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We review a generalized approach to modeling soil structures, which exhibit scale invariant, or 
self-similar local structure over a range of scales. Within this approach almost all existing fractal 
models of soil structure feature as special albeit degenerate cases. A general model is considered 
which is shown to exhibit either a fractal or nonfractal pore surface depending on the model 
parameters. With the exception of two special cases corresponding to a solid mass fractal and a 
pore mass fractal the model displays symmetric power law or fractal pore size and solid size 
distrib-utions. In this context the model provides an example of a porous structure in which pore 
sizes can be inferred from associated solid particle sizes through this symmetry. Again with two 
exceptions the model is shown to exhibit scaling of solid and pore volumes as a function of the 
resolution of measurement contrary to that of a mass fractal structure and to possess porosity other 
than zero or unity when local structure is included at arbitrarily small scales contrary to the 
situation arising in the case of a solid mass fractal and a pore mass fractal model respectively. 
Consequently the model not only generalizes the fractal approach to modeling soil structure but 
introduces properties central to the characterization of a soil which are quite distinct from those 
exhibited by existing fractal models. The model thus offers a wider scope for modeling 
self-simiiar multiscale soil structures than that currently operating. O 1999 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction 

Fractals are becoming increasingly popular in soil physics research as a 
means for characterizing various properties of porous media. They have been 
used both in theoretical and practical studies to model: (i) fractal number-size 
distributions (pore size distributions: Friesen and Mikula, 1987; Ah1 and 
Niemeyer, 1989; Tyler and Wheatcraft, 1990; Rieu and Sposito, 1991~; Perrier 
et al., 1996; particle size distributions: Tyler and Wheatcraft, 1989, 1992; Wu et 
al., 1993); (ii) fractal surfaces (pore-solid interface: Pfeifer and Avnir, 1983, de 
Gennes, 1985, Friesen and Mikula, 1987; Davis, 1989, van Damme and Ben 
Ohoud, 1990; Toledo et al., 1990; Bartoli et al., 1991; Crawford et al., 1995) 
and (iii) mass fractal properties (solid mass fractal: Friesen and Mikula, 1987; 
Bartoli et al., 1991; Rieu and Sposito, 1991c; Young and Crawford, 1991; 
Crawford, 1994; Bird et al., 1996; Crawford et al., 1995; Perrier et al., 1995; or 
associated aggregate distributions: Perfect and Kay, 1991; Crawford et al., 1993; 
or pore mass fractal: Katz and Thompson, 1985; Ghilardi et al., 1993). The main 
purpose of these studies is to analyze or characterize complex multiscale porous 
structures. As far as soil structure is concemed, attention to date has focused 
mainly on modeling soil structures and, in particular, soil aggregate structures in 
terms of solid mass fractals and on modeling the pore-solid interface within the 
soil in terms of fractal surfaces. The essential feature common to each fractal 
model is scale invariance, that is the structure in question is composed of parts 
which appear similar to the whole. Examples include the now familiar Menger 
sponge (or Sierpinski carpet) in the context of a mass fractal model and the Von 
Koch curve, or the internal surface of a Menger sponge in the context of a 
fractal surface model. Our purpose is to review a new approach to modeling 
multiscale porous media and soil structures in particular. This involves an 
aIternative class of models which can be viewed as a generalization of the 
previously quoted fractal models. Like any fractal model, the new class exhibits 
self-similar properties. In other important respects, central to the characterization 
of a porous medium, it is quite distinct. We will call it a ‘pore-solid fractal’ 
model (PSF). I 

l 

‘ self-similar multiscale percolation system’, a representation of a disordered, I 

disperse medium that exhibits a fractal interface between solid and pore phases. I 

Perrier (1994) independently proposed a multiscale model of soil structure 
which combines a fractal pore number-size distribution and a fractal solid 
number-size distribution. Although these two models have been developed in 
different contexts, using slightly different definitions, and presenting different 
local geometrical shapes, they are nevertheless equivalent in terms of the 
features considered in this paper. After a quick review of the principles of 
modelling a fractal porous medium we will define the PSF model within this 
conceptual framework using Neimark’ s definition. Equivalence with Perrier’ s 

I 

l 

The PSF model originates from two studies. Neimark (1989) developed the l 

1 

hc 
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definition is given in Appendix A. First we will show how the PSF model 
actually gathers in a single structure the previous properties of fractal pore and 
solid number-size distributions and a pore-solid fractal interface. Then we will 
examine further properties of the PSF model: we will show that it combines in a 
geometrical pattern pores and solids at any stage of its development, and we will 
derive its scaling properties as regards the solid or pore mass, showing that a 
PSF in its general form is not a mass fractal. Finally, in Section 4, we will see 
that the PSF model reduces to a classic solid or pore mass fractal in two 
symmetric limiting cases, and, more generally, that the PSF model constitutes a 
general framework for analysing and comparing most of the previous fractal 
models of porous structures in soil science. 

2. Fractal objects 

2. I. Basic construction 

Construction of a deterministic self-similar fractal object of fractal dimension 
D, embedded in an Euclidean space of dimension d, is based on the following: 
First, an initiator (Fig. la) which defines a region of linear size L in a space of 
Euclidean dimension d. This region can be divided into N equal parts or 
subregions of linear size L / n  paving the whole object. Second, a generator (Fig. 
Ib) which (i) divides the N parts into two sets of,Nz (shown in light gray in 

(4 (b) 
initiator generator 

-L ___, i =  1 

(c) 
fractal object 

i = 2  

d = 2, ri = 3, z = 219, D = log2llog3 = 0.631, Nz = 2 

Fig. 1. Basic construction of a fractal object. In a space of Euclidean dimension d,  the initiator (a) 
defines a region of linear size L divided into N equal parts. At the first iteration step, the 
generator (b) divides the N parts into two sets of Nz (light gray) and N(1- z) (dark gray) 
subregions, determines the location of the Nz subregions and defines a pattern inside the N(1- z) 
subregions. At the next step, each of the Nz subregions is replaced by a reduced replicate of the 
generator. 
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Fig. lb) and N(l - z )  (shown in dark gray in Fig. lb) subregions (z  < 1); (ii) 
defines a pattern inside the N(l - z )  subregions; (iii) defines the location of the 
Nz subregions where the whole shape will be replicated. 

Then a recursive process replaces each of the Nz subregions by the generator 
reduced by the same ratio l / n  (Fig. IC for step 2) and so forth at subsequent 
steps i. 

2.2. General properties 

The smaller subregions pave the whole initiator so that N( L/n)d = Ld, that is 

N = n d  (1) 
The fractal dimension D follows from the number of replicates and the 

similarity ratio by 

Eq. (2) may be rearranged as: 

Nz = nD. (3) 

(4) 

(5) 

Combining Eqs. (1) and (3) we obtain 

z = # - d  

nz = n D - ( d -  1) 

and 

Let N2(r i )  be the number of replicates of size ri created at each step i of the 
development of the structure. ri is defined by 

ri = L(n)-' or ni = L / r i .  , (6) 

The number of replicates created at step 1 is: Mz( r , )  = Nz. 
At the next iteration step, Nz replicates of size r2 are created in each 

replicate of size rl .  Then at step i, 

Mz(ri) = (Nz)Jfz(ri-l) = N Z ( N Z ) ~ - ~ .  

or 

Mz(r i )  = ( N Z ) ~ .  

Using Eqs. (3) and (6) we obtain 



E. Pessies et al./Geodesnia 88 (1999) 137-164 141 

and 

J//~( ri) = LDrLTD. (9) 
Eq. (9) expresses the relationship between the number of replicates and their 

size as a power law function with an exponent equal to -D, where D is the 
fractal dimension. 

In a similar way, several parameters of the fractal object can also be 
expressed as power law functions of the resolution scale ri. Formulas (10) to 
(12) will be useful in further derivations:From Eqs. (1) and (6) 

From Eqs. (4) and (6) 

From Eqs. (5) and (6) 

(10) 

(11) 

(12) 

N i  = Ldr,Td. 

z i  = L D - d r d - D .  

D - ( d -  1) ( d -  1 ) - D  
(nz ) '=  L ri 

2.3. Classical ways to model a porous medium 

Depending on the modeling context, the N(l - z )  subregions may represent 
different patterns. When fractal objects are used to model porous media made of 
a solid phase and a pore phase, the set of these N(l - z )  subregions represents 
generally an homogeneous material (shown in dark gray in Fig. 2) rather than a 
heterogeneous one (Fig. 1). 

generator (i = 1) f7actal object (i = 2)  

d =  2, n = 3, z =  219, D = 0.631 

Fig. 2. The first two steps of che development of a fractal porous medium. The N(1- z )  (dark 
gray) subregions are associated with an homogeneous material. 
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(3) 
if i +ar 

(1) 
generator (z = 1) 

(2) 
second step (i = 2) 

(4) 
if last step m = 4 

d =  2, n = 3, z = 819, D = 1.893 
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This homogeneous material can be identified either with the solid phase of 
the porous medium (shown in black in Fig. 3a.l) (‘pore mass fractal’) or the 
pore phase (shown in white in Fig. 3b.l) (‘solid mass fractal’). 

At each step i ,  reduced copies of the generator in the Nz subregions (shown 
in light gray in Fig. 3a.l) reveal new details at finer resolution scales (Fig. 3a.2 
and b.2). These subregions constitute the ‘fractal set’. 

Two main options have been considered in previous studies: (i) Iterations are 
carried out ad infinitum, and the fractal set of (Nz)’ subregions vanishes. The 
model represents only solid in the so-called pore mass fractal (Fig. 3a.3) or only 
pores in the solid mass fractal (Fig. 3b.3). (ii) A lower cutoff of scale is 
assumed, considering a finite number of recursive iterations 712. The (Nz)’” 
subregions created at the last iteration step i = 172 will undergo no further 
division and the fractal set is assumed to model the complementary phase: in a 
pore mass fractal it is associated with the pore phase (shown in very light gray 
in Fig. 3a.4)’ and in a solid mass fractal it is associated with the solid phase 
(shown in black in Fig. 3b.4). 

3. The PSF model 

3.1. Defiiitioiz 

Following the approach of Neimark, which combines pores and solids in the 
model in an interesting symmetrical setting, we define the (1 - z )  proportion of 
the generator as a mixture of pore and solid defined as follows: 

where x denotes the proportion of pore phase, y the proportion of solid phase 
and z represents the proportion of the generator where the whole shape is 
replicated at each step. Solids and pores generated at each step are kept whereas 
the fractal set is transformed (Fig. 4). 

Combining Eqs. (13), (1) and (2) we can express the fractal dimension as: 

(1 - z )  =@+y)  (13) 

log(1 - x - y) 
D = d +  

log n 
Eq. (14) shows that for a given Euclidean dimension d ,  the value of the 

fractal dimension D of a PSF model depends only on the value of parameters n, 
x and y. 

Fig. 3. Classical example of a pore mass fractal (a) and a solid mass fractal (b) modeling a porous 
medium. The pore phase is shown in white or very light gray and the solid phase is shown in 
black. If infinite iterations are carried out, the pore mass fractal represents only solid (a.3) and the 
solid mass fractal only void (b.3). If a lower cutoff of scale is assumed, the fractal set (shown in 
light gray) is associated with the pore phase (a.4) or the solid phase (b.4). 
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generator (i = 1) fractal object (i = 2) 

d 2, = 3, z 2/9, x = 4/9, y = 3/9, D = 2 f log( 1 -7/9)/10g3 = 0.63 1 

Fig. 4. Definition of a PSF model. The N(l- z) subregions are divided into Nx=4  pore 
subregions (white) and Ny = 3 solid subregions (black). The fractal set (light gray) corresponds to 
Nz = 2 subregions where the whole shape is replicated at next iteration step. 

Parameters x, y and z can be considered as probabilities (x + y + z = 1) and 
mathematical calculations can be done in a probabilistic way (Neimark, 1989). 
However, for sake of simplicity, we will consider here that x, y and z are 
proportions and Nx, Ny, Nz refer to the number of subregions of each type, to 
get simple proofs based only on counting. 

3.2. Counting elements 

At step 1, there are only elements of size L/n: Nx pores, Ny solids and Nz 
subregions where the whole shape will be replicated at the next step. 

At step 2, some elements of size L / n  are kept: Nx pores, Ny solids, whereas 
new elements of size L(n)-2 are added Nx(Nz)  pores, Ny(Nz) solids, and 
Nz( Nz)  subregions where the whole shape will be replicated at the next step. 

At step i, let 1Fx(ri) and H$ri) be the respective numbers of pores and 
'solids of size ri. Then 

JF&) = (N . )Mz(T i - l )  and Hy(rJ = ( N y ) H z ( r i - l ) .  

? '  

Using Eq. (7) we obtain 
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and using Eq. (81, 
Nx i 

Nz 
fix( ri) = - ( N z )  = 

In a symmetric way, we 

My( ri) = Ny( N,z)'-' 

or 

NY ' 

Nz 
My( ri) = - ( N z ) '  = 

X 

2 
-LDrYD. 

can write 

Y 
z 
-LDrZrD. 

More geneïdly, the number of elements of size ri added at each step scales 
as a power -D of the size: 

M~( ri) a r y D ,  ~l'y( ri) a r i D ,  Mz( ri) a r i D .  (17) 

3.3. Porosity 

Since x represents the proportion of pores kept at step 1 by the generator, zx 
is the proportion of pores added in the replicates generated at step 2, and so on. 
Thus the porosity +i at step i is the following sum: 

i- 1 

4=x+zx+z2x+ ... +z'-'x=x&j=x (18) 
j =  O 

From Eq. (13) we obtain 
I X 
4; = xsy(1 - 2'). 

As the number of iterations i increases to infinity, zi --j O and Eq. (19) 
becomes (cf. Neimark, 1989 and Perrier, 1994): 

Y 

Eq. (20) shows that a PSF model exhibits a finite value of the total porosity 
which depends only on the value of parameters x and y. 

3.4. Curnulatiue number-size distributions of pores and solids 

It is coinmonly assumed that, when a collection of self-similar objects 
exhibits a cumulative number-size distribution of objects in the form: 

N( r )  a (21) 
the collection may be called fractal of dimension D (Mandelbrot, 1983). 
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Let N,( ri) and N,( ri) be the respective numbers of pores and solids of size 

At iteration step i = 1, the number of pores is Nx(r l )  = JFx(r,) = Nx. 
For i = 2, N,( r z )  = Nx( r l )  + Hx( r z )  = Nx + Nx( Nz)  = Nx( 1 + Nz), and at 

greater than or equal to ri. 

any step i: 

N,( ri) = N,( ri... +A'"%( ri) = Nx( 1 + Nz + (Nz)' + . . . + ( Nz) ' - ' ) .  

Summation of this geometric series of ratio Nz yields: 

If Nz > 1, as i + 00, (Nz)'  x=- 1 and ((Nz)'  - 1) E (Nz)' .  Using Eq. (8) one 
gets 

Nx . Nx 
N,(ri) =-(Nz)'=- LDrFD. 

NZ - 1 N z -  1 
In a symmetric way, the cumulative number of solids greater than or equal to 

ri is obtained by substituting x by y in Eq. (23a) 

Eqs. (23a) and (23b) are discrete analogs of Eq. (21). They can be rewritten 
as: 

Eqs. (24a) and (24b) show the symmetry exhibited by the PSF model: both the 
pore number-size distribution and the solids number-size distribution assume a 
power law form with identical exponent - D, where D is the fractal dimension. 

3.5. Pore-solid interjizee 

Another fractal property commonly observed in some porous media is related 

A surface is called fractal of dimension D when its area S( I )  measured with 
to the measurement of the pore-solid interface. 

units Zd-' scales as where d - 1 < D < d, that is: 
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Neimark (1989) has studied the properties of “the surface of a self similar 
multiscale percolation system”. For completeness, we include here our own 
derivation of the interface behavior in a PSF model. The area S(i) of the 
pore-solid interface (perimeter when d = 2, surface when d = 3)  can be first 
approximated by summing the surfaces of all the boundaries of the solid 
elements which have been created after i iteration steps. These solid elements 
are squares ( d  = 2) or cubes ( d  = 3) of size greater than or equal to yi. Each 
solid subregion of linear size ri has a surface 2drt-’ and the cumulative 
boundary of the solid elements, denoted Sy( i) is equal to: 

I 
l 

% 

I 

l Sy( i) = (Ny( rj))(2d’;- 1).  

I j =  1 
I 

l 
l i 

Introducing Eqs. (16a) and (6), we obtain 

I 
l 

Sy( i) = 2 d C  j =  1 Ny( Nz)’- (Ln-j)“- l ,  

I 
. Using Eq. (l), we get 

I 

j -  1 - 1  i 

’ - l .  (29) 
d -  1 

j =  1 j =  1 

The value of the geometric series in Eq. (29) depends on the value of nz. If 
nz= 1, 

From Eq. (6) we obtain i = (log L/ri)/(log n) and Eq. (30) becomes I .  
2 drzyLd- L 

S,(i) = log-. 
log 12 ‘ i  

If 12z# 1, 

-1 (nz)’-  1 
S,(i) = 2dy(  fi Ld 

nz-  1 
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From Eq. (12) we have ( n d i  = LD-d+'rf-l--D and Eq. (32) becomes 

+ l - D  
2 dnLd- ' 2 dnLD 
1 - nz nz-  1 +Y- 1 S,(i) = Y  (334 

In a symmetric way, the cumulative area of the boundaries of pores created at 
i iteration steps is given by 

1 A D  2 dnLd- 2 dnLD 
1 - nz nz-  1 S,( i) = x +x- I 

The actual interface S( i )  between solids and pores cannot be calculated so 
simply, because the location of the solid and pores subregions in the model must 
be taken into account. At each step i ,  we consider a constant number Ny (or Nx) 
of solid (or pore) subregions but randomly distributed in space. If two solid 
subregions have a common side, this side belongs to the total boundary 
measured by Sy( i), but not to the solid-pore interface. Thus $i) < S,( i) and 

In a random realization, assuming x # O, y f O, the calculation of S(i) can 
be done in a probabilistic manner. As the number of iterations increases to 
infinity, the fractal set of (Nz)'  subregions vanishes and the probability p,(i) 
that an arbitrary chosen point on the solid boundary belongs to the interface is 
equal to the probability that the neighboring point outside the solid is located in 
a pore subregion. Thus as infinite iterations are carried out, p,(i) --j 

where q5 is the porosity.. 
Then, using Eq. (19) 

S(i) < Sy(i). 

X 
S( i) = p.&.( i)S,( i) = +S,( i) = -Sy( i) 

X + Y  

or in a symmetrical way we could get 

Y 
S(i) =py(i)Sx(i) = (1 - +)S,(i) = ---S,(i). 

X + Y  

and from Eqs. (33a) and (33b), Eqs. (34a) and (34b) are strictly identical. 
Three cases must be distinguished. 
(i) If D = d - 1 (that is nz = 1). From Eqs. (31) and (34a) we obtain 

xy 2 d n ~ ~ - '  L 
S(i) = - log-. 

x f y  logn ri 

(344 

(35) 

The surface of the solid-pore interface approaches infinity approximately as the 
logarithm of the inverse of ri. 

If nz f 1 
(ii) if D < d - 1 (that is nz < 1). 
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Using Eqs. (33a) and (34a) we get 

l i x ( 2dynLd-' 2dynLD 
S(i) = - + 

x f y  1-nz  nz-  1 
l or from Eqs. (33b) and (34b) I 

d - I - D  
2 &n,LD 
nz - 1 

S(i) = - + ri 
x + y  y i2dx'zLd-1 1 - n z  

i + o thus As i-+co, ri+@ 

xy 2dnLd-' 
, S(i) - x f y  1-nz 

I 
The' surface of the solid-pore interface approaches a finite value. 

(iii) If D > d - 1 (that is rzz > 1). 
I Eqs. (36a) and (36b) may be rewritten as 

xy 2dnLd-l xy 2dnLD 
x + y  1-122 x + y  n z - 1  

S(i) = - 

(37) 

As i + w ,  r i + 0 7  and + m. As the second term of the right side of 
Eq. (38) grows without limit, the first constant term becomes negligible. Thus 

or (cf. Eq. (25)): 

where C, is a constant. The area of the pore-solid interface approaches infinity 
as a power law function of the resolution scale. It is fractal of dimension D. 

3.6. Mass of pores and solids 

Fractal models often refer to so-called mass fractal properties, where the term 
mass actually means the solid or pore volume (the mass is proportional to the 
volume if a uniform density is assumed). 

An object is called a mass fractal if the number B ( r )  of boxes of size r 
needed to cover it scales as rYD 

B( r )  a (414 
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or if its mass M( r )  measured with units r scales as rWD 

In the PSF model, measuring mass with a box-counting method, let B,(i) be 

At the start, B,(O) = 1 box of size ro = L covers the whole structure. 
At first step, B,(l) = Ny + Nz boxes of size ri are needed to cover the solids. 
At step 2, there are B,(2) = N( Ny) + NzB,( 1) boxes of size r2,  and at step i, 

there will be: By( i) = N ' y  + NzB,( i - 1) boxes of size ri covering the volume 
of solids. We can show by recurrence that 

the number of boxes of size ri needed to cover the volume of solids. 

zi- 1 

z - 1  
B,(i) = N ' y  ( - ) + (W' 

Thus 

N ' y z i - N ' y + z ( N z ) ' -  (Nz) '  + (Nz ) '=  
2 - 1  

(Ni$( y + z - 1) - N ' y  - - 
2 - 1  

or 

and introducing Eq. (13) 
X y By(i) = -(NZ)l + - N ì .  

X + Y  X f Y  

Using Eqs. (8) and (lo), Eq. (43) can be rewritten as 

In 
as 

X 
LdrFd + - LD r i  

Y 
BY( i) =.- 

X + Y  X + Y  

(43) 

the same way, covering the pores needs a number B,(i) of boxes varying 

X Y B,(i) = - Ldr id  + - LDrYD 
X + Y  X f Y  

i' 
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The symmetric expressions for B,(i) and B,(i) assume the form of the sum 
of two power law functions of the box size ri with exponents -d  and -D ,  
where d is the Euclidean dimension and D the fractal dimension. We conclude 
that, in a PSF model, neither the solid phase nor the pore phase exhibit fractal 
scaling. The PSF in its general form is not a true mass fractal. 

The volumes of pores and solids measured with resolution ri, which we 
denote by M,( i) and My( i) respectively follow immediately from Eqs. (44a) 
and (44b) as 

y D d - D  
X 

M,( i) = B,( i) rd = - Ld + - L ri 9 x + y  x + y  

Ld+ - L D y d - D  My(  i) = BY( i) rd = - 
Y 

x s y  x s y  

(454 

If infinite iterations are carried out, M,( i) and My( i) approach finite values 

(464 

Y M Y ( i )  + xtyL"= (1 - +)P, 

as required. 

4. Discussion 

4.1. A new, consistent geometric representation of a two-phase porous structure 

I 

I 

I 

Many attempts to model fractal properties of complex real porous media 
l involve rather simple geometric figures: the Sierpinki carpet, the Menger 

sponge, the fractal cube considered by Rieu and Sposito and many types of 

(Pfeifer and Avnir, 1983) or similar shapes. These theoretical models generally 

I fractal, lacunar models (see Rieu and Perrier, 1997, for a review). Several 
models of fractal surface have been first proposed based on the Von Koch curve 

represent only the pore-solid interface and their use to model soil structure is 
limited. Mass fractals constitute a great improvement in the sense that they 
closely associate both solid and pore phases in a geometrical frame. Two main 
types of mass fractal model are commonly used (Rieu and Perrier, 1997). Pore 
mass fractals exhibit a fractal pore 'mass' by introducing a fractal cumulative 
number-size distribution of elements identified with solids in a fractal set 
identified with the pore phase (Fig. 3a). Solid mass fractals exhibit a fractal 
solid mass by introducing a fractal cumulative number-size distribution of 
elements identified with pores in a fractal set identified with a solid phase (Fig. 
3b). However it should be noted that if, as in a true mathematical fractal, infinite 

l 
I 

I *  
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d =2,  n = 5, z =  0.2, x = y  = 0.4, D = 1, i = 3 

Fig. 5. Randomized PSF based on a square pattern. In this example, D = 1. 

iterations are carried out in the recursive construction of the mass fractal, the 
pore space vanishes in pore mass fractals while the solid space vanishes in solid 
mass fractals. Paradoxically in this limit a pore mass fractal can represent a 
particle size distribution but no pores (Tyler and Wheatcraft, 1992, cf. Fig. 3a.3) 
and a solid mass fractal can represent a pore size distribution but no solids 
(Tyler and Wheatcraft, 1990, cf. Fig. 3b.3). Both may represent a purely 
theoretical fractal pore-solid interface, but neither in the limit is able to 
represent a two-phase porous medium. 

Since it always associates in a single geometric shape two fractal cumulative 
number-size distributions of elements with a fractal set, the PSF model pre- 
sented in this paper, is a more advanced fractal model of porous medium. 
Irrespective of the range of scale over which the structure is developed, both a 
solid phase and a pore phase are modelled by two power law distributions 
whereas the fractal set can be identified with either the solid or the pore phase if 
a lower cut-off of scale is considered or vanishes if infinite iterations are carried 
out (Figs. 5 and 6). This matter is not addressed by Neimark (1989) who was 
not interested in the properties of the solid whereas it is a central point of view 
in the approach of Perrier (1994). 

A PSF and a mass fractal exhibit structure over a range of scales specified by 
the modeller. A well-known property of a solid mass fractal is that when this 
structure extends to arbitrarily small scales the porosity of the model approaches 
unity, assuming that the fractal set is identified with the solid phase and its 
complement is identified with the pore phase. When these identifications are 
reversed (pore mass fractal), the porosity approaches zero. These limiting values 
of porosity clearly have no physical relevance. This is in marked contrast to the 
porosity of the new model which is designed to attain limiting value of total 



E. Perrier et al. / Geodernia 88 (1999) 137-1 64 153 

d =2,  ii = 5, z = 0.72, x=y = 0.14, D = 1.796, i = 3 

Fig. 6. Randomized PSF based on a square pattern. General case of d - 1 I D < d. 

porosity 4 lying between these two extremes and depending only on the values 
of the parameters x and y, that is the proportion of pore space and solid kept at 
each step. This peculiarity of PSF model is thus an important extension to the 
range of models available for modelling multiscale porous media and specifi- 
cally soil structures. 

4.2. The PSF model compared to classic mass fiaetal models 

The scaling of the mass of solid or pores is a cmcial point in modelling soil 
structures. This matter is not developed by Neimark (1989) neither by Perrier 
(19941, but the interesting scaling properties of a PSF deserve attention. A mass 
fractal possesses characteristic scaling properties which identify it as a fractal 
structure (see Rieu and Pei-rier, 1997 for a review). A PSF in its general form is 
not a mass fractal and its scaling properties are different. For a mass fractal a 
power law scaling relation is obtained from which the mass fractal dimension 
may be inferred. For a PSF, as shown by Eqs. (44a) and (44b), the correspond- 
ing relation assumes the form of the sum of an Euclidean power law function 
and a fractal power law function. Thus neither the solid mass nor the pore mass 
properly exhibit a fractal scaling. Whilst the scaling relations identify the PSF as 
a structure other than a mass fractal, it is important to note that it can 
nevertheless easily be confused with that of a mass fractal if it is examined over 
a narrow range of scales. Some degree of caution is thus required in the use of 
any algorithm to analyse soil data, and the theory suggests that some soils might 
have been called mass fractals on approximate grounds and might be better 
modelled by a PSF. 

In the case x = O, the PSF model reduces to a fractal number-size distribu- 
tion of solids and a fractal set. If the latter is associated with the pore phase, the 
result is a pore mass fractal. From Eqs. (44a) and (44b) we then have that B,(i) 
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exhibits Euclidean scaling while B,( i) exhibits fractal scaling as required. 
Similarly, if y = O and the fractal set is associated with the solid phase we 
obtain a solid mass fractal. Then Eqs. (44a) and (44b) show that BY( i) exhibits 
fractal scaling whilst B,( i )  exhibits Euclidean scaling. Thus mass fractal models 
appear as degenerate cases of a PSF. 

Both’ a PSF in its general form and a mass fractal exhibit self-simijar 
properties in the sense that where local structure occurs, it is similar to the 
whole. The essential difference between the two which leads to the different 
scaling properties as shown above is that a PSF model is in places devoid of 
such local structure, whereas a mass fractal is not. 

4.3. Pore and solid number-size distributions 

In this paper, we use the expression ‘solid’ or ‘solid element’ instead of 
‘particle’ or ‘grain’ used in other works (e.g., Haverkamp and Parlange, 1986). 
But we do not mean ‘solid, porous aggregate’ in the sense of Rieu and Sposito 
(1991a,b) or Crawford et al. (1995). We clarify this statement by noting that we 
identify ‘particles’ with the primary elements of a soil structure. The number- 
size distribution of solids and pores differ significantly between a mass fractal 
and a PSF. If a lower cut-off of scale is considered, in a solid mass fractal, i.e., a 
fractal set identified with the solid phase, the solids are of equal size (cf. Bird et 
al., 1996), whilst the complementary pore space exhibits a power law number- 
size distribution of pores, with a power law exponent equal to -D. Similarly for 
a pore mass fractal, i.e., a fractal set identified with the pore phase, the pores are 
of equal size while the solids size distribution is power law. In contrast, in a PSF 
symmetry exists between the pore-size and solid-size distributions. Specifically 
both distributions assume a power law form with identical power law exponent 
-D (cf. Perrier, 1994)’ where D is the fractal dimension of the pore-solid 
interface. The existence of such a symmetry is interesting in relation to the 
established view that solid-size distributions convey information relating to 
porosity and pore-size distributions and consequently soil hydraulic properties, 
through relations which map known solid sizes onto inferred pore sizes (e.g., 
Arya and Paris, 1981; Haverkamp and Parlange, 1986). A PSF provides an 
example of a porous material where this view appears to some extent valid. Also 
of interest are previous suggestions that power law fractal pore-size and 
particle-size distributions can coexist within a soil (e.g., Tyler and Wheatcraft, 
1992, who acknowledged that ‘‘a theoretical development is not yet available”). 
Again a PSF, in contrast to a mass fractal, provides an explicit example of one 
such model where this situation occurs. 

4.4 Pore-solid inte$ace 

In sa mass fractal the pore-solid interface is the boundary between the solid 
(or the pores) distributed in the fractal pore (or solid) mass. This surface grows 
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Pore Mass Fractal 

as a power law of the resolution scale. It is fractal of dimension D. When the 
fractal structure is developed ad infinitum, the fractal pore (or solid) mass 
vanishes and the interface has no physical relevance. However, if a lower cut-off 
of scale is used, the area of the interface has a finite value and the fractal surface 
can model a real solid-pore interface. Neimark (1989) has shown that in his 
‘self-similar multiscale percolation system’ both fractal and nonfractal surfaces 
can arise depending on the value of nz and consequently D. When a fractal 
surface occurs, this D is also the dimension of the surface. In our own 
derivation of the scaling behavior of the interface, based on the number-size 
distribution, we obtain the same result. Because it always associates both solid 
and pore phases, the PSF model exhibits a pore-solid interface even if the 
structure is developed towards infinity. Depending on the value of the fractal 
dimension, the area of the interface assume the form of a logarithmic function of 
the length scale ri (in the case of D = d - 1, cf. Eq. (35)), or of a fractal power 
law (D > d - 1; cf. Eq. (39)), or it tends towards a constant finite value (for 

It follows from the above that whilst a porous material can exhibit self-similar 
properties and fractal number-size distributions of its elements (pores, solids or 
both) this does not imply a fractal surface. This only occurs when D > d - 1 
(see e.g., Pfeifer and Avnir, 1983; Friesen and Mikula, 1987; -Toledo et al., 
1990). Here mathematical calculation of the area of the interface brings evidence 
of this critical value d - 1. Fig. 5 presents the particular case of a PSF model 
with a fractal dimension D = d - 1. It is interesting to note that although not 
visually obvious, the solid-pore interface is not fractal in this instance as it 

~ 

D < d - 1; cf. Eq. (37)). 

General Pore-Solid Fractal Solid Mass Fractal 

Table 1 
Scaling properties of the PSF model and of pore and solid mass fractal models 

P o r e - S o l . i d  F r a c t a l  ( P S F )  - c 

y=Q 
X # O  

Y * O  

x=o 
fractal set = solid phase fractal set = pore phase 

dimension D 
ad infitum, only solid 

No mass fractal 
dimension D 

ad infiitum, only void 
I - I -  ractal pore size distribution of dimension D, pore phase Euclidean 

l - 1  
ractal particle size distribution of dimension D, solid phase Euclidean 

4 c 
fractal interface of dimension D with a critical value d-1 
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PSF model parameters: 

General PSF Solid Mass Fractal 2 
[.&pore sub-regions] 
b+solid sub-regions] 
[&fractal set] lu 

[ l h  = similarity ratio] x = o  x # o , y # o  , y = o  % s 
Basic relations N = ? l d  N=n*  N=n* k 

(Equations 1 & 13) 1-z=y  1 - z = x + y  1 - z = x  7 

2 
-4 

Table 2 
Summary of the features of the PSF model 

2; 

Pore Mass Fractal - 
Lu 

i 
log(1- x - y )  log(1- x) 2 D = d +  D=d+- log(1 -Y )  D = d +  Fractal dimension 

(Equation 14) log n log n loan 

Total porosity 
(Equation 20) 

4 = 0  
X 4=- 

X + Y  
4 = 1  

Nx Nx 

NY LDr,-D N, (e LD<-D none 

none N x ( < )  i~ -LD<-D NA(<) E -LD"l;D 
Number-size distribution 

of pores (Equation 23a) Nz-1 Nz-l 
Number-size distribution 

N v ( < )  I - 
of solids (Equation 23b) Nz-1 Nz-1 



Mass of pores 
(Equations 8 & 45a) 

Mass of solids 
(Equations 45b & 8) 

If fractal set (Nz)'= solids 

?!.$! = (Nz)' = LDr:-D 
ri 

Pore-solid interface 

D = d -  1 
(Equation 35) 

If fractal set (Nz)'= pores 

q > O  
2dnLd-' L 

logn I; 
s,, (i) = Y - log- 

No condition on fractal set (Nz)' 
No  limitation on ri 

xy 2dnLd-' L 
x + y  logn I; 

S(i)=-- log- 

If fractal set (Nz)'= solids 
q.> O 
2dnLd-' L 

$,(i) = x -1og- logn 
5 

x y  2dnLd-' S(i) i- >-- 
~ f i ~  1-nz PD D < d - l  2dnLd-' 2hLD 

(Equations 33 & 37) ' P ( ~ ) = Y - + Y -  1-nz nz-1 PD 2dnLd-' 2 d n ~ ~  SX(i) = x - + x -  
I -nz nz-1 

f b D  
2dnL"-' 2dn~' 

',(i) = x-+ x -  
1-nz nz-1  

-- Y-D D > d -  1 2dn.P 2dnLD rt.l-D xy  2dnL" 
(Equations 33 & 39) = y-+ 1-nz y -  nz-1 ' x + y  nz-1 w e  

I 
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grows in a logarithmic fashion when the structure is developed. Apart from the 
relatively small extension of the fractal set, nothing points out why the area of 
the solid-pore interface is on the critical point between a nonfractal surface 
whose area tends towards a finite constant value and a fractal surface whose area 
tends towards infinity when the structure is developed ad infinitum (Fig. 6). 

Calculations of the area of the interface have been derived for x f O, y f O. 
Fig. 3 gives an illustration of the limiting cases x = O, y = O. When x = O, the 
PSF becomes a pore mass fractal combining a fractal distribution of solids and a 
fractal set. Now if the supplementary assumption is made that the fractal set of 
(Nz)~ subregions represent pores we can still define and measure a pore-solid 
interface. Symmetrically a pore-solid interface can be defined when y = O. The 
general results concerning the fractal character of the pore-solid interface hold 
in these limiting cases. 

I 

4.5. Summary 

The scaling properties of the PSF model are summarized in Table 1. It can be 
observed how the PSF is a generalization of mass fractal which may be viewed 
as special albeit degenerate case. Thus the PSF model can be used in many cases 
for the following purposes. 

1. Either to represent soils which have been shown to be surface fractals, in 
the same way as simple surface models have already been used (e.g., Pfeifer and 
Avnir, 1983; de Gennes, 1985). 

2. Or to represent soils which exhibit a fractal pore size distribution, in the 
same way as simple lacunar fractal models have already been used (e.g., Tyler 
and Wheatcraft, 1990; Rieu and Sposito, 1991a). 

3. Or to represent soils which exhibit a fractal solid size distribution, in the 
same way as simple models of fractal number-size distributions have already 
been used (e.g., Tyler and Wheatcraft, 1992; Wu et al., 1993) 

4. Or to represent soils which exhibit a fractal solid mass, in the same way as 
simple models of a fractal solid phase have already been used (e.g., Rieu and 
Sposito, 1991a; Young and Crawford, 1991). 

5. Or to represent soils which exhibit a fractal pore mass, in the same way as 
simple models of a fractal pore phase have already been used (e.g., Katz and 
Thompson, 1985; Ghilardi et al., 1993). 

In addition, because the PSF model is a self-consistent geometric model of 
the whole porous structure, whatever the particular fractal property it has be 
designed to model, it gives also information about the possible scaling behaviour 
of the other properties of the porous structure (cf. Table 2). For example, if we 
consider a soil exhibiting a fractal pore size distribution (Perrier et al., 1996), the 
PSF model suggests which properties of the solid phase and which hydraulic 
properties could be associated to this particular pore size distribution. 
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d =  2, n = 20, z =  0.75,x=y = 0.125, D = 1.904, i = 2 

Fig. 7. Randomized PSF based on a polyedral pattern, with a division process obtained by a 
Voronoi tessellation. General case of d - 1 I D < d. 

4.6. Extension: effect of different local geometric patterns 

The ability of a fractal model of porous medium to represent a soil structure 
depends on its structural features: number-size distribution of its components, 
porosity, fractal scaling of the pore and solid phases, fractal scaling of the 
pore-solid interface, and on the behaviour ad infinitum of these properties. But 
this ability also depends strongly on the geometric patterns of the model. As an 
example, two realizations of the PSF model are presented Figs. 6 and 7. The 
first one is based on a square pattern. In the second, the division of the initiator 
is obtained by a Vorondi tessellation process (Perrier, 1994) and the basic 
pattern is polyhedral. In both cases, the proportions x, y and z have a constant 
value and the location of the pore and solid subregions is randomly determined 
at each iteration step. At any stage of its development, both structures exhibit 
the same properties: total porosity value lying between O and 1, fractal 
number-size distribution of pores and solids, nonfractal scaling of the pore and 
solid phases and fractal scaling of the pore-solid interface. 

Improved geometric patterns may help in the construction of more realistic 
models of soil structure. As an example Figs. 8 and 9 present structures 
equivalent respectively to those presented in Figs. 6 and 7 in terms of their basic 
properties, but here the pores are located around the solids. Instead of keeping 
Ny solids and Nx pores among the N(l - z) subregions, an homothetic 
reduction of ratio k replaces each subregion of size rd among the N( 1 - z) ones 
by one solid of size kdrd surrounded by one pore of size (1 - k")rd. This 
pattern proposed by Perrier (1994) is defined by a set of three parameters ( N ,  z 
and k )  whereas Neimark's percolation system and PSF model use ( N ,  x and y) .  
Equivalence between these two approaches is given in Appendix A. 

, 
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d=2,n=5,s=0.72,x=y=0.14,D=1.796,k=0.707,i=3 

Fig. 8. PSF numerically equivalent to the example presented in Fig. 6. Here, the void phase is 
located around the solid, resulting in a very different shape. 

Obviously, some of these examples resemble soil structures more than others. 
In particular, each of them exhibits a specific kind of pore connectivity. As an 
illustration of this latter, Fig. 10 presents a mass fractal variation of the 
Sierpinski Carpet carried out by Perrier (1994). This degenerate form of PSF 
model is a 2D representation of a random realization of the fractal cube 
considered by Rieu and Sposito (1991a), fragmented by a Voronoi tessellation 
(Perrier et al., 1995). This fractal object is a solid mass fractal where a fractal 
cumulative number-size distribution of fractures is associated with a solid phase 
that exhibits a fractal scaling. As in the model presented in Fig. 3b, when this 
structure extends to arbitrarily small scales its porosity approaches unity. 

d =2, n =20, z = 0.75, x=y =0.125, D = 1.904, k =  0.707, i = 2 

Fig. 9. PSF numerically equivalent to the example presented in Fig. 7, with a void phase 
surrounding the solid. 
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, 

d = 2 ,  rz =2.65, z= 0.92, x= 0.08, y= O, D = 1.919, i = 5 

Fig. 10. 2D representation of a random realization of the fractal cube considered by Rieu and 
Sposito (1991a,b,c), fragmented by a Vorondi tessellation. In this solid mass fractal, the fractal set 
is associated to the solid phase. 

Unfortunately the network of fractures appears excessively connected for mod- 
elling a soil pore space. 

5. Conclusion 

In conclusion, the PSF model originating with Neimark (1989) and Peii-ier 
(1994) can be viewed as a fully self-consistent fractal model of general 
application in the sense that it is not tied to a specific local geometry. Whilst this 
is equally true of a mass fractal, the generality of a PSF obviously exceeds that 
of a mass fractal. Mass fractals have already featured prominently in modelling 
complex porous materials and it remains to be seen to what extent the wider 
class of PSF models follows this trend. 

Neither the pore phase nor the solid phase of a general PSF exhibit mass 
fractal scaling. On the other hand the pore-solid interface is fractal for 
D > d - 1. At any stage of its development, the PSF can model a two-phase 
porous structure. When the structure extends ad infinitum, its porosity ap- 
proaches a finite value that can be chosen by the modeller between the extreme 
value O or 1 independently of the fractal dimension. Finally the main peculiarity 
of the PSF is the association in the same geometric shape of a distribution of 
pores and a distribution of solids which both assume a power law form with the 
same fractal exponent. As a result of this symmetry, the PSF model appears 
promising in terms of modelling hydraulic properties based on structural proper- 
ties of the solid phase. If in addition an appropriate geometric shape is used, the 
connectivity of the pore network can be taken into account in pore network 
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simulations. Intrinsic to a mais fractal and a PSF model as presented in this 
paper are the notions of multiscale structure and self-similarity of structure. 
Further generalization is possible when the latter notion is relaxed. Construction 
of a model in which similarity of structure at different scales is not required 
further widens its scope of application. These points will be developed in 
forthcoming papers. 

6. List of symbols 

fractal dimension 
Euclidean space dimension 
linear size of the initiator 
number of subregions paving the initiator 
inverse of the similarity ratio 
proportion of subregions where the whole shape is replicated 
proportion of subregions kept as pores 
proportion of subregions kept as solids 
total number of replicates of size ri created at iteration step i 
total number of pores of size ri created at iteration step i 
total number of solids of size ri created at iteration step i 
total number of replicates of size greater than or equal to ri 
total number of pores of size greater than or equal to ri 
total number of solids of size greater than or equal to ri 
last step of division if any 
means ‘proportional to’ 
porosity 
partial porosity at step i 
number of boxes of size ri needed to cover the pores 
number of boxes of size ri needed to cover the solids 
number of boxes of size ri needed to cover the fractal set 
volume (or mass) of pores at iteration step i 
volume (or mass) of solids at iteration step i 
area of the pore-solid interface 
cumulative boundary of pores at iteration step i 
cumulative boundary of solids at iteration step i 
probability that an arbitrary chosen point on the solids boundary 
belongs to the solid-pore interface 
probability that an arbitrary chosen point on the pores boundary 
belongs to the solid-pore interface 
ratio of the similarity transformation used by Perrier (1994) to 
define the size of the solids and pores associated to any subregion 
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A.1. Equiualerace between the model of Perrier (1 994) and the PSF model 

Perrier’s model is defined on the basis of three parameters (N, z, k )  which 
are equivalent to the set (N, x, y) defining the PSF model. 

Perrier’s model involves Nz and N(l - z )  subregions as does the PSF. The 
parameter k defines the ratio of the contracting similarity used to replace each of 
the N(l - z) subregions of linear size r by one solid of volume k d r d  sur- 
rounded by one pore of volume (1 - k d ) r d  (see Figs. 8 and 9). An equivalent 
PSF model can be created by choosing the same N and the following x and y 
proportions: x = (1 - z)(l - k d ) ,  y = (1 - z ) k d  

Conversely, if a PSF model is defined by the parameters (N, x, y), an 
equivalent model is obtained using Pei-rier’s definitions by choosing the same N 
and the following z and k values: 

1 

J 

z = l - x - y ,  k =  - (Ay 1’” 
All the results obtained in this paper could have been also derived using 

Perrier’s definition. For instance, the equivalent of the total porosity given in Eq. 
(20), 4 = x/( x + y), is: 1 - kd. Limiting cases x = O and y = O correspond 
respectively to k = 1 and k = O. 
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