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ABSTRACT 

Measuring of electromagnetic soil conductivity (EMC) is used to follow the temporal evolution of 
soil salinity, because it is a rapid technique with a portable instrument. A test site of 1.2 km by 2.4 km 
is selected as a reference. The suitability of sampling schemes for monitoring soil salinity during the 
first years of irrigation is studied. An initial sampling consists of 17 rows and 33 columns of observa- 
tion points 75 m apart, i.e. 561 data points, regularly spaced on 288 ha; it allows to determine the 
“actual variogram” of EMC on this site. This structure is complex, as is often the case in nature, with 
alternating strongly and weakly salted areas, due to small creeks across the site. The sample size re- 
quired to get accurate estimates of soil salinity and to follow temporal changes is assessed by sub- 
sampling the data set. 

Simulation by repeated sub-sampling is preferred because of the complexity of the data structure. 
Five series of 20 sub-samples are randomly taken from the initial sample, with size 50, 75, 100, 150 
and 200 data points, respectively. For each sample size, the analysis consists in computing the mean 
squared error of the 20 sub-sample variograms relative to the “actual sample variogram”’, and simi- 
larly for the fitted models. Confidence limits for the theoretical variogram were directly estimated 
from the 20 fitted models. Finally, the effect of this uncertainty is studied by comparing kriged esti- 
mates with observed values. 

The consistency of both experimental and fitted variograms increases with sample size. In this case, 
a choice of 150 data points appears to be consistent. Despite a larg$ variability in experimental var- 
iograms, the fitted models and the kriged estimates are not so different as could be expected. 

INTRODUCTION 

Estimation of the sample variogram and selection of an appropriate model 
for the theoretical variogram are essential steps in any geostatistical analysis. 
Kriging techniques are generally applied without any consideration on the 
uncertainty associated with estimating the theoretical variogram (Oliver and 
Webster, 199 1 ). Several sources of error may be considered: firstly, only one 
realization is generally available in nature and it is considered as representa- 
tive of all others; also, errors in the experimental variogram, due to sampling 

0016-706 1/94/$07.00 O 1994 Elsevier Science B.V. All rights reserved. 
SSDZ O0 1 6-7 06 1 ( 9 3 ) E007 1-3 

I O 1 O0 17062 

Fonds Documentaire ORSTOM 





c 

I 

166 
$. 

C. GASCUELODOUX AND P. BOIVIN 

1 

and measurement must be considered; secondly, errors may result from the 
choice of the model and estimation of the theoretical variogram. In the fol- 
lowing, the term “variogram” will refer to the theoretical variogram; “sample 
variogram” refers to the experimental variogram. 

Many investigations have studied variogram estimators (Davis and Borg- 
man, 1978,1982; Myers, 1985,199 1 ) and performed of how to improve their 
estimation. For instance, Russo ( 1984) and Warrick and Myers ( 1987) pro- 
posed a method to select an optimal sampling network; Cressie and Hawkins 
( 1980) and Cressie ( 1984) introduced a method for robust estimation of a 
variogram; Unlü et al. (1990) compared several methods to fit a model to 
the sample variogram. Besides these improvements in geostatistical practices, 
the consistency of the sample variogram, which is the basis to determine the 
variogram, has also been investigated. The effect of sampling on the accur- 
racy of sample variograms is studied from independently generated random 
fields (Muñoz-Pardo, 1987; Russo and Jury; 1987,1988; Webster and Oliver, 
1992) and from experimental data (Entz and Chang, 199 1 ; Van Meirvenne 
and Hofman, 199 1 ). More generally, Shafer and Varljen ( 1990) proposed a 

about the consequences on models and estimates? 
The aim of this paper is to investigate the consequences of the uncertainty 

introduced by the choice of a sampling scheme on sample variogram estima- 
tion and the following steps of a geostatistical study: fitting models, determin- 
ing parameters such as nugget effect or autocorrelation distance, which as such 
are interesting aspects of the spatial structure, and kriging spatial estimates. 
As a matter of fact, a point of view would be that unsmoothed aspects of a 
sample variogram, due partly to the sampling effect, may be partly smoothed 
away by fitting a model, which is finally the one used in kriging. So it is nec- 
essary to examine the uncertainty at different steps of geostatistical analysis; 
not only at a single step such as the sample variogram estimation. 

The practical purpose of this case study is to establish a reliable sampling 
strategy to detect temporal changes of soil salinity on test sites of 288 ha, 
selected as references to follow soil salinity during the first years of irrigation. 
These areas are located on different soil types. On each test site, a large initial 
sample is taken to enable optimization of subsequent sampling for temporal 
salinity evolution, Only one site is studied here. 

More generally, chemical studies often show alternating rich and poor areas 
in the field. In these cases the effects of sampling should be carefully 
considered. 

I 

I 

I jacknife method to establish confidence limits on sample variograms. But what 
! 

I 
1 

MATERIAL AND METHODS 

This study takes place in the middle part of the Senegal river valley where 
irrigation management for rice crops have been carried out despite some local 
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risks of soil salinisation. In this context, an early detection of a change in soil 
salinity allows adapting the agricultural practices. The valley is divided into 
successive basins with a few sedimentary depressions. The study site is lo- 
cated in one of these depressions and consists of Vertisols. 

The variable of interest is an electromagnetic conductivity (EMC) mea- 
surement taken at the soil surface by a portable device (EM-38); it is well 
correlated (99%) with the soil bulk electrical conductivity measured at dif- 
ferent depths (Rhoades and Convin, 1981). This technique is well adapted 
to follow soil salinity changes (Boivin et al., 1989). 

The initial sampling consists of 17 rows and 33 columns of observation 
points 75 m apart, i.e. 561 data points regularly spaced on 288 ha. The EMC 
data range from O to 280 mS/m, with an average value of 88 mS/m, and a 
standard deviation of 69 mS/m. A chi-square goodness of fit test showed that 
the data may be assumed to have a log-normal distributiob (Fig. I ) ,  as is 
often the case with chemical data. 

This intensive initial sampling allows to determine the structure of the vari- 
able of interest Z on this site, which will be considered as the theoretical struc- 
ture. An estimate of the "actual sample variogram", denoted as ~ * ~ ( h / ) ,  is 
given by: 

II where N (  h f )  is the number of pairs of points at each lag 1. 
The variogram appears to be complex, with alternating large and smalI val- i, I 

ues 

EO 

60 

s 
$40 
e! 
U 

20 

O 
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site, as it is often the 
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Fig. 1. Log-normal distribution fitted to the total data set of EMC measurements. 

case 
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Fig. 2. Raw and directional sample variogram for (A) the total data set (561 points); (B) 
without data located along creeks (400 points). 

Distance (m) 
Fig. 3. EMC kriged map computed from the total data set (561 points). 
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in this context. Removing the part of the data located along these creeks does 
not really change the spatial structure (Fig. 2B). 

More generally, environmental fields in nature very often show particular 
features which make it impossible to deal with the sampling problem only by 
using simulations of random fields. 

The model fitted on the “actual sample variogram” is considered as the 
“actual variogram”. 

The kriged map, built from a linear plus a spherical model, confirms the 
heterogeneity of this spatial field, due to the presence of creeks (Fig. 3). De- 
spite this heterogeneity, the intrinsic hypothesis may be considered as locally 
valid according to continuous change in the major part of this field. 

Sample variogram - 

Because of the complexity of the data, a sub-sampling procedure is chosen 
to investigate the consistency of the sample variogram and spatial estimates. 
Five series of 20 sub-samples, with sample size 50,75, 100, 150 and 200 data 
points, respectively, are randomly taken from the initial sample. The sub- 
samples are taken independently from each other; so any results derived from 
them are stochastically independent, irrespective of the sampling fraction or 
the structure of the initial sample data (De Gruijter and Ter Braak, 1992). 
For each sub-sample, locations are randomly and independently selected. This 
choice simulates the most common procedure for which the sampling design 
is generally determined before any data collection, independent of the data 
distribution. 

Sample variograms are computed from the 1 O0 sub-samples, according to: 

15001 50data I 
Q 75data X B 5 1200- A 100data 

a 150data x x  
c X 200data x x  X x x x  g 900- X 
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Fig. 4. Number of pairs of points per lag, averaged over 20 sub-samples, for each sample size: 
50,75, 100, 150 and 200 points. 
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where the indices Nand Kdenote the sample size and sub-sample, respectively. 
Sample variograms are all computed for a lag of 75 metres, which corre- 

sponds to the mesh of the initial grid. The average distance hl per lag has been 
approximated by the central point in this lag in order to simplify calculations 
and allow comparisons. Root mean squared errors on this distance, 1.89,1.35, 
0.99,0.64 and 0.37 m for the five sample sizes, respectively, can be neglected 
considering the lag value. Computation and fitting on sample variograms are 
limited to the first sixteen lags, Nlag i.e. 1200 my which is half the length of 
the field. For each sample size the number of pairs of points per lag increases 
to a distance of 700 m and then levels off (Fig. 4). From one sample size to 
the next larger one, the number of pairs of points per lag is approximately 
doubled. 

The mean sample variogram of each sample size is: 
1 20 

Various measures of error in sub-sample variograms may be defined in ce- 
lation to the “actual sample variogram” rf (hl) .  The following root mean 
squared errors are retained: 

Equations (4) ,  (5) and (6)  respectively represent: the deviation of an in- 
dividual sub-sample variogram from the “actual sample variogram”, aver- 
aged over lags (eq. 4); the deviation of sub-sample variograms, averaged over 
lags and sub-samples, for a given sample size (es. 5); the deviation of the 
mean sample variogram for a given sample size, averaged over lags (eq. 6). 

The results are also expressed in normalized values, the semivariance being 
divided by sub-sample variances. 

Fitted variograms 

Models are fitted by the simplex method (Chen et al., 1986). This method 
has the advantage to give results independent of the initial parameters, hence 
depending only on the data. It has been adapted here to the fitting of spatial 
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depending only on the data. It has been adapted here to the fitting of spatial 
structure models. Two fittings are realized: with or without taking into ac- 
count the number of pairs of points per lag in the sample variogram (Mc- 
Bratney and Webster, 1986). Two models are retained: (1 ) the model with 
the smallest MSE computed from model and sample variogram for three kinds 
of model: linear, spherical or linear plus spherical model; (2)  a periodical 
component (Webster, 1985) is added if it improves the fitting, despite the 
fact that it is not an authorized model for two-dimensional fields. The idea is 
to examine if changing from a four- to a six-parameter model may better ac- 
count for the complexity of the data structure and if the accuracy on the esti- 
mated parameters of the model is improved. 

The consistency of estimated parameters for each sample size is examined, 
according to the fitting procedure and type of model. At this step, as previ- 
ously, errors are measured by the RMSE of the models fitted on the sub-sam- 
ple variograms and with respect to the “actual variogram”. A 95% confidence 
interval is calculated for each sample size. 

Kriging estimates 

The selected models and the data of each sub-sample are used to krige spa- 

For each sample size, the RMSE, of the estimates Zi* is computed by com- 
tial estimates and estimated variances at the 56 1 points of the initial grid. 

parison with the observations Zj: 

where RMSEN is a measure of kriging error. 

corresponding errors (Russo and Jury, 1987): 

’ 

Similarly the RMRE, tests if the kriging variances are consistent with the 

These two measures for kriging estimates may be defined analogously to 
eq. (4) for each individual sub-sample and denoted as RMSEAT,~ and 
RMRE,,, 

y 
i 4 RESULTS 

Sample variograms 

k’& The 20 normalized sub-sample variograms, for sample size 50 and 150 are v 2 
’ i ;  represented in Fig. 5. The former show far more scatter than the latter. 
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Fig. 5. Sample variograms of the 20 sub-samples with 150 (A)  and 75 (B) data points. 

Fig. 6. Root mean squared error of sample variograms versus sample size. (A) Variograms from 
individual sub-samples, errors averaged over lags (O ); variograms 'from individual .ub-Sam- 
ples, errors averaged over lags and sub-samples (u); variogram averaged over sub-samples, 
errors averaged over lags ( O ). (B)  As in (A)  but with normalized semivariances. (See formula 
in the text.) 

RMSEN,K (Fig. 6)  appears to be more scattered with the smaller sample 
sizes 50,75 and 1 O0 than with 150 and 200. RMSEN decreases rapidly at the 
beginning, then levels off from a sample size of about 150. The root mean 
squared bias MSEN,A is nearly constant when the sample size is at least 75. 
The normalized values are much smoother but confirm these tendencies. 

RMSE values calculated separately for each lag (Fig. 7) do not indicate any 
systematic change along the lags; the variations seem to be mainly random. 

Parameters offitted variograms 

As the sample size increases, the average value and the standard deviation 
of MSE between sample variograms and fitted models decreases rapidly. This 

k, .  .~ 

. . .  . 
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Fig. 7. Root mean squared error of sample variograms versus disfance. (A)  Original semivari- 
ances. (B) Normalized semivariances. 

is illustrated in Fig. 8 for the simplest model, i.e. spherical plus linear com- 
ponent model. The structure is determined more and more accurately as the 
sample size increases because the sample variograms become smoother and 
differences between them become smaller. 

Despite this better consistency of the models, according to the sample size, 
parameters of the fitted variograms do not seem to be determined more ac- 
curately for the three smaller sample sizes 50,75 and 100: the standard devia- 
tions of the nugget effect and, to a lesser extent, of slope, sill and range are 
quite similar, without any decrease. Results from normalized values do not 
differ anyway. However, average values of parameters are quite similar for 
the various sample sizes. Slope and sill seem to be slightly correlated. 

Fitting with weighting variogram by the number of pairs does not really 
change average values and standard deviations of parameters. 

Changing from a 4- to a 6-parameter model significantly reduces the MSE 
and their standard deviations (Fig. 9). However, this improvement must be 
compared to various other negative effects: the variability of the various pa- 
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Fig. 8. Parameters of a spherical plus a linear model, versus sample size: average value (a) and 
standard deviation for unweighted fitting; average value for weighted fitting (O ). Range is in 
metres. MSE mean squared error of fitted models from sample variograms, average over lags 
and sub-samples. 
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rameters is larger; the parameter estimates seem to be correlated; differences 
between the two fitting methods (with or without weighting) are observed. 
These disadvantages are particularly noticeable for nugget effect and range. 

Fitted variograms 

As for sample variograms, the RMSE values calculated between fitted 
models and the "actual variogram" decrease with increasing sample size (Fig. 
10). Normalized values decrease more regularly. Fitting with or without 
weighting gives practically the same results. On the other hand, the RMSE 
values do depend on the type of model: those of the simplest model type are 
smallest, especially with the smaller samples. 

The RMSE values of the fitted models are clearly smaller than those of the 
sample variograms: about half for the normalized values (Figs. 6 and 10). 

o . 50 75 100 150 200 
Sample size 

(61 -œ- S+L (nP) -D S+L (P) 
0.2 - S+L+P ("P) Q S+L+P (P) 

~ 

150 200 o 50 75 100 
Sample size 

Fig. 10. Root mean squared error of fitted variograms versus sample size for different model 
types and fitting procedures: S+L, for spherical plus linear model; S+L+P, spherical plus lin- 
ear plus periodic model; nP, fitting without weighting; P, fitting with weighting. (A) Original 
semivanances; (B ) normalized semivariances. 
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Fig. 1 1. Root mean squared error of fitted variograms for a spheical plus linear model without 
weighting. (A) Original semivariances; (B ) normalized semivariances. 

TABLE 1 

Half-width of 95% confidence interval for a spherical plus linear model 

Distance (m) Sample size 

50 75 200 

75 
600 
1200 

280 
334 
360 

255 
238 
364 

127 
121 
179 

The errors in the fitted models are largest near the autocorrelation distance 
and at the end of the variogram (Fig. 1 1 ); this applies particularly to the 4- 
parameter model. 

Despite these errors, the 95% confidence interval appears to be narrow. It 
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is constant for nearly half distance (600 m), then increases by about 50% at 
1200 m (Table 1 ). It doubles by reducing the sample size from 200 to 75. 

Kriging estimates 

Errors are only presented for the models fitted without weighting; the 
weighted fitting gives similar results. Only the 4-parameter model is consid- 
ered, because it is authorized for two dimensions and its errors appear to be 
smaller. 

R M S E N K  and RMSEN calculated between observed and estimated values 
decrease with sample size (Fig. 12 ) . This decrease is very slight when chang- 
ing from 150 to 200 data points. However, the variability of RMSE,,is quite 
similar for any sample size. 

RMREN,K and RMREN are nearly constant with sample size. MREN values 
range from 0.7 (50 data points) to 0.8 (200 data points), so this cross-vali- 

20 - 
O 50 100 150 200 

Sample size I 
0.5 

O 50 100 150 200 

Sample size 

Fig. 12. Root mean squared error of kriging estimates versus sample size. (A) Kriging estimates 
from individual sub-samples ( O  ); kriging estimates from individual sub-samples, errors aver- 
aged over sub-samples (O) ;  (B) root mean restricted error versus sample size; symbols as in 
(A). 



VARIABILITY OF VARIOGRAMS AND SPATIAL ESTIMATES DUE TO SOIL SAMPLING 179 

dation test gives values reasonably close to 1. Kriging variances appear to be 
over-estimated, more and more as the sample size decreases. 

DISCUSSION 

The sub-sampling method in the way it is applied here has some limita- 
tions. Firstly, the number of 20 sub-samples per sample size appears to be 
low, particularly to get good estimates of variances. This is shown clearly by 
the discontinuities in the RMSE curves of sample variograms, particularly at 
75 and 100 data points, in comparison with the same normalized curves which 
are much smoother. Secondly, the largest sample size (200) appears to be just 
enough in this complex field; the RMSE curves only level off at about 150 or 
200 data points; but a larger sample size would present too many identical 
data from one sub-sample to the other. 

Despite these limitations, this sub-sampling method seems to provide a good 
way of exploring the problem of inference of spatial structure in relation to 
sampling effects in complex fields, and to analyse its consequences for 
estimation. 

Comparison of RMSE curves calculated at different steps of geostatistical 
analysis enables to quantify the influence of sample size at each step, but also 
shows that errors become smaller and smaller from one step to the other. Par- 
ticularly, comparison between RMSE of sub-sample variograms and those of 
corresponding fitted models clearly indicates that errors are much smaller in 
the second case; so fitting smoothes variability of sample variogram from lag 
to lag. It might be interesting to investigate confidence limits of spatial struc- 
ture not on the sample variogram but directly on the structural model, using 
a more formal sub-sampling method such as jacknife., which allows to quan- 
tify bias, as suggested by Shafer and Varljen ( 1990). RMSE values of kriging 
estimates confirm this tendency. It is noticeable that mean absolute errors 
with 50 points (47 mS/m) are not so different from those with 200 points 
(36 mS/m). 

In this way, a standardized fitting method is necessary to allow a compari- 
son between fitted models. A simplex method and a MSE criterium computed 
from different model types are used here successfully, despite the complexity 
of the studied case. Comparison of a weighted and an unweighted fitting pro- 
cedure does not show marked differences between the obtained results. As a 
matter of fact, weighting appears to be worse in the case of a 6-parameter 
model, which is more powerful than the simplest models to describe the whole 
sample variogram but at the cost of the first lags. 

Practical conclusions with regard to sampling for monitoring soil salinity 
in the field may be drawn too. It is shown that RMSE decreases only little at 
the various steps of geostatistical analysis, by an increasing sample size from 
150 to 200. Sub-samples of 150 points seem to be convenient for sample var- 
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iogram estimation and for kriged spatial estimation of EMC, while 200 points 
allow for better estimation of the parameters of a spatial structure model. A 
marked improvement is obtained for these parameters when using 200 points 
instead of 150. Webster and Oliver ( 1992) found very similar results using 
geostatistical simulation. 

Even with 200 points, kriging errors appear to be large: about 36 mS/m. 
There may be two reasons for this. First, the studied field has a complex struc- 
ture and more sophisticated procedures could have been tried such as using 
log-normal transformation, or intrinsic random function of order k, or spec- 
tral analysis. Second, sub-samples are selected by simple random sampling, 
which is not optimal for geostatistical analysis; stratified random sampling 
would probably produce better results. Kriging errors must be compared to 
the range of EMC in the field - O to 280 mS/m - and to crop salt tolerance 
levels. For rice (FAO, 1984) no effect is noticeable up to 300 mS/m, but 
crops will be fully damaged from about 1 O00 mS/m. From this point of view, 
errors are not so large and a temporal change is easily detectable before any 
crop damage occurs. 

CONCLUSION 

The applied method illustrates the interest of sub-sampling methods to an- 
alyse the accuracy of a geostatistical analysis with respect to sampli,ng, partic- 
ularly when the natural field includes alternating poor and rich areas. It would 
also be interesting to analyse the choice of different sampling designs. The 
simplex fitting method and the MSE criteria worked satisfactorily.' 

Generally, 1 O0 data points is considered as sufficient for geostatistical anal- 
ysis by the practitioners. In that case, it is shown that the RMSE decreases 
significantly up to 150 points, and that a single parameter of any model is 
more precisely estimated with 200 points. Finally and even with 200 data 
points, local variations smaller than about 36 mS/m appear to be inconsistent 
in comparison with obtained absolute kriging errors. 

However, the RMSE due to sampling decreases from one step of the geos- 
tatistical analysis to another, so that the effect of the sample size can be con- 
sidered as weak if only the final kriging step is involved. As a matter of fact, 
this study points out the interest of analysing the effect of the choice of a 
sampling scheme not only on estimation of sample variograms but primarily 
on fitted models and on geostatistical calculations based on such models, like 
kriging. 
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