrial permeabxhty transition _pore,
which is under the control of members of the Bdl-2 family, is one
of the decisive events of the apoptotic - process™?, causing an increase
in the permeability of the outer mitochondrial membrane’ and the
release of soluble’ proteins from the intermembrane space. The
mitochondrial intermembrane fraction contains several potentially
apoptogenic factors, including cytochrome ¢ (refs 4, €), pro-
caspases 2, 3 and 9 (refs 8, 9), and AIF, which forces isolated
nudlei to adopt an apoptotic morphology’”. We purified an AIF
activity that is maintained in the presence of the caspase inhibitor
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