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Abstract

The Norfolk—New Caledonia Ridge represents a continental slice which drifted away from Australia during the Late
Cretaceous breakup of the eastern Gondwana margin. The presence of widespread basaltic rocks beneath the main
ophiolite nappe of New Caledonia has been long known but the origin and the age of the Poya Terrane basalts (PTB
herein) remained controversial. Recent palacontologically determined ages date the PTB as Late Cretaceous (Campanian).
New geochemical data show that two main discrete groups constitute the PTB: a MORB-like tholeiitic suite, and a more
alkaline intra-plate basaltic suite distinguished mainly on immobile HFSE and REE elements. Furthermore, low eyng and
high Th/Nb relative to MORB, and weak negative Nb anomalies, reflect limited assimilation of continental crust by these
otherwise MORB-like tholeiites. Inter-PTB sedimentary rocks all have a pelagic or hemi-pelagic origin; detrital material
originated from the nearby Norfolk—New Caledonia ridge basement. The PTB form a parautochthonous sheet below the
main harzburgitic nappe constituting the New Caledonian ophiolite. They are genetically unrelated to the ophiolite, and are
interpreted to be 70-85-Ma-old rift tholeiites formed during of the easternmost continental part of Mesozoic Gondwana,
and opening the East New Caledonia Basin. The Norfolk—New Caledonia Ridge formed the western passive margin of
this new oceanic basin, but the rifted-off eastern block is less easily identified. It may form part of the basement of the
Western Belt of the New Hebrides island arc (Vanuatu). The cessation of rifting of the eastern Australian margin around
56 Ma was followed by an eastward-directed subduction which produced boninitic melts and its associated refractory
harzburgitic mantle, in the forearc of the primitive Loyalty—d’Entrecasteaux arc. Following the major Pacific plate motion
reorganization around 42 Ma, collision of the Norfolk—New Caledonia Ridge with the forearc region of the intra-oceanic
Loyalty—d’Entrecasteaux arc around 40 Ma led first to westward thrusting of the PTB as a slice picked up from the
upper crustal section of the colliding Norfolk Ridge. Subsequent collisional tectonism led to detachment of the main
New Caledonian harzburgitic nappe from its forearc location in the Loyalty arc, and westward emplacement of this
nappe over the PTB nearby allochthon. The presence of parautochthonous sheets of basalts unrelated to immediately
overlying forearc-derived, boninite-bearing harzburgitic ophiolites is briefly discussed in the light of two other examples in
arc—continent collision settings. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: SW Pacific; New Caledonia; Cretaceous; Eocene; allochthonous terrane; geodynamic significance; MORB;
backarc basalts; intra-plate basalts; boninites; ophiolites; geochemistry
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204
1. Introduction

New Caledonia is a microcontinental island which
drifted away from Australia during the Late Creta-
ceous breakup of the eastern Gondwana margin and
opening of the Tasman Sea and New Caledonia Basin
(Paris, 1981; Kroenke, 1984; Mignot, 1984; Rigolot,
1989; Cluzel et al., 1994). It is constituted by rocks
which record at least two arc—continent collisions,
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the first in the early Mesozoic, the more recent in
the mid-Eocene (Cluzel et al., 1994; Aitchison et
al., 1995a; Mefire et al., 1996). The latter collision
resulted in SSW-directed emplacement of a mas-
sive harzburgite-dominated nappe probably at least
6 km thick (Fig. 1) (Avias, 1967; Guillon, 1975;
Prinzhoffer et al., 1980). Although this sheet appears
to be broadly continuous with crust of the adjacent
South Loyalty Basin to the east of New Caledonia
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Fig. 1. (a) Location of New Caledonia in the SW Pacific. DEZ = d’Etrecasteaux Zone; SLB = South Loyalty Basin. (b) Simplified

geological map of New Caledonia showing the location of the Poya

Terrane basalts along the western coast between Bourail and

Koumac. Ne = Népoui. Sample sites: G = Gomen; O =Quaco; Ta = Taom; Bo = Boyen; V = Voh; Te = Temala; Pi = Pinjen peninsula;
K = Kone; P = Poya (including samples from a 150-m-deep drilling done by the BRGM on the Honfleur sulphide deposit).
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(Collot et al., 1987), there are no known occur-
rences of volcanics associated with the nappe on
New Caledonia, and magmatic rocks are restricted
to limited occurrences of cumulates and occasional
dolerite dykes (Prinzhoffer et al., 1980; Dupuy et al.,
1981).

The presence of widespread basaltic rocks be-
neath the New Caledonia ophiolite nappe has been
long known and well documented (Routhier, 1953;
Lillie and Brothers, 1970; Guillon, 1972; Guillon
and Gonord, 1972; Rodgers, 1975; Parrot and Dugas,
1980; Paris, 1981; Kroenke, 1984; Maurizot et al.,
1985; Black, 1993; Cluzel et al., 1994; Aitchison
et al., 1995a,b). Marine geophysical data indicate
that this basaltic formation, as well as the main
harzburgite nappe, extend 300 km northwestward
in the basement of the northern lagoon of New
Caledonia (Collot et al., 1988). Guillon (1972) first
recognized that these basaltic rocks form an ex-
tensive nappe, outcropping over much of the west
coast of New Caledonia, where these rocks have
been called the ‘Formation des Basaltes de la Cote
Ouest’ (West Coast Basalts Formation). More recent
studies (Cluzel et al., 1994; Meffre, 1995; Aitchison
et al., 1995a) have confirmed that the West Coast
Basalt Formation represents the western part of a
20-500-m-thick nappe, which extends over much of
the island as a slice beneath the main harzburgite
nappe. Basalts of similar petro-geochemical charac-
teristics outcrop also locally along the east coast of
New Caledonia as a thin slice beneath the harzbur-
gites (Cluzel et al., 1994, 1995; Meffre, 1995). This
basaltic nappe has been termed the Poya Terrane
(Cluzel et al., 1994; Aitchison et al., 1995a). On-
going controversy surrounds the affinities, origin and
tectonic significance of the Poya Terrane basalts
(PTB herein).

Here, we provide new petrological, geochemical
and sedimentological data which address this prob-
lem. We note that the implications of these data have
more than local significance, as extensive sheets of
metabasaltic rocks, almost certainly parts of large
nappes, occur beneath several other large harzbur-
gite-dominated, boninite-bearing ophiolite sheets in
the southwest Pacific region, for example the Emo-
Kokoda metamorphics beneath the Papuan ophio-
lite (Davies and Jaques, 1984; Worthing and Craw-
ford, 1996), and the Crimson Creek Formation and

correlative basalts beneath the Cambrian boninite—
harzburgite ophiolites in Tasmania at the base of the
Lachlan Foldbelt in eastern Australia (Crawford and
Berry, 1992).

2. Poya Terrane

The Poya Terrane was emplaced as a relatively
thin thrust sheet along with but beneath the main
harzburgite sheet of the New Caledonia ophiolite,
between 38 and 46 Ma (Cluzel et al., 1994, 1995;
Aitchison et al., 1995a; Meffre, 1995). The direction
and sense of its emplacement was determined by
careful examination of the geological contacts, a
kinematic analysis of the normal faults, the polarity
of the metamorphism which affects the PTB, which
increases northward along the east coast (Cluzel et
al., 1994, 1995; Meffre, 1995) and its strong link
with the emplacement of the main harzburgite sheet
from the north-northeast (Guillon, 1975; Prinzhoffer
et al., 1980; Collot et al., 1987).

Poya Terrane sequences are dominated by
low-grade metamorphosed, often tectonized, pil-
lowed basalts, with associated hyaloclastites, fine-
grained tuffaceous sediment and calcareous sedi-
ments known as the ‘Koné facies’ (Carroué, 1972),
radiolarian cherts and more locally massive basalts,
gabbros and dolerites. Occasional sheeted basaltic
flows and serpentinites have also been observed.

The age of the Poya Terrane has been a contro-
versial issue, with arguments being presented in the
literature for Eocene—Paleocene and/or Cretaceous
ages (Routhier, 1953; Espirat, 1963; Coudray and
Gonord, 1967; Carroué, 1972; Guillon, 1972; Cluzel
et al., 1994; Aitchison et al., 1995a; Meffre, 1995).
Palaeontological ages range between 88 and 45 Ma
(Coudray and Gonord, 1967; Carroué, 1972). How-
ever, most cherts clearly interbedded with the basalts
have yielded Radiolaria indicating a Campanian (73—
83 Ma) age (two new ages from Meffre, 1995 and
ten from Aitchison et al., 1995b). Several fossilifer-
ous Senonien intercalations (66—88 Ma) in the Koné
facies were also described by Espirat (1963) and Car-
roué (1972), and Paris (1981) associated a Turonian
to Santonian (83-90 Ma) [noceramus macrofauna
with the same facies. ,

Most palaeontologically determined Eocene ages
for sequences containing basalts come from the area
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south of Bourail. Aitchison et al. (1995a) and Meffre
(1995) have argued that these basalts are proba-
bly olistoliths (up to almost 1 km long in places)
reworked in Upper Eocene detrital sediments and
breccias during their emplacement over the New
Caledonia core.

Published K—Ar ages for PTB are 38.5 4 1.5 Ma,
42 42 Ma, 51 &= 7 Ma and 59 % 6 Ma (Guillon and
Gonord, 1972). We have obtained 9 new K—Ar age
determinations for low-grade metamorphosed PTB
and these range from 39.7 &= 2.1 Ma to 61.6 = 2.8
Ma (Table 2). These new K—Ar age determinations
were performed at the University of Brest by H.
Bellon and J.C. Philippet following a procedure de-
scribed by Bellon and Rangin (1991). Three groups
can be recognized: (1) between 39.7 and 43.8 Ma;
(2) between 47 and 49 Ma; and (3) with a single
isotopic age of 61.6 Ma. The laiter age represents the
average of two dates determined on separate gran-
ulometric fractions of the same sample leached by
acetic acid to eliminate the alteration phases (an age
of 56.0 Ma was obtained on the same sample with-
out the leaching procedure). All these K—Ar ages are
anomalously low compared to the palacontological
ages of the few sedimentary rocks closely associ-
ated with the volcanic rocks, presumably reflecting
varying extents of resetting, in part probably related
to emplacement and subsequent metamorphism be-
neath the over-riding harzburgite nappe.

The geodynamic significance of the PTB gave
rise to various interpretations. The first of these (e.g.
Avias, 1967; Challis and Guillon, 1971; Cameron,
1989) argues that the PTB are the volcanic carapace
of the main New Caledonia ophiolite. The second
(Espirat, 1966, 1971; Guillon, 1972; Guillon and
Gonord, 1972; Avias and Coudray, 1975; Gonord,
1977; Aitchison et al., 1995a; Meffre et al., 1996)
proposes that PTB represent allochthonous crust of
a Late Cretaceous backarc basin. Black (1993) re-
ferred to the PTB as ‘N-MORB basalts with some arc
affinities’. The autochthonous or subautochthonous
origin proposed by other authors (Routhier, 1953;
Paris, 1981; Kroenke, 1984; Maurizot et al., 1985)
is now known to be wrong. Therefore, the al-
lochthonous models will be evaluated following pre-
sentations of our new geochemical data.

3. Associated sediments

Relatively few sedimentary rock types have been
identified in close association with the PTB, most
being inter-pillow sediments or local thin inter-
calations of pelagic or hemi-pelagic origin (Paris,
1981; Cameron, 1989; Meffre, 1995). They include
(Table 1): (1) brown and dark red siliceous rocks
(cherts, jaspers) occasionally containing Radiolaria,
which, although generally poorly preserved, have
yielded Campanian (73—83 Ma) age determinations
(Meffre, 1995; Aitchison et al., 1995b); (2) white or
pink micritic limestone, containing some Globige-
rina and rarely some Radiolaria; (3) altered hyalo-
clastite with green jasper fragments; (4) clast-sup-
ported breccias with dominant volcanic fragments
(autobrecciated pillow lavas during of shortly af-
ter their formation or ocean floor fault screes) and
siliceous or calcareous cement (calcarenite); (5) de-
trital rocks with clay-siliceous cement (distal tur-
bidite type or greywacke); and (6) tuffaceous mud-
stone and siltstone.

The non-volcanic detrital fraction of the coarser-
grained breccias appears to be derived from Palaeo-
zoic formations of the New Caledonia basement.
Despite the different types defined, no clear vari-
ations are observed within the whole formation or
between the different petro-geochemical groups de-
fined below.

4. Petrography

Our new petrographic and geochemical data (Ta-
bles 2 and 3) show that two discrete magmatic
groups constitute our PTB: a MORB-like tholeiitic
suite, and a more alkaline intra-plate basaltic suite.
The very poor outcrop has prevented determina-
tion of mutual contact relationships between these
groups.

The Poya Terrane MORB-like basalts range from
subophitic-textured, almost aphyric massive flows
and microgabbro plugs and dykes, through inter-
granular- and intersertal-textured basalts with 2—10
modal% of plagioclase and augite phenocrysts, to oc-
casional olivine + plagioclase-phyric or plagioclase
+ augite-phyric pillow basalts with largely devitri-
fied glassy rims. Except in a few unaltered glassy pil-
low rims (Table 4) in which fresh olivine is preserved




Table 1

Summary of the lithology and origin of the studied samples of
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the Poya Terrane collected along the New Caledonia west coast
between Bourail and Koumac

Sample  Lithology Location

number

Bo-5 Inter-pillow greywacke Seashore near Pouaco

Bo-7 Inter-pillow greywacke Seashore near Pouaco

Bo-9 Inter-pillow limestone Seashore near Pouaco

Bo-13 Gabbro Boyen river

Bo-16 Dolerite Boyen river

Bo-30 Gabbro Boyen river

Bo-33 Sediment brecchia Boyen river

Bo-34 Dolerite Boyen river

Bo-35 Gabbro Boyen river

Bo-40 Gabbro Boyen river

G-1 Basaltic pillow Gomen Point

G-2 Inter-pillow jasp with Gomen Point
laminites

G-4 Basaltic pillow Gomen Point

G-5 Basaltic pillow Gomen Point

K-1 Basaltic pillow Foué Point Quarry

K-3 Pink siliceous limestone ~ Foué Point Quarry

K-4 Pink siliceous limestone ~ Foué Point Quarry

K-7 Hyaloclastite Foué Point Quarry

K-8 Basaltic pillow Foué Point Quarry

K-9 Pink micritic limestone Foué Point Quarry
with glass fragments

K-10 Pink micritic limestone Foué Point Quarry

K-11 Pink micritic limestone Foué Point Quarry

K-13 Pink siliceous siltite Foué Point Quarry

K-19 Dolerite Seashore south of Foué

K-21 Dolerite Seashore south of Foué

K-22 Bio-micritic limestone Seashore south of Foué

K-23 Inter-pillow micritic Seashore south of Foué
limestone

K-24 Greywacke Seashore south of Foué

K-25 Greywacke Seashore south of Foué

0-2 Basaltic pillow Quarry bet. RT I — coast

0-6 Basaltic pillow Quarry bet. RT 1 — coast

0-7 Basaltic pillow Quarry bet. RT 1 - coast

0-10 Inter-pillow calcarenite Quarry bet. RT 1 — coast

O-11 Inter-pillow calcarenite Quarry bet. RT 1 — coast

0-14% Basaltic glass fragment Along the RT1

P-1 Basaltic pillow RT1 near Poya

P-3 Green/grey jasp lense in ~ RT1 near Arangus
basalt

P-5 Basaltic pillow RT1 near Arangus

P-7 Yellow siliceous Honfleur Quarry
sediment

P-8 Red jasp Honfleur Quarry

P-10 Basaltic pillow Honfleur Quarry

Pi-1 Inter-pillow quartzite Pinjen peninsula

Pi-3 Greywacke brecchia Pinjen peninsula

Pi-5 Inter-pillow pink Pinjen peninsula

bio-micrite

Table 1 (continued)

Sample  Lithology Location
number
Pi-6 Inter-pillow calcarenite  Pinjen peninsula
Pi-8 Inter-pillow red jasp Pinjen peninsula
Pi-9 Olivine phyric altered Pinjen peninsula

alkali basalt
Pi-11 Jasp Pinjen peninsula
PT1-1 Basaltic pillow Honfleur Quarry drill core
PT1-3 Basaltic pillow Honfleur Quarry drill core
PT1-6 Basaltic pillow Honfleur Quarry drill core
PT1-7 Basaltic pillow Honfleur Quarry drill core
PT1-9 Basaltic pillow Honfleur Quarry drill core
PT1-12  Basaltic pillow Honfleur Quarry drill core
PT1-13  Basaltic pillow Honfleur Quarry drill core
PT1-17  Basaltic pillow Honfleur Quarry drill core
Ta-2 Siltite with laminites Val Mango
Ta-3 Red jasp with basalt Val Mango
Te-1 Siliceous limestone Along RT1 near Temala
Te-2 CK sediment of Val Mango

geologic map
V-1 Altered pillowed basalt ~ Gatope Point
V-4 Interpillow altered Gatope Point

basalt and limestone

V52 Glass fragment Gatope. Point

V-7 Altered pillowed basalt ~ Gatope Point
V-8 Red jasp Gatope Point
V-94 Glass fragment Gatope Point
V-11 Microgranular inter- Gatope Point

pillow limestone

V-122 Glass fragment Gatope Point

G = Gomen; O = Quaco; Ta = Taom; Bo = Boyen; V = Voh;
Te = Temala; Pi = Pinjen peninsula; K = Kone; P = Poya;
PT1 = core from the drill done by the BRGM in the Honfleur
sulphide deposit near Poya. RT1 = Territorial Road number 1.

2 Fresh glass used for microprobe analyses.

(Fogs_gs), sparse olivine phenocrysts are replaced by
chlorite, or chiorite and calcite. Plagioclase is almost
always albitized. Metamorphic assemblages are ei-
ther prehnite & pumpellyite facies or chlorite =+
actinolite assemblages indicating lowest greenschist-
grade burial degradation of ocean-floor type. It is
noteworthy to remark that the underlying Mesozoic—
Paleocene sedimentary rocks have not been affected
by this metamorphic episode (Gonord, 1977; Paris,
1981; Cluzel et al., 1994; Meffre, 1995). The alkaline
lavas are volumetrically much less abundant, are al-
ways notably more altered than the MORB suite, and
occur in localized outcrop areas rarely larger than
2 km in diameter. They are mainly strongly vesicu-



Table 2

Bulk rock analyses of the studied volcanic samples

Sample: Bo-13  Bo-16B® Bo-30° Bo-34B” Bo-35 Bo40 G-l G4* G-4 G-5° K-1 K-8# K-16  K-19 K-19 K-21 0-2 0-6
Lavatype: MORB2 MORB2 MORB2 MORB2 MORB2 MORB2 MORBI MORB1 MORBI MORBI alkali alkali alkali MORB2 MORB!I MORB2 MORBI MORB3
Si0, 50.70  49.20 50.20 49.80 49.40 49.90 49.70  48.00 50.10  48.80 49.00 47.00 4590 48.10 49.90 49.90 49.80 50.00
TiO, 1.27 1.25 1.21 1.26 1.23 1.10 1.41 1.57 1.63 1.58 2.09 1.83 2.02 136 1.39 1.25 1.41 1.62
Al>O3 14,10 13.70 13.70 13.67 14.10 17.00 15.20 13.70 14.50 13.80 1570 1450 15.10 13.90 14.60 14.40 15.20 15.50
Fe; 03" 11.70 12.96 12.65 12.95 11.40 10.50 11.30 13.07 12.10 13.45 12.80 12.80 8.82 12.10 11.30 11.30 11.00 9.70
MnO 0.27 0.24 0.26 0.23 0.22 0.20 0.21 0.22 0.23 0.21 0.23 0.20 0.26 0.18 0.19 0.21 0.22 0.28
MgO 8.31 7.50 7.35 7.52 8.10 6.39 7.63 6.98 7.29 6.85 5.61 522 237 742 7.95 7.91 7.52 8.18
CaO 10.10 10.60 9.63 9.78 12.40 11.20 11.60 10.70 11.50 10.75 9.86 14.10 18.30 11.40 11.53 11.87 11.77 11.50
Na;O 2.76 2.44 2.66 2.62 2.92 3.03 2.56 241 247 2.48 324 3.36 3.68 275 2.95 2.78 2.67 3.03
K,O 0.70 0.30 0.52 0.64 0.22 0.60 0.28 0.09 0.13 0.18 L6 0.54 299 012 0.15 0.23 0.24 0.07
P,05 0.13 0.14 0.13 0.13 0.08 0.08 0.12 0.16 0.14 0.16 034 033 053 0.13 0.11 0.10 0.13 0.13
LOI 2.52 1.83 1.27 1.40 2.98 2.39 2.87 2.62 2.33 2.26 820 7.06 12.03 279 2.58 2.06 4.06 335
Total 100.04  100.16 99.58  100.00 100.07  100.00  100.01 99.52 100.09  100.52 100.03  99.88  99.97 100.25 100.07 99.95 99.96  100.01
Rb 14 53 9.7 9.7 6.6 13.0 3.0 1.7 1.0 24 21 10.1 45.0 2.1 2.3 5.0 7.0 2.0
Sr 252 298 170 190 140 261 140 129 136 130 337 363 488 174 180 180 137 182
Ba 130 66 121 252 58 115 37 27 31 35 107 111 456 42 47 41 57 19
Sc 55 46.5 45 43.5 48 44 42 46 43 45 30 27 10 42.5 46 47 46 42

\% 354 360 325 346 355 315 306 350 353 340 254 251 258 300 325 349 348 333
Cr 201 182 185 178 225 29 201 130 128 127 415 428 165 315 328 223 328 270
Co 50 47 49 49 50 48

Ni 97 98 90 95 102 67 88 66 73 65 195 200 113 83 93 102 114 82

Y 27 26 26 24 25 21 27 30 30 30 24 23 22 24 25 26 27 35

Zr 60 43 36 45.5 58 42 73 83 83 86 121 108 365 46 70 62 76 96
Nb 4.8 395 3.7 3.95 4.4 34 33 4.1 5.1 4.15 22 19.5 61.0 33 34 5.1 3.6 2.0
Ta 0.97

Hf 2.34

Th 1.34

La 4.4 37 4.65 3.81 4.65 4.75 13.10  10.98 39 4.46 3.39
Ce 11 9.5 11 9.36 125 13 3070 27.19 11 11.40 10.8
Pr 1.33 4.05 1.59 1.79
Nd 9 8.5 9 6.93 11 11 18.10  16.01 10 9.01 10.7
Sm 2.46 487  4.29 3.19 4.17
Eu 1.00 1.15 1.10 1.01 1.25 1.35 1.80 1.40 1.10 1.09 1.49
Gd 3.27 5.12 3.96 5.48
Tb 0.65

Dy 4.3 4.3 4.2 3.88 4.9 4.8 4.88 3.9 4.79 6.62
Er 2.8 29 2.7 2.33 34 32 247 2.6 2.95 4.27
Yb 2.53 2.58 2.35 2.03 2.80 2.80 1.72 1.48 2.13 2.78 3.95
Lu 0.20

Ma (K/Ar) 43.7 43.8(2) 397 47.0(a) 48.7(a) 41.9

Std. dev. +2.2 +2.2 +2.1 +24 +2.5 +2.1

Ti/Zr 127 174 201 166 127 157 ii6 113 118 110 104 102 33 177 119 121 111 101
La/Nb 111 1.00 1.18 1.12 1.13 1.14 0.60  0.56 1.18 0.87 1.70
Z1/Nb 13 11 10 12 13 12 22 20 16 21 6 6 6 14 21 12 21 48
Th/Nb 0.069
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Table 3

Bulk rock analyses of the studied volcanic samples (continued)

Sample: o7 P-1# P-5# P-10  Pi9 PT1-1 PTI-3# PTI-6 PTI1-7* PTI7 PTI1-9" PTI-9 PTI-12 PTI-13# PTi-17 V-1 V-1 V-7
Lavatype: MORBI alkali MORBI1 alkali alkali MORBI MORBI MORB! MORB1I MORBI MORBI MORBI MORBI MORBI MORB! MORB! MORB3 MORB3
5i0; 51.30 52.10 49.50 51.60 40.60 50.40 50.40 51.10 4920 50.70 49.00 50.40 50.70 50.80 50.10 50.30 50.50 5110
TiO2 1.30 1.93 1.27 2.24 2.03 1.40 1.34 1.12 1.69 1.73 1.47 1.50 1.74 1.40 1.43 1.45 0.98 0.99
Al O3 16.20 16.90 15.20 17.10 1330 13.30 14.50 14.80 13.65 14.20 14.10 14.60 13.60 14.30 14.70 1570 15.10 15.50
Fe, 05 7.80 10.90 11.10 10,70 1010 1270 11.00 10.10 13.35 12.40 12.15 11.20 1290 11.30 11.60 9.53 9.80 8.96
MnO 0.16 0.18 0.21 0.12 0.17 0.19 0.21 0.17 0.22 0.23 0.23 0.23 0.26 0.21 0.21 0.17 0.17 0.17
MgO 7.92 4.61 7.94 4.62 2.58 8.78 8.05 834 6.55 6.87 7.10 7.40 6.92 778 795 6.05 7.85 8.02
Ca0O 11.87 8.55 11.70 7.54 24.60 9.63 12.00 11.65 10.45 11.00 11.30 11.80 10.20 10.80 10.60 12.93 11.80 12.30
Na, O 3.15 3.50 2.85 3.80 4.08 342 2.34 241 2.37 2.60 2.35 2.72 3.24 3.00 3.04 3.00 2.30 2.55
K,0 0.18 1.24 0.17 1.86 1.87 0.08 0.08 0.16 0.14 0.14 0.12 0.12 0.23 0.23 0.29 0.72 0.38 0.40
P,05 0.14 0.12 0.08 0.51 0.68 0.12 0.11 0.09 0.17 0.16 0.15 0.12 0.16 0.13 0.14 0.12 0.10 0.08
L0l 378 5.14 2.74 422 1630 3.57 2.58 352 223 2.06 221 3.01 242 338 2.88 2.93 1.47 1.28
Total 100.02  100.03 100.02 100.09 100.01 100.02  100.03 99.94  100.02 100.03  100.18 100.09 99.95 99.95  100.06 99.97 10045 100.07
Rb 4.0 25 9 32 32 2.0 1.0 2.2 2.1 1.4 19 1.0 3.0 3.0 3.0 16.0 7.2 7.0
Sr 196 254 115 261 141 142 136 179 164 169 140 149 155 164 160 116 87 88
Ba 27 193 30 249 300 36 36 85 51 60 33 43 62 43 47 18 7 12

Se 47 41 52 47 7 46 44 46 44 44 43.5 45 45 45 45 47 39.5 44

A% 308 290 295 288 173 309 307 277 360 390 320 336 377 323 299 332 254 285
Cr 366 104 410 55 298 260 249 374 88 95 286 299 82 241 268 283 230 280
Co 50 46 44

Ni 156 45 70 61 164 80 79 100 60 72 84 97 65 86 87 96 73 78

Y 31 39 31 46 25 28 25 25 315 32 28 30 31 27 30 33 25 26

Zr 85 140 88 181 254 75 72 69 955 97 81 82 98 75 81 90 48.5 50
Nb 3.6 25 3.8 36 44.5 4.1 3.7 38 4.75 49 4.05 2.5 53 47 4.9 3.8 0.85 0.5
Ta 1.76 0.60 042 BDL

Hf 3.07 1.42 1.58 244

Th 1.90 BDL 0.46 0.41

La 16.80 3.64 3.98 375 455 5.81 22

Ce 33.80 9.14 10.00 15 11.5 15.43 7

Pr

Nd 20.00 7.59 7.99 12 10.5 12.38 7

Sm 5.61 2.58 277 4.08

Eu 171 0.97 0.94 1.35 1.15 1.47 0.85

Gd

Tb 1.13 0.58 0.66 0.96

Dy 52 4.6 4

Er 37 3 28

Yb 3.43 2.15 227 2.90 2.55 294 2.48

Lu 0.51 0.31 0.34 0.44

Ma (K/Ar) 49.0(a) 61.6(b) 48.1(a)

Std. dev. +2.5 +2.8 +2.4

Ti/Zr 92 83 87 74 48 112 112 97 106 107 109 110 106 112 106 97 121 119
La/Nb 0.67 0.96 1.08 1.21 1.12 1.24 2.59

Zr/Nb 24 [} 23 5 6 18 19 18 20 20 20 33 18 16 17 24 57 100
Th/Nb 0.076 0.124 0.087

Analysts : Phil Robinson at the University of Tasmania, Hobart, Australia (major, traces, and REE by XRF), * Joseph Cotten at University of Bretagne Occidentale, Brest, France (major, traces and
REE by ICP-AES), and # Helen Waldron at Becquerel Laboratories, Menai, Australia (REE, Hf, Th, and Ta by NAA). BDL = below detection limit. MORB1 = N-MORB; MORB2 = Boyen doleritic

MORB suite; MORB3 = MORB with BABB affinity; alkali = alkali suite (see text for explanations). “*K/* Ar whole-rock dates: (a) average of two dates; (b) average of two dates done on two separate

granulometric fractions leached by acetic acid to eliminate alteration phases. All analyses (isotopic composition of argon by mass spectrometry using isotopic dilution and potassium by atomic absorption
spectrophotometry) were performed at the University of Bretagne Occidentale by Hervé Bellon and Jean-Claude Philippet.
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Table 4

Fresh glass rim analyses (averages) done using the ‘Microsonde Ouest” CAMECA SX50 microprobe of Brest
Sample number: V-5 V-7 V-9 V-12 0-14
Number of analyses: 4 6 1 2 4
Si0, 49.97 49.98 49.61 49.58 49.78
TiO: 1.09 1.27 1.61 1.63 1.40
Al O3 15.55 1542 14.63 14.58 15.04
FeO" 8.86 9.15 11.08 11.01 10.02
MnO 0.15 0.16 0.15 0.17 0.16
MgO 9.331 8.97 7.74 777 8.45
CaO 12.55 12.15 11.82 11.75 12.07
Na;O 2.39 2.50 2.72 2.55 2.54
K>O 0.03 0.05 0.15 0.15 0.09
P,0s 0.00 0.00 0.17 0.00 0.04
Total 99.92 99.65 99.68 99.19 99.59

Analysts : Jean-Philippe Eissen and Marcel Bohn. The entire set of glass microprobe analyses is available upon request from the senior

author of this paper.

lar pillow basalts with common olivine phenocrysts
replaced by hematite and calcite, and occasional al-
bitized plagioclase phenocrysts. Abundant vesicles
are filled by calcite.

S. Analytical methods

The samples analysed were finely powdered in
an agate mill. Major and trace elements analysed in
Brest, except for Rb, were measured by ICP—AES
with an ISA Jobin-Yvon® JY 70 Plus apparatus.
Rb was measured by flame atomic emission using
a Perkin-Elmer” 5000 spectrometer. The procedure
of solution preparation was presented by Cotten et
al. (1995). All the elements were determined from
one solution without selective extraction. Calibra-
tions were made using international standards (JB2,
BEN, ACE, Mica-Fe) as well as specific references
samples. Relative standard deviations are < 2% for
major elements and < 5% for trace elements. Detec-
tion limits are Rb 0.5 ppm, Sr 0.5 ppm, Ba 2 ppm, Sc
0.2 ppm, V 3 ppm, Cr 2 ppm, Co 2 ppm, Ni 2 ppm,
Y 0.5 ppm, Zr 2 ppm, Nb 1 ppm, La 0.8 ppm, Ce 2
ppm, Nd 2 ppm, Eu 0.2 ppm, Dy 0.3 ppm, Er 1 ppm
and Yb 0.1 ppm. XRF major and trace elements anal-
yses were performed at the University of Tasmania
using an automated Philips. PW 1410 spectrometer.
Major elements were measured with Rh tube, Sc,
V, Cr, St, Zr, Nb and Ba using a Au tube and Nj,
Rb and Y a Mo tube. Trace elements were deter-
mined using mass absorption coefficients calculated

from major element analyses. Major elements were
analysed using fused discs, following the method of
Norrish and Hutton (1969). Loss on ignition was
measured as weight percent loss of 1 g of powdered
sample heated to 1000°C for 12 h, followed by 5
h at 400°C. Trace elements were analysed on 6-g
pressed powder pellets coated with boric acid, us-
ing the method of Norrish and Chappel (1977). The
REE data were measured using the ion separation
XRF technique described by Robinson et al. (1986).
INAA data were obtained at Becquerel Laboratories,
Lucas Heights Research Laboratories, New South
Wales (analyst Helen Waldron). Detection limits are
Hf 0.5 ppm, Ta 0.2 ppm and Th 0.2 ppm.

6. Geochemistry

We have analyzed 36 basalts from outcrops along
the length of the Poya Terrane between Bourail and
Koumac on the west coast of New Caledonia (Fig. 1).
Also available for consideration are eleven analyses
of MORB-like basalts from this same area, reported
by Cameron (1989). All analyzed PTB are basaltic
compositions, and despite careful sample selection
and analytical procedures, loss on ignition values are
typically 1-4% for the MORB-like suite, and usually
5-8% for the amygdaloidal alkaline suite. Thus we
consider it unlikely that the measured alkali- and
K-group element abundances are pristine, and we
rely mainly on immobile HFSE and REE elements
for determining the affinities of these basalts.
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Fig. 2. Zr versus Nb of the Poya Terrane basalt compositions showing the more alkaline suite and the MORB suite (enlarged area). OIB,
E-MORB and N-MORB references after Sun and McDonough, 1989; North Fiji Basin N-S segment N-MORB average after Eissen et

al.,, 1994,

The alkaline basalts have Nb contents at least
twice those of the MORB-like suite at similar stages
of fractionation, and all have Zr/Nb values between
5 and 6 (Fig. 2; ‘alkali’ samples of Tables 2 and
3). N-MORB-normalized element variation patterns
for immobile elements (Fig. 3) for this suite show
significant enrichment in the more incompatible ele-
ments, and fall between those of enriched ridge-gen-
erated MORB (E-MORB) and ocean island basalt
(OIB). We interpret these basalts to have derived
from seamounts formed on ocean crust. They may be
essentially in situ on MORB-like PTB, or they may
have been scraped off their original oceanic substrate
during subduction, and emplaced onto PTB MORB-
like basalts during emplacement of the PTB as an
allochthonous slice beneath the main harzburgitic
ophiolite.

The MORB-like basaltic suite shows a limited
fractionation range (36—103 ppm Zr), and has TiO,
contents from 1.0-1.8%; ferrobasalts (FeO*>14%)
are unrecorded. The majority of these basalis have
of Ti/Zr (87-137) and La/Nb (1.09 4 0.12), values
characteristic of N-MORB. However, Zr/Nb values
(20 4= 4) are slightly lower than for N-MORB ( 32—
40), due to very slightly higher Nb values of the
PTB compared to N-MORB at similar stages of

fractionation (Fig. 2). Some dolerites which out-
crop mainly along the Boyen River or near Koné,
even have slightly lower Zt/Nb values (12 % 2), but
their spidergrams are very similar to those of the
main basaltic lava group (MORB 2 of Table 2). De-
spite this, N-MORB-normalized element variation
patterns show weak negative Nb anomalies and have
Th/Nb values (0.09 and 0.12 for the two samples an-
alyzed) significantly higher than values for N-MORB
(0.03-0.08: our average of 51 samples from the liter-
ature is 0.066 & 0.015). Chondrite-normalized REE
patterns show only slight LREE-enrichment, and
flat HREE (Fig. 4). However, at least two basalts
of the MORB-like suite show more depleted REE
patterns and a slight but significant negative Nb
anomaly (Fig. 3) relative to adjacent La as observed
for BABB (MORB 3 of Tables 2 and 3); however,
these more depleted basalts have Zr/Nb~50, values
characteristic of LREE-depleted N-MORB.
Cameron (1989) reported Nd—Sr isotopic data for
three PTB with a Zr/Nb of 18-22, for which initial
eng values (recalculated to 80 Ma) are +3.1, 43.5
and +4.6, significantly below values for N-MORB
of this age (>+18). We suggest that the trend to low
eng and high Th/Nb relative to MORB, and the weak
negative Nb anomalies, reflect limited assimilation
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Fig. 3. Variation diagrams of N-MORB-normalized elements
showing representative patterns for: (a) averages of the PTB
N-MORB suite, the PTB Boyen dolerites and the PTB
MORB/BABB in comparison with selected patterns from three
different units of ODP Site 797 (Sea of Japan; data from Allan
and Gorton, 1992 and Pouclet and Bellon, 1992); (b) three lavas
for the Poya Terrane basalts alkaline suite. N-MORB, E-MORB
and OIB values after Sun and McDonough (1989).

of older (Mesozoic or Palacozoic?) continental crust
during eruption of these otherwise MORB-like rift
tholeiites. We note that backarc basin basalts from
stable intra-oceanic backarc basins such as the south-
ern and central parts of the North Fiji Basin and the
northern Lau Basin have eng values normally >7
and Th/Nb <0.08 (Jenner et al., 1987; Volpe et al.,
1988; Auzende et al., 1990). In contrast, BABB gen-
erated during rifting of older continental margin arc
crust (e.g. Sea of Japan) have eyg values between 3
and 7, and Th/Nb values averaging 0.120 & 0.04 for

Sea of Japan ODP Site 794 (sixteen samples) and
0.273 £ 0.06 for the lower basalts in ODP Site 797
(eight samples) (Pouclet and Bellon, 1992; Nohda
et al., 1992; Cousens and Allan, 1992). Basalts in
the Okinawa Trough, a backarc rift in the thinned
continental margin crust of eastern China, have eyg
values from +2.3 to +4.7 (Chen et al., 1995), but
Th/Nb values are unavailable.

7. Discussion

Our new data for the PTB indicate that they are
an allochthonous slice of tholeiites produced during
rifting at ~70-80 Ma along the eastern margin of
the Norfolk—New Caledonia Ridge. The PTB cannot
be related to the main New Caledonian harzburgitic
ophiolite because of the very refractory nature of the
latter (see below). The PTB are interpreted instead
as an allochthonous slice below the ophiolite, picked
up by the ophiolite and transported shortly south-
westward along the base of the ophiolite during its
emplacement in the Upper Eocene.

The major tectono-stratigraphic unit in New Cale-
donia is the massive harzburgitic ophiolite, for
which the cumulate carapace is volumetrically in-
significant and directly associated lavas remain un-
known. The very refractory nature of the dominant
harzburgitic tectonites (Prinzhoffer et al., 1980) in-
dicates that equilibrium melts must have been de-
pleted, second-stage melts, not MORB-type tholei-
ites such as the PTB, which would have been in
equilibrium with lherzolitic residues (Falloon et
al., 1989). Lavas chemically appropriate for equi-
librium melts with the harzburgitic tectonites are
the low-Ca boninites that crop out in several re-
stricted areas, probably as blocks within a serpen-
tinite melange, immediately beneath the ophiolitic
harzburgites in the Nepoui area of western New
Caledonia (Fig. 1b). These boninites contain Fog,
olivine phenocrysts and extremely refractory Cr-rich
chromites (Cr/(Cr + Al) = 0.84 to 0.88; Cameron,
1989). We suggest that these boninites are part of
the liquid complement of the ophiolite represented
by the harzburgites, and that slices of the carapace of
the ophiolite were over-ridden by massive harzbur-
gite allochthons during emplacement.

Analogous to the Bonin—Mariana forearc, the
New Caledonian boninites and their overlying
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Fig. 4. Variation diagrams of chondrite-normalized rare earth elements showing representative patterns for: (a) averages of the PTB
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Gulf of California (DSDP, Site 477; Saunders et al., 1982) and the Sea of Japan (ODP Site 797; Allan and Gorton, 1992; Pouclet
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McDonough (1989).

harzburgitic residues may represent forearc base-
ment to an oceanic island arc represented now by the
basement of the Loyalty Islands, presently capped
by Quaternary coral reefs (Maillet et al., 1983; Col-
lot et al., 1987; Aitchison et al., 1995b). Strongly
altered lavas of intraplate affinity (K/Ar age of 9-
11 Ma) outcrop in a restricted area of the island
Mare (Baudron et al., 1976; Monzier, 1993) and OIB
and comendites (K/Ar age of 30-33 Ma) have been
described in the submarine basement of the island
Mare between water depths of 4000 and 5200 m
associated with backarc basin basalts (Monzier et al.,
1989; Monzier, 1993). .
However, the Loyalty Islands are the emergent

part of an 1100-km-long ridge that includes 12-15
seamounts; the islands are ~150 km east of the lead-
ing edge of the main harzburgitic ophiolite nappe in
New Caledonia, and are spaced ~70 km apart, simi-
lar to the spacing for major volcanoes in the Mariana
arc (50 km; Bloomer et al., 1989) and the southern
part of the New Hebrides arc (90 kin; Macfarlane et
al., 1988). Where the Loyalty Ridge swings north-
eastward into the d’Entrecasteaux Ridge, seamounts
on the latter are known to be composed of primitive
island arc tholeiites (Coltorti et al., 1994; Baker et
al.,, 1994), strongly supporting the suggestion that
the Loyalty Ridge marks an intra-oceanic arc. Arc-
derived volcaniclastics of Mid-Eocene age drilled in
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the North Loyalty Basin at DSDP Site 486 (An-
drews et al., 1975) can be traced seismically to lap
onto the northern Loyalty Ridge seamounts (Meffre,
1995).

The cessation of magmatism on the arc volcano
seamounts of the South d’Entrecasteaux Chain has
been dated at around 38 Ma (Quinn et al., 1994,
Baker et al., 1994), and in Hole 486, a marked de-
crease in volcaniclastic sedimentation in the Late
Eocene suggests that arc magmatism may have
ceased on the Loyalty arc around 38 Ma (Andrews
et al., 1975). The North Loyalty Basin contains mag-
netic lineations, oriented N70° to N80°, which have
been interpreted as anomalies 18 to 23 (42 to 55 Ma;
Lapouille, 1982; Weissel et al., 1982).

We suggest that the eastern margin of the Aus-
tralian section of Gondwana was fragmented by pro-
gressive, subparallel rifting episodes around 50-75
Ma, with the creation of true ocean crust and mag-
netic anomalies around 73 Ma in the Tasman Sea
and around 75 Ma in the New Caledonia Basin. This
rifting created, from west to east, the Tasman Sea,
the Lord Howe Rise, the New Caledonia Basin, and
the Norfolk—New Caledonia Ridge. That ribbon of
continental crust represented by the basement of the
Norfolk Ridge (Green, 1978) is now only exposed in
the core of New Caledonia, where it is composed of
a Permo-Triassic arc-related collage (Paris, 1981).
The nature of the freeboard east of the Norfolk Ridge
at this time is unknown, but we note that no Pale-
ocene or late Mesozoic subduction-related volcanics
are known along the SW Pacific margin, implying
that the eastern margin of the pre-Eocene Australian
plate was not an active subduction margin.

We have argued above that the PTB represent
rift magmatism produced during the breakup stage
of development of a small ocean basin. In our pre-
ferred tectonic model, the PTB represent a slice of
the near-breakup western passive margin of a small
ocean crust-floored basin, here called the East New
Caledonia Basin, that began to form around 85 Ma
(Fig. 5a). Later east-directed subduction of the ocean

crust of the East New Caledonia Basin led first to
the closure of the latter followed by the collision of
the western passive margin of the ERast Caledonia
Basin with the forearc of the Loyalty oceanic arc
(see later) which emplaced the main New Caledo-
nian ophiolite sheet from the north-northeast back
onto this passive margin (Fig. 5b). If this is correct,
there must be a conjugate passive margin represent-
ing the eastern side of the East New Caledonia Basin.
We suggest that the remnants of this easternmost rib-
bon of continental crust that rifted eastward from
the Norfolk—New Caledonia Ridge during opening
of the East New Caledonia Basin, and later of the
South Fiji Basin, is now located in the basement
of the Western Belt of the New Hebrides (Vanuatu)
island arc (Fig. 1), and possibly also in the base-
ment of the Fiji platform, both of which evolved
later into the Vitiaz arc. Isotopic data for Pb-Ns-Sr
for Oligo-Miocene volcanics do suggest the presence
of a continental source component beneath Espiritu
Santo (Laporte et al., 1997). In the Western Belt
of the New Hebrides arc, Oligo—Miocene arc vol-
canics are markedly different from the basalt-domi-
nated intra-oceanic arc volcanics of the modern arc
(Monzier et al., 1997) and include abundant medium-
to high-K hornblende andesites and diorites hosting
porphyry-Cu-style mineralization (Macfarlane et al.,
1988).

In this model, there are two conceivable possi-
bilities for the origin of the North Loyalty Basin. It
may simply be a remnant of the youngest part of
the East New Caledonia Basin, which continued to
spread until at least 42 Ma following cessation of
rifting in the Tasman Sea and New Caledonia Basin
at ~56 Ma (Fig. 5b). But this hypothesis is in contra-
diction with the NE-SW orientation of the magnetic
lineations (Lapouille, 1982; Weissel et al., 1982).
Alternatively, the North Loyalty Basin may have
been a backarc basin of the Loyalty—d Entrecasteaux
arc which evolved eventually later into the South
Fiji Basin after the formation of the Vitiaz—Lau-—
Colville arc (proto-New Hebrides—Tonga—Kermadec

Fig. 5. Schematic geodynamic reconstruction of New Caledonia and the SW Pacific around ~70 Ma (a), near 56 Ma (b), between 50
and 45 Ma (c); and around 40-38 Ma (d). A = Australia; ENCB = East New Caledonia Basin; LHR = Lord Howe Rise; NC = New
Caledonia; NCB = New Caledonia Basin; NLB = North Loyalty Basin; NR = Norfolk Ridge; NZ = New Zealand; PVTS = Proto Vitiaz
Tonga Subduction; SFB = South Fiji Basin; TS = Tasman Sea. See text for explanations.
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arc). However, this demands the existence of an early
subduction and arc formation at least around 55 Ma,
for which there is no evidence. DSDP drilling in
the North Loyalty Basin penetrated only open ocean,
pelagic sediments of Eocene age, despite the prox-
imity to the Loyalty—d’Entrecasteaux arc volcanoes.

Following cessation of rifting in the Tasman Sea,
New Caledonia Basin and Eastern New Caledonia
Basin at ~56 Ma (Fig. 5b), continued extension at
the eastern margin of the Australian plate was taken
up by opening of the North Loyalty Basin, in which
the oldest magnetic anomalies are ~56 Ma, which
evolved later into the South Fiji Basin. This opening
combined with the general northward displacement
of the Australian plate, presumably generated re-
gional more or less NE-SW compression, which
we believed initiated subduction along the spreading
ridge in the East New Caledonia Basin spreading
centre (Fig. 5c). This slow subduction, NE deepen-
ing, generated boninitic lavas from the hot young
lithospheric wedge of the just extinct spreading cen-
tre and explains the very refractory nature of the
associated harzburgitic crust in the forearc position
of the nascent Loyalty—d’Entrecasteaux arc, with the
mantle now exposed in the New Caledonia ophio-
lite. Boninite generation requires abnormally high
temperatures at relatively shallow levels in the upper
mantle (Crawford et al., 1989), and subduction initi-
ation may well have been focussed on the thermally
weakened, only recently extinct, spreading centre in
the East New Caledonia Basin. Continued subduc-
tion, albeit relatively short-lived, produced the prim-
itive arc volcanoes of the Loyalty—d’Entrecasteaux
arc.

The major reorganization of plate motion in the
Pacific region around 42 Ma, best shown by the
bends in the intraplate island chains in the Pacific
Ocean such as that in the Hawaiian—Emperor chain,
led to a NW-directed motion for the Pacific plate.
This reorganization also affected the Australian plate
motion (Duncan and McDougall, 1989; Lanyon et
al., 1993). At anomaly 19 (~43 Ma), spreading in the
Southern Ocean between Australia and Antarctica
accelerated to about 5 times its previous velocity,
and imposed a major N—S-directed motion on the
Australian plate (Veevers et al., 1991).

This reorganization eventually drew the PTB-
bearing rifted eastern margin of the Norfolk—

New Caledonia Ridge into the trench around 38
Ma, terminating arc magmatism on the Loyalty—
d’Entrecasteaux arc and emplacing the forearc-
derived ophiolite on New Caledonia and initiating
accompanying foredeep sedimentation (Fig. 5d).

Middle Eocene foredeep sediments and olis-
tostromes record the collision of the Norfolk—New
Caledonia Ridge continental ribbon with the forearc
region of the intra-oceanic Loyalty—d’Entrecasteaux
arc (Aitchison et al., 1995a). We propose that the
first nearby allochthon (almost parautochthon) to be
detached and emplaced southwestward in this col-
lision is that represented by the PTB. Subsequent
allochthons were derived from the forearc region
of the colliding arc system, and these piggy-backed
over the PTB parautochthon. The mantle section of
the forearc may eventually have over-ridden its own
lava-cumulate carapace. This ophiolite emplacement
could have been synchronous or preceded a similar
collision observed in the NW New Zealand penin-
sula (Brothers and Delaloye, 1982). Post-collisional
extension led to exhumation of the high-grade meta-
morphic basement of the Norfolk—New Caledonia
Ridge in northern New Caledonia (Aitchison et al.,
1995a; Cluzel et al., 1995).

In summary, we believe that the Poya Terrane
basalts form a proximal allochthonous sheet be-
low the main harzburgitic nappe constituting the
New Caledonian ophiolite. They are genetically un-
related to the ophiolite, and are interpreted to be
70-80-Ma-old rift tholeiites formed during opening
of the East New Caledonia Basin, when an un-
known continental fragment rifted eastward from the
Norfolk—New Caledonia Ridge. Later closure of the
East New Caledonia Basin, by an east-directed sub-
duction, led to the collision of the western passive
margin of the latter ridge with the forearc region
of the intra-oceanic Loyalty—d’Entrecasteaux arc
around 40 Ma. This collision forced the westward
translation of the PTB as a slice picked up from the
upper crustal section of the colliding Norfolk—New
Caledonia Ridge. Subsequent collisional tectonism
led to the detachment of the main New Caledo-
nian harzburgitic nappe and its associated boninites
from their forearc location, and their southwest-
ward emplacement over the PTB nearby allochthon,
the boninites being emplaced first below the main
harzburgitic nappe.
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8. Implications for other ophiolites

It is noteworthy that, in at least two other arc—
continent collision settings with which we are fa-
miliar, there are parautochthonous sheets of basalts
unrelated to immediately overlying forearc-derived,
boninite-bearing harzburgitic ophiolites. Worthing
and Crawford (1996) have documented the geo-
chemistry of the Emo-Kokoda metabasalts from be-
neath the harzburgite-dominated, Eocene, boninite-
bearing (Cape Vogel) Papuan ophiolite. Like the
PTB, the Emo-Kokoda greenschists and amphi-
bolites are dominated by low-K tholeiites with
Zr/Nb values mainly between 8 and 16, but with
two samples having typical N-MORB Zi/Nb values
(>30). N-MORB-normalized element variation pat-
terns show weak negative Nb anomalies, and the
two samples analyzed for Nd isotopes have initial
€ng values of +3 to +4. In the extensive Early to
Middle Cambrian ophiolites of the Lachlan Foldbelt
of eastern Australia, latest Proterozoic rift tholeiites
(Crimson Creek Formation and correlatives) underlie
the boninite-bearing, harzburgite-dominated ophio-
lite sheet at numerous locations in Tasmania where
sections are best exposed (Crawford and Berry,
1992). These basalts are compositionally identical
to the PTB, despite being ~600 million years older.

We conclude that basaltic volcanics underlying
major ophiolites are not necessarily genetically re-
lated to the adjacent supra-subduction zone, proba-
bly forearc-derived ophiolites. Rather, they probably
represent tholeiites erupted during extension and rift-
ing of continental crust to form a passive margin.
Subsequent arc—continent collision may have em-
placed forearc-derived ophiolite allochthons onto the
tholeiite-bearing passive margin, and one or more
parautochthonous slices of this passive margin base-
ment may have been transported along it, attached to
the base of the ophiolite nappe.
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