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Abstract

Coastal Ecuador is made up of an oceanic igneous basement overlain by Upper Cretaceous to Lower Paleocene
(~98—60 Ma) volcaniclastic and volcanic rocks of island-arc affinities. The igneous basement, known as the Pifién
Formation, locally dated at 123 Ma, consists of olivine-free basalts and dolerites. Relative to N-MORB, both types of rocks
exhibit high concentrations in Nb (0.3—10.75 ppm), Ta (0.03~0.67 ppm), Th (0.11-1.44 ppm), light and medium rare earth
elements, and low Zr (22-105 ppm) and Hf (0.59-2.8 ppm) contents, thus showing oceanic plateau basalts affinities. Most
of these oceanic plateau basalts tholeiites display rather homogeneous eng (r = 123 My ratios (~+7), with the exception of
two rocks with higher (4-10) and lower (++4.5) &xa (7 = 123 Ma)» Tespectively. All these basalts plot, with one exception, within
the ocean island basalts field. Their (*7Sr/*Sr); ratios are highly variable (0.7032—0.7048), probably due to hydrothermal
oceanic alteration or assimilation of altered oceanic crust. The rocks of the Pifién Formation are geochemically similar to:
the oceanic plateau tholeiites from Nauru and Ontong Java Plateaus and to the Upper Cretaceous (92—88 Ma) Caribbean
Oceanic Plateau lavas. The basalts and dolerites of the Upper Cretaceous—Lower Paleocene island arcs show calc-alkaline
affinities. The enq ratios (+6.1 to +7.1) of these arc-rocks are very homogenous and fall within the range of intra-oceanic
island-arc lavas. The Upper Cretaceous—Lower Paleocene calc-alkaline and tholeiitic rocks from coastal Ecuador share
similar high eyqg ratios to Cretaceous intra-oceanic arc rocks from north, central and South America and from the Greater
Antilles. Since the Pifién oceanic plateau tholeiites are locally overlain by early-Late Cretaceous sediments (~98—83 Ma)
and yielded locally an Early Cretaceous age, they do not belong to the Late Cretaceous Caribbean Oceanic Plateau. The
basement of coastal Ecuador is interpreted as an accreted fragment of an overthickened and buoyant oceanic plateau.
The different tectonic units of coastal Ecuador cannot be easily correlated with those of western Colombia, excepted
the Late Cretaceons San Lorenzo and Ricaurte island arcs. It is suggested that northwestern South America consists of
longitudinally discontinuous terranes, built by repeated accretionary events and significant longitudinal displacement of
these terranes. © 1999 Elsevier Science B.V. All rights reserved. N
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1. Introduction

Subduction of oceanic plates occurred beneath the
western margin of the South American continental
plate since at least Early Jurassic times (e.g. James,
1971; Aspden et”al., 1987; Jaillard et al., 1990).
ilowever, whereas no mafic complexes nor exotic
oceanic terranes are known in central South Amer-
ica (Mégard, 1987), northwestern South America is
characterized by the presence of mafic terranes of
oceanic origin (e.g. Gansser, 1973; Toussaint and
Restrepo, 1994). Recent work carried out in western
Colombia has demonstrated that several accreted ter-
ranes are remnants of oceanic plateaus (Millward et
al., 1984; Nivia, 1996; Kerr et al., 1996; Kerr et al.,
1997a,b), the buoyancy of which may explain why
they have not been subducted.

In Ecuador, a NNE-trending Late Jurassic—ear-
liest Cretaceous ophiolitic suture has been mapped
(Aspden and Litherland, 1992), which separates the
crystalline basement of the Eastern Cordiiiera (Li-
therland et al., 1994) from the oceanic volcanic rocks
of western Ecuador (Fig. 1). The coastal terrane was
regarded as a fragment of oceanic floor (Goossens
and Rose, 1973; Goossens et al., 1977; Juteau et al.,
1977), overlain by intra-oceanic volcanic arcs (Le-
brat et al., 1987; Jaillard et al., 1995), and accreted to
the Andean margin during Late Cretaceous (Lebrat
et al., 1987), Paleocene (Daly, 1989; Van Thournout
et al., 1992) and/or Eocene times (Feininger and
Bristow, 1980; Bourgois et al., 1990).

No detailed geochemical and isotopic studies have
been carried out on the mafic rocks of coastal
Ecuador, and their nature, age and origin are yet
poorly constrained. The aim of this paper is to
present new results on the mineralogy, petrology,
geochemical and isotopic signatures of the igneous
basement in coastal Ecuador. Together with recent
and current geological studies (Jaillard et al., 1997,
Cosma et al., 1998; Lapierre et al., 1999), the new
data allow us to refine the geological evolution and
geodynamic significance of this probably composite
terrane, to compare its tectonic history and signifi-
cance with the oceanic plateau fragments of western
Colombia, and to discuss its origin.

2. Geologieal framework

The Pifion Formation is regarded as the- Creta-
ceous igneous basement of western Ecuador, made
up of tholeiitic basalt-andesitic pillow basalts and
massive flows, locally associated with pillow-brec-
cias, hyaloclastites and subordinate siliceous sedi-
ments. So far, it is considered as a piece of oceanic
floor (Goossens and Rose, 1973; Juteau et al., 1977,
Lebrat et al., 1987), that locally possesses island-arc
affinities (Goossens et al., 1977; Henderson, 1979).
The volcanic rocks are intruded by doleritic and/or
gabbroic stocks. The studied samples come from two
distinct geological domains of coastal Ecuador.

In the northwestern area (Manabi, Figs. 1 and 2),
altered and metamorphosed basalt flows of N-type
MORB composition, ascribed to the Pifién Forma-
tion, yielded unreliable-K—Ar ages ranging from 110
to 54 Ma (Goossens and Rose, 1973). The Pifion For-
mation is of pre-late Campanian age (~pre-78 Ma),
since it is ‘overlain by sediments palacontologically
dated as late Campanian and cross-cut by late Cam-
panian intrusions (Pichler and Aly, 1983; Wallrabbe-
Adams, 1990). The northwestern area seems to be
separated from the central area by a NE- to NNE-
trending fault system running east of Manta and
southeast of Esmeraldas (Fig. 1).

In the San Lorenzo area (Fig. 1), coarse-grained
greywackes and volcaniclastic conglomerates associ-
ated with basaltic flows, ash beds, dikes and scarce
thin limestone beds, are interpreted as resting on the
Pifion Formation. These volcanic rocks, named the
San Lorenzo Formation, are related to the activity
of an intra-oceanic arc (Lebrat et al., 1987). Inter-
pillow sediments of the San Lorenzo Formation are
dated by late Campanian and Maastrichtian micro-
fauna (Sigal, 1969; Faucher et al., 1971; Jaillard et
al., 1995; Ordofiez, 1996). Volcanic rocks yielded
K—Ar ages of 85-65 Ma (Goossens and Rose, 1973;
Pichler and Aly, 1983) and an “’Ar-*’Ar age of
72.7 £ 1.4 Ma (Lebrat et al., 1987). This succession
is then unconformably overlain by fore-arc marine
sediments of Middle Eocene age (Cerro, San Mateo
Formations), within which the abundance of detrital
quartz indicates that this area was already accreted
to the continental margin (Manabi Basin, Benitez,
1995; Jaillard et al., 1995, 1997; Fig. 2).

The central area (Guayaquil area) is a little
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(B) Geological sketch of southern coastal Ecuador showing the distribution of the studied magmatic units and the location of the samples

analyzed.

deformed area, where good and continuous sec- skirts (Las Orquideas locality, Perimetral section)
tions can be observed, except locally, south of the and in the Chogén—Colonche Cordillera, the undated
Chongén—Colonche faults. In the Guayaquil out- Pifién Formation is overlain by a thin layer of pil-
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Fig. 2. Stratigraphic nomenclature and geodynamic setting of the
Cretaceous—Tertiary rocks of western Ecuador.

lowed phyric basalts, referred to here as the Las
Orquideas Member (Fig. 2). Along the Perimetral
section, the Las Orquideas Member is stratigraphi-
cally overlain by a 200-m-thick succession of pelagic
black shales, limestones and thin-bedded volcanic or
volcaniclastic intercalations (Calentura Formation),
which yielded Cenomanian to Turonian microfauna,
a Turonian ammonite and Turonian to Coniacian
nannofossils (Thalmann, 1946; Sigal, 1969; review
in Jaillard et al., 1995). Therefore, the Las Orquideas
Member is of pre-Cenomanian to pre-Turonian age
(~pre-95 Ma), and the underlying Pifién Formation
is most probably of pre-Late Cretaceous age (Fig. 2).

The Calentura Formation is stratigraphically over-
lain by a 2000-m-thick turbiditic series of shales,
greywackes and conglomerates (Cayo Formation).
The Cayo Formation, of Coniacian to Campa-

nian age, is intérpreted as the product of the ero-
sion of an island arc (Thalmann, 1946; Wallrabbe-
Adams, 1990; Benitez, 1995). It is gradually over-
lain by about 400 m of pelagic dark shales, cherts,
siliceous tuffs and subordinate thin-bedded turbidites
(Guayaquil Formation, Fig. 2). The Guayaquil For-
mation, of Maastrichtian to early-Late Paleocene age
(Thalmann, 1946; Faucher et al., 1971; Jaillard et al.,
1995), is devoid of continental sediments.

South of the Chong6én—-Colonche fault, the Santa
Elena Formation is a strongly deformed equivalent
of the Guayaquil Formation (Sinclair and Berkey,
1924; Thalmann, 1946; Jaillard et al., 1995). The
Santa Elena Formation is affected by gently dipping
shear planes and tight folds exhibiting penetrative
axial-plane cleavage, with evidence of northward
thrusting. It is unconformably overlain by a 2000-
m-thick series of quartz-rich megaturbidites of latest
Paleocene to earliest Eocene age (Azticar Fm., Jail-
lard et al., 1995). This major tectonic event of Late
Paleocene age (~57 Ma) is interpreted as the result
of the accretion of this area to the Andean margin
(Jaillard et al., 1997).

In the whole coastal Ecuador, the Cretaceous—
Paleocene volcanic and volcaniclastic rocks are un-
conformably overlain by a shallowing-upward sed-
imentary sequence of late-Early Eocene to Late
Eocene age (Benitez, 1995; Jaillard et al., 1995;
Fig. 2).

In this work, we shall use the same name (Pifién
Formation) for the igneous basement of the Manabi
and Guayaquil areas, although they are possibly not
of the same age.

3. Analytical procedures and low-grade
metamorphism of the igneous rocks of western
Ecuador

Samples have been collected from the igneous
basement (Pifion Formation), the Las Orquideas
Member and the San Lorenzo and Cayo Forma-
tions (Fig. 1). Fourteen samples were analyzed for
major, minor and trace elements (Table 2). Among
these samples, Nd-Sr isotopic compositions were
determined on nine of the less altered ones (Table 3).
The location of these samples (Fig. 1) and their
petrographic characteristics are listed in Table 1.
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3.1. Analytical procedures

Major and minor elements were analyzed by G.
Mevelle at the Centre de Recherche Pétrographiques
et Géochimiques (CRPG) of Nancy. Trace elements,
including the REE, were analyzed by ICP-MS us-
ing acid dissolution of 100 mg sample at the Labo-
ratoire de Géochimie isotopique de 1’Université Paul
Sabatier in Toulouse following the procedure of M.
Valladon et al. (unpubl. report). 100 mg of pow-
dered rocks are weighed in a Pt crucible, with 320
mg Lithium metaborate and 80 mg Lithium borate
(Fluka). After careful mixing of the powders, the cru-
cible is heated for fusion at 1000°C. After cooling, 8
ml double-distilied HNO; (12 N) and HF are added
for the dissolution of the glass. The final dilution to 30
ml of a 15-ml aliquot, with MilliQ™ water and after
addition of internal standards (In-Re), corresponds to
a total dilution of 3000. Limits of detection are: REE
and Y = 0.03 ppm, U, Pb and Th = 0.5 ppm, Hf and
Nb = 0.1 ppm, Ta = 0.03 ppm, and Zr = 0.04 ppm.
Standards used for the analyses were JB2, WSE Bir-1
and JR1. Analysis of sample EQ12 was duplicated
following the procedure of Barrat et al. (1996).

For Sr and Nd isotopic analyses, samples were
leached twice in a 2 N HCI-0.1 HF mixture. For
Pb isotope determinations, whole rocks were succes-
sively leached in hot 2 N HCI for 20 min in an ultra-
sonic bath, rinsed with tri-distilled water, leached in
cold 1 N HNO; for 20 min and rinsed with tri-distilled
water in an ultrasonic bath during 15 min.

Nd and Sr isotopic compositions were determined
on a Finnigan MAT 261 multicollector mass spec-
trometer at the Laboratoire de Géochimie isotopique
de I'Université Paul Sabatier in Toulouse, using the
analytical procedures of Lapierre et al. (1997). Cor-
rection of the mass discrimination effect was done by
normalizing the 8 Sr/%6Sr ratio to a value of 8.3752.
NBS 987 standard was measured with a ¥’ Sr/*Srratio
of 0.71025 (£22). Measured **Nd/'**Nd were nor-
malized to a value of 1“Nd/*Nd = 0.71219 (Wasser-
burg et al., 1981). Results on La Jolla standard yielded
3Nd/**Nd = 0.511850 = 8 (mean on 39 runs) cor-
responding to an external reproducibility of 0.00001.

206pp /204Pb, 207Ph /204Pb and 2°8Pb/2*Pb isotopic
ratios were measured on a multicollector VG sector
mass spectrometer at the Laboratoire de Géochimie
isotopique de I'Université de Montpellier II (Ta-

ble 3) following the analytical procedure adapted
from Manhes et al. (1980). Total Pb blanks are less
than 65 pg for a 100 mg sample.

3.2. Metamorphism and alteration of the igneous
rocks of western Ecuador

All the igneous rocks of western Ecuador, with
the exception of the arc-rocks of San Lorenzo For-
mation, are metamorphosed to a low-grade zeolite
and prehnite—pumpellyite facies, and igneous tex-
tures are always preserved. In the analyzed samples,
clinopyroxene remains fresh while orthopyroxene is
replaced by smectites = chlorites. When altered,
clinopyroxene is replaced by smectites, chlorites or
colourless actinolite. Plagioclase is often replaced by
sericite or calcite but sometimes remains fresh. How-
ever, in the arc-lavas of the Las Orquideas Member,
plagioclase is albitized. Vesicules are filled by smec-
tite, chlorite, epidote and pumpellyite, which are
also present in the groundmass which 'sometimes
includes abundant chalcedony (EQ94-02; Table 1).
Glass is systematically recrystallized in brown red-
dish or pale to intense green smectites.

Hydrothermal alteration of hypabyssal volcanic
rocks may cause significant mobility of some major
(Na, K, Ca, Si) and trace elements (Rb, Ba, Sr), while
Na,O contents (2—4 wt%; Table 2) are relatively ho-~
mogeneous. K,0 (<1.3 wt%; Table 2) and Rb (0.3 <
Rb ppm < 11.8; Table 2) are more scattered and most
likely express rock alteration. The weight loss on ig-
nition (LOI) ranges between 2.1 and 7.6% (Table 2).
LOI generally positively correlates with CaO abun-
dance due to the presence of epidote and minor calcite.

In this study, alkali (K, Rb, and Na) and alkaline
earth (Sr, Ba, Ca) elements and SiO; are only pre-
sented as background information and only the less
mobile elements Ti, Nb, Th, Ta, Zr, Hf and REE are
used for the geochemical discussion.’

4. Basement of southern coastal Ecuador (Pifion
Formation)

4.1. Petrology and mineral chemistry

The igneous components of the Pifién Formation
consist of olivine-free basalts and dolerites (Table 1).




Table |

Location and petrographic characteristics of the Cretaceons—Paleocene igneous rocks from western Ecuador

Formation: Pifién Pifién Piiién Pifién Piiidn Pifién
Sample: EQ93.02 EQl EQ5 EQIO Cal Ca2
Location: Las Piedras Montecristi Puerto Cayo La Libertad Sabaneta Petrillo
Texture: Intersertal + quenched Aphyric + quenched Intersertal Ophitic Intersertal Intersertal
vesicolar
Mineralogy: Plagioclase laths and Plagioclase associated or  Zoned plagioclase laths,  Plagioclase laths Plagioclase laths and Plagioclase laths and
microlites 4 augite not with augite clots subeuhedral augite microlites + aungite microlites + augite minor
Fe-Ti oxides Fe-Ti oxides Fe-Ti oxides
Glass replaced by titanomagnetite titanomagnetite anhedral augite Glass replaced by
smectites smectites
Abundant glass replaced  Glassy pods replaced by  anhedral titanomagnetite
by smectites smectites
Name: Basalt Basalt Diabase Diabase Basalt Basalt
Formation: Pifin Pifién Pifién Las Orquideas Las Orquideas San Lorenzo San Lorenzo
Sample: EQI! EQI2 EQI3 EQ94.01 EQ94.02 EQ2 EQ7
Location: Pedernales Puerto Cayo Riconada Las Orquideas Cerro Jordan - Cerro de Hoja LaPila
Texture: Intersertal Intersertal Porphyritic + quenched  Porphyritic 4- quenched ~ Porphyritic + intersertal  Ophitic and porphyritic Porhyritic + fluidal
Mineralogy: Plagioclase laths and Plagioclase laths Plagioclase + Plagioclase + Opx + Mg-rich augite Euhedral labrador +4- augite Labrador + zoned
microlites - clinopyroxene Cpx pseudomorphs phenocrysts + Fe-Ti with Ti-rich magnetite Ca-rich cpx phenocrysts
clinopyroxene Fe-Ti phenocrysts + microlites oxides inclusions
oxides
Glass replaced by Clinopyroxene abundant glassy groundmass Groundmass rich in groundmass with
smectites groundmass with few recrystallized in plagioclase laths and plagioclase microlites
Fe-Ti oxides smectites -+ chlorites microlites
abundant large
titanomagnetite crystals
Name: Basalt Ferro-diabase Basalt Tholeiitic Basalt Calc-alkaline Basalt Calc-alkaline Diabase Calc-alkaline Andesite

UOIIZT /10 19 PHOUKIY )

+ST-S5T (6661) LOE S15Cydo
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Table 2
Mujor- and trace-element concentrations of igneous oceanic rocks from western Ecuador

Oceanic plateau~Pifién Formation Intra-oceanic arc

Sample No.: EQ93.02* EQI* EQ5* EQI0 Cal® Ca2 EQIl* EQI2 EQI2 EQI3 MAI8 EQY4.01* EQ94.02" EQ2 EQ7*
Name: Basalt Basalt Dolerite Dolerite Basalt Basalt Basalt Dolerite Duplicate Basalt Dolerite Basalt Basalt Diabase Basalt
Si0s (wt%)  52.01 48.88 48.45 48.83 50.87 51.56 504 54.2 48.95 57.82 63.4 5229 522
TiO, 1.06 123 161 1.58 1.55 1.08 1.36 2.1 1.16 0.24 0.23 091 095
Al O3 14.89 1439 16.1 15.2 13.2 13.75 13.93  13.34 14.86 14.83 12.93 1622 16.32
Fe, 03 12.17 1275 1405 1232 1473 1287 141 16.64 12.05 9.46 '8.43 11.9 12,18
MnO 0.16 0.2 0.2 0.24 0.19 0.18 0.22 0.23 02 0.09 0.12 0.17 0.19
MgO 7.58 896 6.57 6.4 6.69 7.36 7.24 3.1 8.38 8.65 5.11 5.1 4.48
CaO 7.7 10.81 994 114 8.3 9.86 9.02 5.79 11.54 4.57 7.23 8.8 9.4
Na;O 43 1.89 234 2.95 3.91 3.68 3.1 4.09 2.5 4.29 2.31 2.88 2.92
K,0 0.00 072 055 0.9 0.18 0.15 0.27 0.13 0.16 0.00 0.09 1.38 0.99
P20s 0.13 0.18 0.19 0.17 0.18 0.14 0.18 0.29 0.16 0.05 0.13 0.34 0.39
LOI 2.99 445  3.18 4.32 2.72 2.15 5.94 2.81 5.64 7.63 2.24 2.16 3.75
Cr(ppm) 23600 284.84 873 54.01 - -~ - - - 785.00 210.00 49.59  36.54
v 327.00  353.12 433.49 422,62 509.92 41346 459.77 64.11 398.13 119.00 . 144.00 42112 418.98
Sc 6149 5391 51.69 8149 7597 7986 4034 78.72 3322 3895
Ni 98.1 100.73 3272 5249 8295 8476 67.76 4,58 121.05 177.00 46.5 2541  20.16
Rb 0.3 524 35 11.81 6.01 4.02 4.66 1.61 1.26 6.44 0.09 1.06 2435 17.54
Rb 0.3 524 35 11.81 6.01 4.02 4.66 1.61 6.44 1.22 0.09 1.06 2435 17.54
Sr 66.00 110.69 130.8 117.67 160.82 121.42 201.58 116.12 110.00 20821 110.00 114.00 242.00 44155 545.6
Y 19.6 2226 23.16 2045 3838 2592 3358 51.02 57.01 22,69 169 4.5 5.8 2045 235
Zr 44,00 60.09 2475 3068 8639 4081 7332  77.07 165.00 62,67 3400 22.00 45.00 8797 105.94
Nb 3.13 416 429 4.18 534 3.87 466 1075 1171 3.92 2.69 0.63 1.28 1.22 1.42
Cs 0.01 0.00 0.00 0.18 0.11 0.05 0.03 001 2821 0.13 0.01 0.16 0.46 0.56
Ba 29.00 149 3635 355 39235 - - - 23.38 - 21.00  13.00 108.00 26395 266.7
La 2.68 35 4.09 3.37 5.29 3.68 4.3 9.25 9.49 3.2 227 142 © 2,69 1057  13.13
Ce 7.02 9.63 10.68 9.18 14.17 9.66 11.35 2449 25.16 8.9 6.28 2.75 6.08 247 30.88
Pr 1.07 1.56 L7 1.51 225 1.52 1.8 3.8 3.80 1.43 1.08 0.44 0.833 3.92 4.83
Nd 5.63 8.11 8359 7.87  11.89 8.15 9.5 19.53  18.69 7.66 548 2.11 3.83 17.96 2242
Sm 1.85 2.57 2.66 242 3.91 2.67 3.12 6.11 5.95 2.51 1.91 0.59 1.00 4.17 5.08
Eu 0.71 0.96 1.06 0.95 1.37 -1.03 1.17 2.19 2.06 0.96 0.78 Q.25 0.36 1.24 1.44
Gd 2.73 346 3.58 3.25 5.6 3.89 4.68 8.37 7.54 3.65 2.38 0.76 1.16 4.02 4.82
Tb 0.49 0.66 0.68 0.59 1.05 0.71 0.85 1.47 1.39 0.67 0.47 0.12 0.17 0.65 0.75
Dy 34 44 4.5 4.04 7.09 4.31 5.89 9.56 9.21 4.56 3.06 0.77 1.00 3.99 459
Ho 0.74 0.9 0.93 0.81 1.57 1.04 1.3 1.96 2.00 0.99 0.67 0.16 0.2 0.8 0.9
Er 2.06 2.6 2.57 224 4.59 3.05 3.82 5.48 5.77 2.85 1.82 044 0.55 228 2.6
Tm 0.309 039 035 0.32 0.66 0.43 0.58 0.77 nd 0.42 0.28 0.066 0.083 0.33 0.37
Yb 2.05 253 227 2.01 4.62 2.99 3.9 5.17 5.57 2.78 1.74 0.44 0.54 2.18 2.41
Lu 0.319 0.38 035 0.31 0.72 0.47 0.61 0.77 0.87 041 0.27 0.075 0.093 0.35 0.37
Hf 1,33 1.89 096 1.09 2.76 1.54 2.24 2.49 4.63 2.07 1.18 0.59 1.17 2.53 3.07
Ta 0.242 0.58 0.25 0.32 0.4 0.28 0.33 0.67 0.74 0.3 0.18 0.033 0.092 0.03 -
Pb 0.56 0.14  0.00 0.00 0505 0305 0315 0222 029 0.391 2.89 0.52 1.87 2.95 3.96
Th 0.26 025 0.11 0.13 0.53 0.35 0.43 043 0.63 0.29 0.18 0.15 0.43 1.16 1.44
U 0.07 0.08 0.02 0.1 0.14 0.08 0.11 0.1 0.22 0.09 0.06 0.06 0.79 0.49 0.63
Eu/Eu® 0.97 098 1.04 1.05 0.89 0.97 0.93 0.93 0.96 .11 1.14 1.02 0.93 0.89
(La/Yb)y 0.94 099 129 1.2 0.82 0.88 0.79 1.28 0.83 0.88 2.31 3.57 3.48 391

* Analyzed for isotopic composition. Major elements reported on volatile-free basis.

b Total iron reported as Fe,Os.

The basalts show intersertal (EQ93-02, Cal, EQ11)
to aphyric (EQ1) textures. The intersertal basalts
consist of plagioclase laths and clinopyroxene glom-
eroporphyric aggregates embedded in a glass-poor

groundmass which contains small rounded vesicules
filled with smectites -+ epidote & chalcedony and
quenched plumose or dendritic clinopyroxene crys-
tals. The size of the plagioclase laths is highly vari-
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able and ranges from 0.1 to 1 mm. Fresh plagioclase
shows a labradorite composition (Angg). Fe-Ti ox-
ides are sometimes TiO,-rich (24.5%). The aphyric
basalts are formed of clinopyroxene aggregates ei-
ther or not associated with plagioclase set in a glass-
rich groundmass which includes isolated plagioclase
microphenocrysts. In both lavas, Fe-Ti oxides are
anhedral and the last mineral to precipitate.

The dolerites exhibit ophitic (EQ9, EQ10) to in-
tersertal textures (EQS5) and are composed of pla-
gioclase laths enclosed in anhedral clinopyroxene.
Euhedral plagioclase is zoned with labradorite cores
(Angg) and oligoclase rims (Anj2). The dolerites
differ with the size of the clinopyroxene and Fe—
Ti oxides and the abundance of interstitial glass.
Subhedral clinopyroxene and anhedral Fe—Ti oxides
may occur as large crystals up to 1 cm and 0.5
cm, respectively. Oxides are titanomagnetites (TiO;
< 10%) with ulvospinel (21 < TiO,% < 52) fine
exsolution lamellae. Orthopyroxene may occur.

The weakly zoned clinopyroxene shows similar
composition in the basalts and dolerites; it is an
augite (Wo30_43, Engj.47 Fsg_j5; Morimoto, 1988)
with slightly Fe-enriched rims.

4.2. Geochemistry

The basalts and dolerites have restricted SiO,,
Al O3, and TiO, ranges (Table 2). Basalts and do-
lerites have similar MgO contents (Table 2; Fig. 3)
with the exception of a dolerite (EQ12) which has a
lower MgO content and correlatively higher Fe;Os,
TiO,, Nb and Y abundances (Fig. 3). This rock repre-
sents the most fractionated rock of the suite (Table 2).
At similar MgO levels, basalts and dolerites (except
EQ12) have a large range of Zr and Y concentrations
while their Nb contents range only between 3 and 5
ppm (Table 2; Fig. 3). TiO, increases while MgO de-
creases (Fig. 3). Both rocks show high Ti/V (19.5 <
Ti/V < 23) and low La/Nb (<1) ratios.

Basalts and dolerites show flat REE patterns (0.8
< (La/Yb)en < 1.3; Fig. 4) relative to chondrite
(Sun and McDonough, 1989). However, two groups
may be distinguished on the basis of the (La/Yb)y
ratios. Group 1, composed of the basalts, is char-
acterized by slightly depleted LREE patterns with
(La/Yb)eny < 1 (Fig. 4A), whereas Group 2 do-
lerites exhibit slightly LREE-enriched patterns with
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Fig. 3. Zr (ppm), Nb (ppm), TiO; (wt%) and Y (ppm) vs. MgO
(wt%) correlation diagrams of the basalts and dolerites of the
Pifién Formation.

(La/Yb)cy ratios >1 (Fig. 4B). In both groups, small
negative or positive Eu anomalies (Table 2) may re-
flect minor plagioclase removal or accumulation,
respectively.

Relative to N-type MORB (Sun and McDonough,
1989; Fig. 5), these basalts and dolerites show signifi-
cant enrichments in LREE, high Nb, Ta and Th values
(1.5-5 times the N-MORB values), and low levels in
Zr and Hf (0.3—1 times the N-MORB values. The dis-
tinction into two groups for the igneous rocks of the
Pifi6n Formation is also valid with respect to their
N-MORB-normalized trace element patterns. Group
1 is Th-, Ta- and Nb-enriched and shows a mild deple-
tion in Zr and Hf (Fig. 5A). Group 2 dolerites differs
from Group 1 by the lack of Th enrichment (specially
marked in the EQ10 and EQ12 samples) and more
marked Zr and Hf negative anomalies (Fig. 5B). In
both Group 1 and 2, the HREE and Y contents are
more or less similar to those of N-MORB or slightly
higher (3 times the N-MORB values for the most frac-
tionated rocks). Moreover, Nb/Ta and Zr/Hf ratios
of these rocks are lower than those of N-MORB but
U/Th is higher (Fig. 6). The basalts and one dolerite
have a rather restricted range of Nb/U ratios (38 <
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Fig. 4. Chondrite-normalized (Sun and McDonough, 1989) rare
earth elements patterns of the basalts (A) and dolerites (B) of the
Pifién Formation.

Nb/U < 52; Fig. 6) which are slightly higher than
those of N-MORB (Fig. 6), but fall within the range
of oceanic mantle (Nb/U = 47410; Hofmann, 1988).
Two dolerites (EQS and EQ2) differ from the basalts
by significantly higher Nb/U ratios (107 and 214;
Table 2), which reflects, most likely, postmagmatic
addition of U.

Thus, the basalts and dolerites of the Pifién For-
mation show oceanic plateau basalt affinities but
differ on some trace element distribution (i.e. LREE,
Zr, Hf and Th).

4.3. Nd and Sr and Pb isotopic composition

Isotopic data on the basalts and dolerites of the
Pifién Formation have been corrected for in-situ de-
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Fig. 5. N-MORB-normalized (Sun and McDonough, 1989) spi-
dergrams of the basalts (A) and dolerltes (B) of the Pifién
Formation.

cay with an age of 123 Ma (see below the discussion
on the age of the Pifién Formation).

Basalts and dolerites display variable syq ratios
which range between +4.5 (Cal) and +10 (EQI,
Table 3; Fig. 7). Two dolerites (EQS5, MA18) and
two basalts (EQ93-02, EQ11) show homogeneous
eng ratios of +7. With the exception of EQ1, being
similar to N-MORB, these snq ratios fall within'the
range of ocean island basalts (OIB).

All the Pifién igneous rocks display a large range
of (87Sr/36Sr); ratios (0.70435 to 0.70466), except
for two samples (EQ1 and EQ5) which have lower
(®7Sr/%8r); ratios (0.70321 and 0.70335, respec-
tively; Table 3; Fig. 7).

At similar Zr/Nb (~15) and (La/Yb)CN (~0.8-
0.9) ratios the basalts and one dolerite (MA18) dis-
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play a large range of eyg ratios (410 to +4), ex-
cept for dolerite EQ5 having lower Zr/Nb (5.8) and
higher (La/Yb)cn (1.3; Fig. 7).

Initia] lead isotopic compositions of whole rock
and mineral separates display a large range in com-
position (Table 3; Fig. &; Lapierre et al., 1999).
EQ12 has the lowest *°°Pb/2%*Pb ratio and plots near
DMM source while Cal has the higher 2Pb/?%Pb
ratio similar to those of recent Galdpagos. lavas. The
high 27Pb/20*Pb ratios of these rocks could indicate
minor amounts of pelagic sediments (Doe, 1970) in
the mantle source.

EQI1 has the highest eyg ratio (+10), reflecting
derivation from the most depleted component. How-
ever, the (2°Pb/2%*Pb); of this rock is higher (18.16)
than that of the Pifién lavas, due to the high content
of U relative to Th. Indeed, this rock does not plot on
the Th/U correlation trend but is displaced towards
the U side of the diagram (Fig. 6). This reflects the
mobility of U linked to a hydrothermal event which
affected EQ1. In contrast, Cal is characterized by the
lowest exg (+4) and the highest *°Pb/*%Pb (18.92)
ratios, suggesting derivation from a more enriched
source.

Table 3

878r/86Sr and 3Nd/"¥Nd isotope ratios of igneous oceanic rocks from western Ecuador

147Sm/l44 Nd 3 Nd/l44Nd (143 Nd/IMNd)i ENa (ZOGPb/ZMPb)i (’.’(WPb/Z(NPb)i (207 Pb/’.’(H Pb);

Esr

(87 Sr/Xf:Sr)i

STRb/%Sr §7Sr/%6Sr

t

Samples

Formations

(Ma)
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4.4. Summary and comparisons

The basalts and dolerites of the Pifién Formation
show flat REE patterns and Ta- and Nb-enrichments
relative to N-MORB (Fig. 9). The basalts are slightly
depleted in LREE, TiO,, Ta, and Nb relative to
dolerites and some basalts show higher Th contents
than the dolerites. The Pifion basalts and dolerites
display a rather restricted range of eng (+7.03 to
+7.76) and (*%Pb/2%Pb); ratios (17.41 to 17.90),
with the exception of two rocks. As a whole, they are
interpreted as the products of an oceanic plateau.

Basalts and dolerites of the Pifién Formation are
probably older than the Late Cretaceous (92—-88 Ma)
Caribbean—Colombian Oceanic Plateau Province

(CCOP) basalts. In coastal Ecuador, the Pifién
basalts are stratigraphically overlain by Cenoma-
nian to Coniacian (99-87 Ma; Haq and Van Eysinga,
1998) pelagic sediments. Basalts and dolerites of
the Pifién Formation are less radiogenic in Pb than
the CCOP basalts and the Galdpagos recerit lavas
(Fig. 8; Lapierre et al., 1999). This suggests that
the oceanic plateau tholeiites of the Pifién Formation
derived from mantle(s) source(s) depleted in isotopic
Pb, compared to those of the Galdpagos- hotspot.
So, the plume that generated the Pifién Formation
oceanic plateau is likely different from, and probably
older than the hotspot responsible for the formation
of the CCOP and/or the Galédpagos. ‘
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(*%Pb /204PbY; correlation diagrams for the basalts and dolerites
of the Pifion Formation. Data from the Nicoya and Herradura
(90 Ma) igneous complexes (Costa Rica) after Hauff et al.
(1997) and Sinton et al. (1997, 1998). Fields of the Gorgona
picrites, komatiites, tholeiites and K-tholeiite are after Dupré and
Echeverria (1984). The field of the Dumisseau basalts from Haiti
is from Sen et al. (1988). East Pacific MORB and Galdpagos
Island are from White et al. (1987, 1993). NHRL = North
Hemisphere Line after Hart (1984).

5. Upper Cretaceous(-Lower Paleocene?) lavas
(Las Orquideas Member, Cayo and San Lorenzo
Formations)

5.1. Petrology and mineral chemistry of the lavas
and volcaniclastic sediments

The igneous rocks of the Upper Cretaceous—
Lower Paleocene island arcs are mafic lavas and
dolerites sampled in the Las Orquideas Member and
San Lorenzo Formation (Figs. 1 and 2; Tables 1 and
2). In southern coastal Ecuador, the Cayo Formation
consists solely of volcaniclastic sediments.

The basalts from the Las Orquideas Member
are plagioclase—pyroxene phyric (Table 1). EQ94-01
consists of plagioclase, orthopyroxene and clinopy-
roxene pseudomorphs set in a glass-rich ground-
mass which includes small amounts of clinopyrox-
ene and plagioclase and very few oxides. EQ94-02

E
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Fig. 9. Trace-element geochemical similarities of the basalts and
dolerites of the Pifién Formation with Late Cretaceous oceanic
plateau basalts from Hispaniola and western Colombia and ocean
floor basalts of the Nauru Plateau.

exhibits an intersertal texture with preserved clinopy-
roxene phenocrysts of augitic composition (Wosz7_4,
Enuo_s2, Fsg_jp) (Benitez, 1995). Fe-Ti oxides are
included in the plagioclase and augite phenocrysts
and thus represent early crystallizing crystals.

The igneous rocks of the San Lorenzo Formation
are fresh compared to those of the Las Orquideas
Member. EQ2 is a dolerite (Table 1) which is formed
of euhedral plagioclase and anhedral augite (Eny_44,
Fsog_17, Wosg_30). Both plagioclase and clinopyrox-
ene include TiO,-rich magnetite (15 to 18%). Pla-
gioclase occurs as large phenocrysts up to 1 cm
long and small laths and exhibits a labradorite
composition (Ansy.e3z) with Na-rich rims. EQ7 is
a porphyritic basaltic andesite (Table 1) which is
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formed of labradorite (Ang)_¢7) and zoned clinopy-
roxene phenocrysts. Plagioclase includes euhedral
Ti-rich magnetite crystals and shows locally by-
townite (Anys) cores. Clinopyroxene shows diopsidic
cores (Enyg, Fsg, Wo4g; Morimoto, 1988) rimmed by
angite (Enus, Fs1g, Woag).

The studied samples of the Cayo Formation are
volcanic breccias and greywackes. The volcanic
breccias (EQ93.03, EQ94.04; Fig. 1) are composed
of basaltic and andesitic fragments and pyroxene
phenocrysts. When preserved, the pyroxenes show
clinoenstatitic (Engs_75, FSp2_32, Wo,_4) and augitic
(Engs_a4, Fsie_19, Wo3s_a;) compositions (Benitez,
1995) which fall in the orogenic basalt field of
Leterrier et al. (1982) diagrams (not presented
here). The basaltic fragments are orthopyroxene—
clinopyroxene—plagioclase—phyric. The andesite dif-
fers from the basalts by the abundance of plagioclase
phenocrysts. The greywackes (EQ94.03; Fig. 1) con-
sist of basaltic fragments, and phenocrysts of augite
(Enzs_qa, Fsis_26, Wos49-45) and plagioclase, broken
or not (Benitez, 1995).

5.2. Geochemistry

The igneous rocks of the Las Orquideas Mem-
ber and San Lorenzo Formation display calc-alka-
line affinities (Fig. 10; Table 2) with the exception
of EQ94.01 which exhibits an arc-tholeiitic affin-
ity (Fig. 10; Table 2). These arc-rocks are LREE-
enriched (2.31< (La/Yb)en = 3.57; Fig. 10A) and
their N-MORB-normalized element diagrams (Sun
and McDonough, 1989; Fig. 10B) are very simi-
lar to those of orogenic suites. Moreover, the Las
Orquideas and San Lorenzo lavas possess a nega-
tive Nb—Ta anomaly, similar to arc-related volcanic
rocks.

The lavas of the Las Orquideas Member differ
from rocks of the San Lorenzo Formation in that
they have very low levels of Y and HREE (less than
10 times the chondritic values; Table 2; Fig. 10B),
suggesting the presence of residual garnet in the
mantle source.

5.3. Isotopic chemistry

The ages of 100 and 75 Ma have been taken to
calculate the initial 87Sr/%Sr and eyq ratios of the
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Fig. 10. Chondrite-normalized (Sun and McDonough, 1989) rare
earth elements patterns (A) and N-MORB-normalized (Sun and
McDonough, 1989) spidergrams (B) of the igneous rocks of the
Las Orquideas Member and San Lorenzo Formation.

igneous rocks of the Las Orquideas Member and San
Lorenzo Formation, respectively (Table 3). The &g
ratios of these arc-rocks range between +6.1 and
-+7.2 (Table 3).

The (¥Sr/%6Sr); ratios range between 0.7034 and
0.7046. This large range of (¥’Sr/®Sr); ratios could
either reflect hydrothermal alteration-or involvement
of subducted sediments in the source or fluids re-
leased from the hydrothermally altered subducting
slab.
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6. Comparisons with neighbouring areas and
origin of the ‘Piiién terrane’

6.1. Comparison between the coast and the Western
Cordillera of Ecuador

In the Western Cordillera, the Cretaceous—
Palaeogene volcanic and sedimentary rocks are in
tectonic contact with the metamorphic basement of
the Andean Cordillera. The stratigraphy of these
Cretaceous—Palacogene series (Macuchi Formation
s.l., Henderson, 1979, 1981) is still unclear due to
a thick Tertiary volcanic cover, and because most of
the lithologic units are separated by tectonic con-
tacts (McCourt et al., 1998). The succession of the
five main lithologic units may be reconstructed as
follows (Faucher et al., 1971; Kehrer and Van der
Kaaden, 1979; Cosma et al., 1998).

Tectonic slices of mafic and ultramafic plutonic
rocks and pillow basalts are pinched along the con-
tact between the oceanic terranes and the continental
margin. On the basis of petrographic and geochem-
ical studies, they were interpreted as belonging to
the pre-Late Cretaceous Pifion Formation (Juteau
et al.,, 1977; Lebrat et al.,, 1987; Desmet, 1994,
McCourt et al., 1998). Our data support this inter-
pretation, since trace element and isotopic chem-
istry show that these rocks represent the deep levels
of an oceanic plateau geochemically similar to the
Pifidn Formation (Cosma et al., 1998; Lapierre et
al., 1999). Moreover, a 123 + 13 Ma Sm/Nd in-
ternal isochron obtained from an amphibole-bearing
gabbro (Lapierre et al., 1999) is consistent with the
stratigraphic data from the Guayaquil area. There-
fore, according to the available data, the Pifién For-
mation of coastal Ecuador is assumed to be of Early
Cretaceous age. For this reason, an age of 123 Ma
has been used for in-situ decay corrections.

Undated tholeiitic pillow basalts and andesites
cropping out in the western part of the Western
Cordillera (Toachi beds) were developed in an intra-
oceanic arc environment (Cosma et al., 1998). The
Toachi beds are interpreted as overlain by greywackes
(Pilatén beds) bearing late Turonian to Coniacian
inoceramid faunas, which can be correlated with
the Cayo Formation of the Guayaquil area (Faucher
et al., 1971; Kehrer and Van der Kaaden, 1979).
Therefore, the Cretaceous succession of the Western

Cordillera is comparable to that of the Guayaquil area
of coastal Ecuador (Fig. 2), and the Toachi beds can
be correlated with the Las Orquideas Member of the
Guayaquil area, of pre-Cenomanian to pre-Turonian
age (Cosma et al., 1998).

The greywackes of the Pilatén beds are locally
unconformably overlain by Maastrichtian shales and
quartz-rich turbidites of the Yunguilla Formation
(Faucher et al., 1971; Bristow and Hoffstetter, 1977,
Kehrer and Van der Kaaden, 1979). Although the
Yunguilla Formation is coeval with the Guayaquil
Formation, the former contains abundant detrital
quartz, which is absent in the latter (Fig. 2). This
indicates that at least part of the Western Cordillera
had been accreted to the continental margin by Maas-
trichtian times (Faucher et al., 1971; Kehrer and Van
der Kaaden, 1979; Lebrat et al., 1987; Cosma et
al., 1998). The recent dating of quartz-sandstones
as Early to mid-Paleocene in the Western Cordillera
supports this interpretation (McCourt et al., 1998).
Therefore, the tectonic history of part of the Western
Cordillera differs from that of the Guayaquil area,
since, by the end of Maastrichtian times, part of
the Western Cordillera was already accreted to the
continental margin.

Volcaniclastic rocks and calc-alkaline andesites,
dacites and breccias (Tandapi beds, Silante Forma-
tion) rest unconformably on the Yunguilla Forma-
tion. These volcanic rocks are dated by Tertiary ra-
diolarians (Bourgois et al., 1990), scarce K—Ar ages
(hornblende) ranging from 51.5 £2.5 Mato 40 3
Ma (Early to Middle Eocene; Wallrabbe-Adams,
1990; Van Thournout et al., 1990), and interbedded
limestones and quartz-rich turbidites which yielded
Middle to Late Eocene microfossils (Henderson,
1979; Bourgois et al., 1990). Since these volcanic
rocks rest on the oceanic terranes of the Western
Cordillera and exhibit geochemical features of a
continental magmatic arc (Cosma et al., 1998), the
accretion of the Western Cordillera was achieved by
Early Eocene time (Fig. 2). This interpretation is sup-
ported by the fact that the Cretaceous—Palacogene
rocks of the Western Cordillera are unconformably
overlain by a sedimentary sequence of Eocene age
comparable to that of coastal Ecuador (Bourgois et
al., 1990; Jaillard et al., 1995; Fig. 2).

In summary, because of the comparable overlying
Cretaceous succession and of their similar geochem-
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ical features, we follow the previous workers in
admitting that the Pifién Formation of the Guayaquil
area correlates with the Early Cretaceous (~123
Ma) igneous basement of the Western Cordillera,
although their tectonic evolution may differ.

6.2. Comparison between western Ecuador and
western Colombia

Recent studies carried out in western Colombia
distinguish three distinct basaltic suites of oceanic

plateau affinities (Fig. 11), i.e. the mafic igneous
rocks of the Amaime Formation (>100 Ma), Vol-
canic Formation (90 Ma), and Serrania de Baudé
(78-73 Ma), which successively accreted to the An-
dean margin (Marriner and Millward, 1984; McCourt
et al., 1984; Desmet, 1994; Nivia, 1996; Kerr et al.,
1996, 1997b; Sinton et al., 1998).

It appears difficult to correlate the oceanic plateau
basement (Pifién Formation and its plutonic roots) of
the Western Cordillera and coastal area of Ecuador
with the basalts and their plutonic roots of the
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Amaime Formation of Colombia. Indeed, the lat-
ter formation is intruded by the Buga batholith dated
at 113 £ 10 Ma (K—Ar) and 99 £+ 4 Ma (Rb—Sr)
(McCourt et al., 1984), indicating that the accretion
of the Amaime Formation onto the margin of NW
Colombia must have occurred well before 100 Ma
(Kerr et al.,, 1997b). Early Cretaceous ages (129-
104 Ma) of high-pressure metamorphic rocks asso-
ciated with the Amaime Formation are interpreted
as reflecting the late stages of accretion, which oc-
curred most probably between 140 and 124 Ma
(Aspden and McCourt, 1986; Toussaint and Re-
strepo, 1994). So the Amaime Formation was prob-
ably already accreted while the Pifién Formation of
Ecuador erupted. Moreover, in map view, the West-
ern Cordillera of Ecuador is not the continuation of
the suture zone of Colombia (Fig. 11). In contrast,
the Colombian suture zone is likely correlatable with
the Late Jurassic—earliest Cretaceous ‘oceanic su-
ture’, exposed along the western edge of the Eastern
Cordillera of Ecuador (Aspden and Litherland, 1992;
Litherland et al., 1994) and/or with the ultramafic
and mafic rocks of the Raspas Complex of south-
western Ecuador (Aspden et al.,, 1995), the high-
pressure metamorphism of which has been dated at
132 Ma (K—Ar, Feininger, 1982; Fig. 11).

The age of the oceanic platean basement of
the northwestern area of coastal Ecuador (Manabi
area) is pre-late Campanian because intra-oceanic
arc lavas and associated pelagic sediments, both
of late Campanian—-Maastrichtian age, crop out in
this area (Lebrat et al., 1987). Thus, this oceanic
plateau may be either coeval with the early-Late
Cretaceous oceanic plateau generation of western
Colombia, or coeval with the Early Cretaceous
oceanic plateau of the Guayaquil area and West-
ern Cordillera of Ecuador. More radiometric dates
are necessary to distinguish between these two as-
sumptions. The late Campanian-Maastrichtian in-
tra-oceanic arc (San Lorenzo Formation) can be
correlated with the Campanian Ricaurte tholeiitic
suite of southern Colombia, which seems to have no
equivalent farther north (Spadea and Espinosa, 1996;
Fig. 11).

Finally, no equivalent of the late-Late Creta-
ceous (~78-72 Ma) oceanic plateau of westernmost
Colombia (Serrania de Baud6, Kerr et al., 1997b) is
known so far in Ecuador.

Therefore, with the possible exception of the
northwestern area, the Ecuadorian oceanic plateau
terranes are distinct from those accreted to the Colom-
bian margin, and cannot be considered, as a whole, to
belong to the Late Cretaceous Colombian—Caribbean
Oceanic Plateau as defined by Kerr et al. (1997a).

6.3. A southeastern Pacific origin for the Early
Cretaceous terrane of Ecuador

The 123 Ma isochron age suggests that the
oceanic plateau of coastal Ecuador is coeval with
the southern Pacific large oceanic plateaus generated
during the Early Cretaceous ‘superplume’ (~125-
100 Ma, Larson, 1991), i.e. Kerguelen, Nauru, Mani-
hiki and Ontong Java Plateaus. More specifically,
some of the Ecuadorian oceanic plateau fragments
are coeval with the early igneous event of the On-
tong Java Plateau, recorded at 123 Ma (Mahoney
et al., 1993; Coffin and Eldhom, 1993). The over-
thickened and abnormally buoyant character of the
basement of western Ecuador can explain why this
oceanic terrane has been accreted to, rather than
subducted beneath, the Andean margin (e.g. Cloos,
1993). Moreover, the Pifion Formation forms the
basement of distinct and successive Late Cretaceous
island arcs, indicating that it behaved as a buoyant
upper plate in an intra-oceanic subduction system.

Very little is known about the plate kinematics be-
fore the latest Cretaceous. Based on a fixed hotspot
reference frame, Duncan and Hargraves (1984) pro-
posed a kinematic reconstruction of the direction
and velocity of the northern Farallén and south-
ern Phoenix plates since earliest Cretaceous times.
According to this reconstruction, an arbitrary point
passively transported by the Farallon plate between
123 and 80 Ma, age of the first accretion of the
Pifién terrane to the Andean margin, travelled ~3500
km northward and more than 3000 km eastward. A
point located on the present-day Galdpagos 123 Ma
ago would be located close to Florida on a 80 Ma
reconstructed map. Althongh uncertainties are great
in such a reconstruction, the Early Cretaceous Pifién
Formation cannot have been generated by the Gala-
pagos Hotspot, and its source must be located much
farther south or southwest.

The Cretaceous migration rates of the Phoenix
plate were slower than those of the Farallén plate
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(Duncan and Hargraves, 1984) and accordingly, a
point colliding the Ecuadorian margin 80 Ma ago
must have been located about 2000 km farther south
and more than 2500 km to the west, 123 Ma ago.
Therefore, if passively transported by the oceanic
plate, the Early Cretaceous Pifién Formation must
have been generated 3000 to 4000 km southwest
of Ecuador on a 80 Ma reconstructed map, that is
much closer to the Sala y Gémez Hotspot (Pilger
and Handschumacher, 1981) than to the Galdpagos
Hotspot. However, the presence of pre-Campanian
island-arc products (Las Orquideas Member, Cayo
Formation, Toachi and Pilatén beds) indicates that
the Pifién Formation has constituted the upper plate
of an intra-oceanic subduction system, and has not
been transported passively by the oceanic plate dur-
ing the whole 123-80 Ma time-span. Therefore,
the hotspot responsible for the generation of the
Pifién Formation may have been located closer to
the Ecuadorian margin. A southeastern Pacific origin
of the Pifién terrane is consistent with the scarce
available palacomagnetic data, which suggest that
coastal Ecuador (taken as a single terrane) originated
5° to the south of its present location (Roperch et al.,
1987).

7. Summary and conclusions

(1) Petrographic, mineralogical, chemical and iso-
topic studies indicate that the basement of western
Ecuador is made of oceanic platean remnants of
possibly different ages. Their oceanic plateau origin
may explain why these rocks have been accreted to
the Andean margin, and why they supported intra-
oceanic island arcs.

(2) Three distinct geological domains must be
distinguished in western Ecuador. (a) In the north-
western area (Manabi area), the basement is of
pre-late Campanian age, an intra-oceanic arc de-
veloped in late Campanian—Maastrichtian times, and
accretion occurred before the Middle Eocene. (b)
In the Ceniral area (Guayaquil area), the basement
is of Early Cretaceous age, island arcs were ac-
tive during the late-Early Cretaceous(?) to early-Late
Cretaceous, and the accretion occurred in the Late
Paleocene (~57 Ma). (¢) In the Western Cordillera,
the basement, preserved as slices in the suture zone,

is of Early Cretaceous age (~123 Ma), intra-oceanic
arcs developed during the late-Early Cretaceous(?) to
early-Late Cretaceous, and accretion occurred during
the Late Cretaceous (~80 Ma).

(3) No equivalent of the Early Cretaceous oceanic
plateau of western Ecuador is thus far known in
western Colombia. However, we cannot rule out
the possibility that the basement of the northwest-
ern area of coastal Ecuador (Manabi) is coeval to
the Caribbean Plateau (~92-88 Ma). Additionally,
remnants of the Late Cretaceous oceanic plateau of
westernmost Colombia (~78-72 Ma) are yet un-
known in Ecuador. These observations indicate that
most of the oceanic terranes of western Ecuador
do not belong to the Colombian—Caribbean Oceanic
Plateau. The plume that generated the Early Cre-
taceous Pifién Plateau must have been located in
the southeast Pacific, far south of the present-day
Galapagos Hotspot.
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