# INSTITUT DE RECHERCHE POUR LE DÉVELOPPEMENT

Pharmaceutical Biology 2000, Vol. 38, No. 1, pp. 18-24

## Centre IRD de Nouméa Documentation

B.P. A5 98848 NOUMEA Cedex

1388-0209/00/3801-0018\$15.00 © Swets & Zeitlinger

## SCREENING OF PLANTS FROM NEW CALEDONIA AND VANUATU FOR INHIBITORY ACTIVITY OF XANTHINE OXIDASE AND ELASTASE

Enrica Bosisio<sup>1</sup>, Daniela Mascetti<sup>1</sup> and Pierre Cabalion<sup>2</sup>

<sup>1</sup>Institute of Pharmacological Sciences, Faculty of Pharmacy, University of Milan, Milan, Italy <sup>2</sup>ORSTOM Centre, Noumea, New Caledonia

#### **ABSTRACT**

A series of 38 plants (55 plant extracts) from New Caledonia and 22 plants (40 plant extracts) from Vanuatu (Efate and Erromango islands) were screened for xanthine oxidase (XOD) and elastase inhibitory activity. Of the crude extracts 82% were found to possess xanthine oxidase inhibitory activity, and 23% were active against elastase, at a concentration of 50 µg/ml. The methanol extracts of Cunonia montana Schlechter (Cunoniaceae) and Amyema scandens Danser (Loranthaceae), bark and leaves, respectively, exhibited the highest activity in both the assays. C. montana bark extract at 50 µg/ml exhibited 85 and 84% inhibition of XOD and elastase, respectively. IC  $_{50}$  values were 23  $\pm$ 0.82 and 41  $\pm$  3  $\mu$ g/ml, respectively, for XOD and elastase. A. scandens leaf extract, at 50 µg/ml, exhibited 88 and 71% inhibition of XOD and elastase, respectively.  $IC_{50}$  values were 13  $\pm$  0.48 and 44  $\pm$  2.2  $\mu$ g/ml respectively, for XOD and elastase.

### INTRODUCTION

Xanthine oxidase (XOD; xanthine:oxygen oxidoreductase) converts hypoxanthine to xanthine and then to uric acid, which can precipitate giving rise ultimately to gout. It is also the enzymic tissue generator of superoxide ions which react with hydrogen peroxide to generate hydroxyl radicals. Oxygen derived free radicals

Keywords: Xanthine oxidase inhibition; elastase inhibition; Cunonia montana bark, Amyema scandens leaf, New Caledonia, Vanuatu.

Address correspondence to: Dr. Enrica Bosisio, Institute of Pharmacological Sciences, Via Balzaretti 9, 20133 Milano, Italy. Tel: 39-02-20488372. Fax: 39-02-29404961. E-mail: enrica.bosisio@unimi.it



are involved in the tissue damage under several conditions such as inflammation, allergies, heart ischemiareperfusion, atherosclerosis, diabetes, emphysema, aging, etc. (Crastes de Paulet et al., 1994).

Proteases, in particular human leukocyte elastase, are implicated in tissue destruction in chronic inflammatory diseases including pulmonary emphysema (Groutas et al., 1980) rheumatoid arthritis (Snider, 1981), and in aging (Hall, 1964). This enzyme is capable of degrading many compounds of the extracellular matrix such as elastin (Galdston et al., 1979; Janoff, 1985), collagen type I, II (Starkey et al., 1977) collagen type III and IV (Mainardi et al., 1980a,b) and proteoglycans (Starkey et al., 1977). Endogenous inhibitors (for example alpha-1-proteinase inhibitor) of proteolytic enzymes are normally present in the extracellular fluids but their activity can be drastically reduced by oxidation. Depletion of proteinase inhibitors by oxidants in cigarette smoke (Dean et al., 1989) and by oxygen free radicals has been reported (Hancock et al., 1987). Thus, an attractive approach to the treatment of pathologies where free radicals and proteases are concurrent components, may be the development of drugs with anti-xanthine oxidase and anti-elastase activity. Furthermore, a class of elastase inhibitors which combine anti-oxidant properties will fulfill the requirement of blocking the enzyme and protecting the endogenous inhibitors from oxidation.

Several compounds present in plants (flavonoids, xanthones, coumarins, proanthocyanidins) are reported to be inhibitors of xanthine oxidase (Gonzalez et al., 1995) and proteases (Parellada & Guinea, 1995) and to possess anti-oxidant properties.

Compounds which possess both XOD and elastase inhibitory activity were procyanidines isolated from Vitis vinifera seeds (Maffei Facino et al., 1994). The flora of New Caledonia and Vanuatu is extremely rich

> Documentaire Fonds Cote: B + 21460

and diverse. Plants in New Caledonia are 80% endemic and most of them are unstudied. Some of them have a reputation as medicinal plants and are used for various diseases (Bourdy et al., 1992; Singh, 1992). A series of 38 plants from New Caledonia and 22 plants from Vanuatu (Efate and Erromango Islands) were subjected to screening for anti-xanthine oxidase and anti-elastase activity with the purpose of selecting plant species highly active for further phytochemical investigation to isolate the active principle/s, by means of bioactivity-guided fractionation. The choice was made at random, on the basis of a preliminary chemical screening for plants rich with phenolic compounds.

## MATERIALS AND METHODS

#### **Plant Material**

Plants were collected by Dudley Nicholls (DN) and Pierre Cabalion (PC), ORSTOM Center, Noumea, from different places in New Caledonia and Vanuatu (Erromango and Efate islands). Plant identity was verified at the herbarium of the ORSTOM Center of Noumea and voucher specimens were deposited at the Laboratory of Natural Substances of Biological Interest, Noumea, New Caledonia. Plants collected in New Caledonia bear the collection number DN 1–38, plants collected in Vanuatu are reported as PC 3134–3177 (Table 1).

#### **Preparation of the Crude Extracts**

The air-dried plant material (5 g) was powdered, delipidized with petroleum ether 40–60° and extracted twice with 30 ml of methanol. The extracts were filtered, concentrated *in vacuo* and weighed for the determination of the w/w yield. Extracts were kept at –20°C until use and dissolved in DMSO or DMSO: water, 1:1 to a concentration of 1 mg/ml for the biological tests.

## Reagents

XOD (EC 1.1.3.22) from buttermilk (Grade III, 1.3 units/mg protein), xanthine, elastase (EC 3.4.21.36) from pig pancreas (PPE, Type IV, 70 units/mg prot.), N-suc-(Ala)<sub>2</sub>-Pro-Leu-*p*-nitroanilide, 3,4-dichloroisocoumarin (3,4-DCI) and quercetin were obtained from Sigma Chemical Company. All other reagents and chemicals were from Merck and were of analytical grade.

## **Assay of XOD Activity**

The enzyme activity was measured spectrophotometrically following the conversion of xanthine to uric acid at 295 nm for 3 min, as reported by Robak et al. (1988).

The assay mixture contained 0.1 M K<sup>+</sup>-phosphate buffer, pH 7.8, 10  $\mu$ M EDTA, 0.1 mM xanthine, 0.04 units/ml XOD, final volume 1'ml. Crude extracts were tested at a concentration of 50  $\mu$ g/ml. This concentration was selected on the basis of preliminary assays and according to Gonzales et al. (1995). Quercetin (10  $\mu$ M) was used as reference inhibitor. The assay mixture was preincubated for 5 min at 25°C with the test material before adding the substrate. XOD inhibitory activity was expressed as the percentage of inhibition, calculated as (1-B/A) x 100 where A is the enzyme activity without the test material and B the enzyme activity with the test material.

## **Assay of PPE Activity**

The method used was that described by Herbert et al. (1992). PPE activity was determined using N-Suc-(Ala)<sub>2</sub>-Pro-Leu-p-nitroanilide as substrate. The assay mixture contained 0.3 mM substrate, 0.5 M NaCl, 100 mM Tris-HCl buffer, pH 8.8, 0.7 units/ml PPE, final volume 1 ml. Activity was determined by release of p-nitroaniline as indicated by the increase of optical density at  $A_{410nm}$  over 100 s at 25°C. Samples were preincubated with test materials for 5 min before adding the substrate. Crude extracts were tested at concentration of 50  $\mu$ g/ml and inhibition was calculated as described for XOD activity. 3,4-DCI 5  $\mu$ M was used as a reference inhibitor.

#### Statistical Analysis

Dose response curves were analyzed according to De Lean et al. (1978).

## RESULTS AND DISCUSSION

Fifty-five crude extracts from 38 species of the flora of New Caledonia and 40 extracts from 22 species of the flora of Vanuatu were assayed for XOD and PPE inhibitory activity at a concentration of 50  $\mu$ g/ml, and the results are shown in Table 1. Most of the crude extracts (82%) were found to possess XOD inhibitory activity and only a few (23%) were active against PPE. Plant materials collected in Vanuatu are far less active than the ones from New Caledonia. Among the extracts, the ones showing the highest activity against both the enzymes were from the bark of *Cunonia montana* Schlechter (Cunoniaceae) and the leaves of *Amyema scandens* Danser (Loranthaceae). PPE inhibition by *C. montana* and *A. scandens* was 84  $\pm$  2.2 and 71  $\pm$  7.5%, respectively (mean  $\pm$  s.e., n = 4 assays,

two replications/assay); XOD inhibition was 85 and 88%, respectively (mean of two determinations). In our experimental conditions, XOD inhibition by quercetin 10  $\mu$ M (3.4  $\mu$ g/ml) was 76  $\pm$  2.2% (mean  $\pm$  s.e., n = 12 assays); PPE inhibition by 3,4-DCI 5  $\mu$ M (1.1  $\mu$ g/ml) was 73  $\pm$  2.9 (mean  $\pm$  s.e., n = 4 assays). Data from the literature reported IC<sub>50</sub> for quercetin 10  $\mu$ M (Robak, 1988) and IC<sub>50</sub> for 3,4-DCI 8  $\mu$ M (Powers & Kam, 1994).

Dose inhibition curves and IC<sub>50</sub> values of the two extracts are shown in Fig. 1 and Table 2. The ability of the two extracts to inhibit elastase activity was comparable. In the dose-response experiments, it could be observed that total inhibition of the enzymes was never achieved. Maximal inhibition was in the range of 80–86%, in the presence of 100 μg/ml of extract. With the addition of larger amounts of extracts to XOD assay mixture, the degree of inhibition decreased, indicating a pro-oxidant effect. As far as PPE inhibition is concerned, there is a discrepancy between the results reported in Tables 1 and 2. The explanation for the lower inhibition found in the experiments for the IC<sub>50</sub> determination was the change of the batch of elastase supplied by the producer. In other occasions we have observed inhibition depending on the batch of commercially available elastase (data not shown).

From these results it can be concluded that the bark of *Cunonia montana* Schlechter (Cunoniaceae) and the leaves of *Amyema scandens* Danser (Loranthaceae) are promising starting materials for the isolation of compounds with anti-elastase and anti-XOD activities, for application as anti-gout agents and in free radical and protease mediated tissue injuries.

## REFERENCES

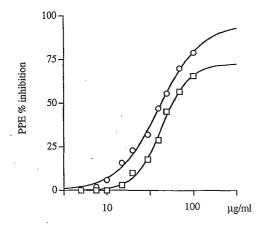
Bourdy G, Cabalion P, Amade P, Laurent D (1992): Traditional remedies used in the Western Pacific for the treatment of ciguatera poisoning. *J Ethnopharmacol* 36: 163-174.

Crastes de Poulet A, Torreilles J, Cristol JP (1994): Membrane lipids as a preferential target for oxidative processes. In: Paoletti R, Samuelsson B, Catapano AL, Poli A, Rinetti M (Eds) Oxidative Processes and Antioxidants. Raven Press, New York, N.Y. USA.

Dean RT, Nick HP, Schnebli HP (1989): Free radicals inactivate human neutrophil elastase and its inhibitors with comparable efficiency. *Biochem Biophys Res Comm* 159: 821–827.

De Lean A, Munson PJ, Rodbard D (1978): Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological doseresponse curves. *Amer J Physiol* 235: E97–E102.

Galdston M, Levystka V, Liener IE, Twumasi DY (1979): Degradation of tropoelastin and elastin substrates by human neutrophil elastase, free and bound to alpha 2-macroglobulin in serum of the M and Z (Pi)phenotypes of alpha 1-antitrypsin. Amer Rev Respiratory Disease 119: 435–441.


Gonzalez AG, Bazzocchi IL, Moujir L, Ravelo AG, Correa-MD, Gupta MP (1995): Xanthine oxidase inhibitory activity of some Panamian plants from Celastraceae and Lamiaceae. J Ethnopharmacol 46: 25–29.

Groutas WC, Badger RC, Ocain TD, Felker D, Frankson J, Theodorakis M (1980): Mechanism-based inhibitors of elastase. *Biochem Biophys Res Comm* 95: 1890–1894.

Hall D (1964): *Elastolysis and Aging*. Academic Press, Springfield, Illinois, USA.

Hancock TJ, Jones OTG (1987): The inhibition by diphenyleneiodonium and its analogues of superoxide generation by macrophages. *Biochem J* 242: 103–107.

Herbert JM, Frehel D, Rosso MP, Seban E, Castet C, Pepin O, Maffrand JP, Le Fur G (1992): Biochemical and



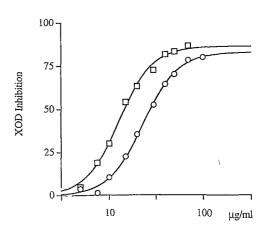



Fig. 1. Inhibition curves of PPE and XOD activities in the presence of increasing concentrations of *C. montana* ( $\square$ ) and *A. scandens* ( $\bigcirc$ ) extracts (5–100 mg/ml).

- pharmacological activities of SR 26831, a potent and selective elastase inhibitor. *J Pharmacol Exper Ther* 260: 809–816.
- Janoff A (1985): Elastase in tissue injury. Ann Rev Med 36: 207–216.
- Maffei Facino R, Carini M, Aldini G, Bombardelli E, Morazzoni P, Morelli R (1994): Free radicals scavenging action and anti-enzyme activities of procyanidins from *Vitis vinifera*. A mechanism for their capillary protective action. *Arzneim-Forsch/Drug Res* 44: 592–601.
- Mainardi CL, Dixit SM, Kang AH (1980a): Degradation of type IV (basement membrane) collagen by proteinase isolated from human polymorphonuclear leukocyte granules. *J Biol Chem* 255: 5435–5441.
- Mainardi CL, Hasty DL, Seyer JM, Kang AH (1980b): Specific cleavage of human type III collagen by polymorphonuclear leukocyte elastase. *J Biol Chem* 255: 12006–12010.

- Parellada J, Guinea M (1995): Flavonoid inhibitors of trypsin and leucine aminopeptidase: a proposed mathematical model for IC<sub>50</sub> estimation. *J Nat Prod 58*: 823–829.
- Powers JC, Kam CM (1994): Isocoumarin inhibitors of serine peptidases. *Meth Enzymol* 244: 442–457.
- Robak J, Gryglewsky RJ (1988): Flavonoids are scavengers of superoxide anions. *Biochem J 37*: 837–841.
- Singh YN (1992): Kava: an overview. *J Ethnopharmacol 37*: 13–45.
- Snider GL (1981): Pathogenesis of emphysema and chronic bronchitis. *Med Clin North Amer* 65: 647–665.
- Starkey PM, Barrett AJ, Burleigh MC (1977): The degradation of articular collagen by neutrophil proteinases. *Biochim Biophys Acta 483*: 386–397.

Accepted: July 27, 1999

Table I. Extraction yield (% starting material, w/w) and enzyme inhibition.d

| family/Species voucher specimen                                 | Plant part    | Yield      | XOD <sup>a</sup> | PPEa      |
|-----------------------------------------------------------------|---------------|------------|------------------|-----------|
| ARALIACEAE                                                      |               |            |                  |           |
| chefflera plerandroides Vig. (DN 20)                            | leaves        | 15         | 12               | 0         |
| BURSERACEAE                                                     | _             |            |                  |           |
| Canarium harveyi Seemann (PC 3152)                              | leaves        | nd         | 56               | <10       |
|                                                                 | bark<br>resin | 6.1<br>56  | 21<br>0          | <10<br>0  |
| BURSERACEAE                                                     | 168111        | 20         | U                | U         |
| Canarium indicum L. (PC 3141)                                   | woody         | 2.0        | 32               | <10       |
| •                                                               | endocarp      |            |                  |           |
| CASUARINACEAE                                                   |               |            |                  |           |
| Casuarina collina Poisson ex Sebert+Pancher (DN 37)             | leaves        | 16         | 42 .             | <10       |
| CASUARINACEAE                                                   | bark          | 18         | 55               | <10       |
| Casuarina equisetifolia L. (PC 3134)                            | leaves        | 8.8        | 45               | 0         |
| cusuurma equisorijona D. (1 C 3154)                             | bark          | 16         | 62               | <10       |
| CELASTRACEAE                                                    |               |            |                  |           |
| Peripterygia marginata Loes. (DN 10)                            | leaves        | nd         | 40               | <10       |
|                                                                 | bark          | 12         | 33               | <10       |
| CLUSIACEAE                                                      | 1             | 10         | 40               | .10       |
| Calophyllum neoebudicum Guillaumin (PC 3171)                    | leaves        | 18         | 42<br>43         | <10       |
| CLUSIACEAE                                                      | bark          | 12         | 43               | 12        |
| Garcinia pseudoguttifera Seemann (PC3160)                       | leaves        | 14         | 18               | <10       |
| January Processor Continuing (1 Co 100)                         | bark          | 14         | 23               | <10       |
| CLUSIACEAE                                                      |               |            |                  |           |
| Montrouziera cauliflora Planchon & Triana (DN 19)               | bark          | 18         | 33               | <10       |
| COMBRETACEAE                                                    |               |            |                  |           |
| Lumnitzera littorea (Jack) Voigt (PC 3137)                      | leaves        | nd         | 63               | 18        |
| CYPERACEAE                                                      | bark          | 9.8        | 44               | <10       |
| Baumea deplanchei Boeck.(DN 9)                                  | whole plant   | 7.0        | 38               | 0         |
| CYPERACEAE                                                      | whole plant   | 7.0        | 50               | U         |
| Lepidosperma perteres C.B. Clarke (DN 38)                       | whole plant   | 10         | 33               | <10       |
| EBENACEAE                                                       | 1             |            |                  |           |
| Diospyros vieillardii (Hiern) Kostermans (DN 31)                | leaves        | 15         | 60               | 77        |
| CUNONIACEAE                                                     |               |            |                  |           |
| Cunonia montana Schlechter (DN 15)                              | leaves        | 9.4        | 51               | <10       |
| EPACRIDACEAE                                                    | bark          | 7.8        | 85               | 84 2.2 °  |
| Dracophyllum verticillatum Labillardière (DN 22)                | leaves        | 7.4        | 41               | 0         |
| EUPHORBIACEAE                                                   | 100.00        | ,          |                  | ū         |
| Austrobuxus carunculatus (Baillon) Airy Shaw (DN 34)            | bark          | 8.0        | 42               | 0         |
| EUPHORBIACEAE                                                   |               |            |                  |           |
| Breynia disticha J.R. & G. Forster (DN 32)                      | leaves        | 14         | 35               | 16        |
| CHINIA DRIA CRA F                                               | bark          | 22         | 44               | 32        |
| EUPHORBIACEAE<br>Breynia disticha J. R. & G. Forster (PC 3170)  | leaves        | 9.1        | 37               | <10       |
| Steyma disticul 3. K. & G. Polstel (PC 3170)                    | bark          | 9.1<br>9.5 | 45               | 25        |
| FABACEAE: Mimosoideae                                           | Outk          | 7.5        | 73               | 23        |
| Acacia spirorbis Labillardière (DN36)                           | leaves        | 24         | 49               | <10       |
|                                                                 | bark          | 14         | 51               | 10        |
| FABACEAE: Papilionoideae                                        |               |            |                  |           |
| Sophora oblongata Tsoong (PC3159)                               | leaves        | 14         | 0                | <10       |
|                                                                 | bark          | 12         | 0                | <10       |
| FLACOURTIACEAE<br>Casearia silvana Schlechter (DN 21)           | leaves        | =d         | 22               | 0         |
| casearia savana Scincontol (DIV 21)                             | bark          | nd<br>2.4  | 13               | <10       |
| LORANTHACEAE                                                    | ourk          | 2.7        | 13               |           |
| Amyema artense (Montrouzier) Danser (PC 3164)                   | leaves        | 22         | 30               | 14        |
|                                                                 | bark          | 14         | 48               | 13        |
| LORANTHACEAE                                                    |               |            |                  | <b>5.</b> |
| Amyema scandens Danser (DN 18)                                  | leaves        | 10         | 88               | 71 7.5 °  |
| MELIACEAE                                                       | 1             | 40         | ~10              | 0         |
| Dysoxylum bijugum (Labillardière) Seemann (DN 5)<br>MYRSINACEAE | leaves        | 13         | <10              | υ         |
| VI I KOHNACEAE                                                  |               |            |                  |           |
| Maesa ambrymensis Guillaumin (PC 3147)                          | leaves        | nd         | 18               | <10       |

Table 1 continues

Table 1 (continued)

| Family/Species voucher specimen                                    | Plant part     | Yield    | XODa     | PPEa           |    |
|--------------------------------------------------------------------|----------------|----------|----------|----------------|----|
| MYRSINACEAE                                                        |                |          |          |                |    |
| Maesa novacaledonica Mez (DN 7)                                    | leaves         | 13       | <10      | <10            |    |
| MYRTACEAE                                                          |                |          |          |                |    |
| Syzygium nomoa Guillaumin (PC 3169)                                | leaves         | 17       | 26       | 0              |    |
| MYRTACEAE                                                          | bark           | 12       | 43       | 0              |    |
| Tristaniopsis callobuxus Brongniart & Gris (DN 17)                 | bark           | 7.1      | 56       | 51             |    |
| DLACACEAE<br>Kimenia americana L. (DN 2)                           | leaves         | 17       | 21       | <10            |    |
| unena unercana L. (DN 2)                                           | bark           | 22       | 62       | 60             |    |
| DNCOTHECACEAE<br>Oncotheca balansae Baillon (DN 11)                | horte          | 7.9      | 60       | 37             |    |
| PANDANACEAE                                                        | bark           | 7.9      | 60       | 31             |    |
| Pandanus tectorius S. Parkinson ex Zucc. (PC 3135)                 | fruits         | nd       | 17       | 30             |    |
| PLUMBAGINACEAE<br>Plumbago zeylanica L. (PC3173)                   | whole plant    | 6.2      | 19       | 0              |    |
| PROTEACEAE                                                         | whole brant    | 0.2      | 12       | U <sub>.</sub> |    |
| Grevillea exul Lindley (DN 13)<br>PROTEACEAE                       | leaves         | 6.9      | 22       | <10            |    |
| ROTEACEAE<br>Grevillea gillivrayi Hook. &Arn. (DN 12)              | leaves         | 8.2      | nd       | 0              |    |
| , ,                                                                | bark           | 5.0      | 41       | Ö              |    |
| RANUNCULACEAE<br>Clematis glycinoides A. DC. (PC 3145)             | leaves         | nd       | <10      | 0              |    |
| nomano gejeniolado II. Do. (1 0 31 13)                             | branches       | nd       | 0        | 0              |    |
| RHAMNACEAE<br>Alphitonia neocaledonica Guillaumin (DN 8)           | 1              | 10       | 41       | -10            |    |
| RHAMNACEAE                                                         | leaves         | 19       | 41       | <10            |    |
| Gouania richii A. Gray (PC 3140)                                   | leaves         | 10       | <10      | 0              |    |
| RHIZOPHORACEAE  Crossostylis grandiflora Brongniart & Gris (DN 14) | bark           | 7.7      | 12       | 0              |    |
| RUBIACEAE                                                          | Vark           | 1.1      | 12       | U              |    |
| (xora cauliflora Beauvisage (DN 3)                                 | leaves         | 19       | 37       | 0              |    |
| RUBIACEAE<br><i>(xora collina</i> Beauvisage (DN 33)               | leaves         | 28       | 25       | <10            |    |
| RUBIACEAE                                                          |                |          |          |                |    |
| xora francii Schlechter (DN 29)<br>RUBIACEAE                       | leaves         | 22       | 35       | 23             |    |
| Uncaria orientalis Guillaumin (PC 3150)                            | leaves         | 8.8      | 22       | 0              |    |
| OTTO OF A FI                                                       | bark           | nd       | 32       | 0              |    |
| RUTACEAE<br>Acronychia laevis J.R.& G. Forster (DN 6)              | leaves         | nd       | 11       | 0              |    |
|                                                                    | bark           | 18       | 41       | <10            |    |
| RUTACEAE<br>Myrtopsis novae-caledoniae (Viellard) Engler (DN 28)   | lacros         | 10       | 27       | 17             |    |
| SANTALACEAE                                                        | leaves         | 12       | 37       | 17             |    |
| Elaphanthera baumannii (Stauffer) Hallé(DN 23)                     | leaves         | 26       | 42       | <10            |    |
| SANTALACEAE                                                        | bark           | 6.3      | 38       | 0              |    |
| Exocarpos neocaledonicus Schlechter & Pilger (DN 27)               | leaves         | 31       | 38       | <10            |    |
|                                                                    | bark           | 19       | 54       | 0              |    |
| SAPINDACEAE<br>Elattostachys falcata (A. Gray) Radlkofer (PC3149)  | leaves         | 8.0      | 25       | <10            |    |
| ( 201,2)                                                           | bark           | 6.0      | 22       | 13             |    |
| SAPINDACEAE                                                        | fruits         | 9.3      | 44       | 0              |    |
| Guioa glauca var. glauca (Labillardière) Radlkofer (DN 10          | 6) leaves      | 6.8      | 50       | 47             | •, |
|                                                                    | bark           | 15       | 54       | 28             |    |
| SAPINDACEAE<br>Guioa villosa Radlk. (DN 24)                        | leaves         | 12       | 51       | 76             |    |
| Smoot imous results (DAT 2-1)                                      | bark           | 12       | 51       | 0              |    |
| SAPINDACEAE                                                        | logues         | 10       | 20       | ^              |    |
| Pometia pinnata J. R. & G. Forster (PC3177)                        | leaves<br>bark | 12<br>12 | 28<br>28 | 0<br><10       |    |
| SAPOTACEAE                                                         |                |          | 20       | 110            |    |
| Beccariella baueri (Montrouzier) Aubréville (DN 25)                | leaves         | 20       | 30       | <10            |    |

Table I (continued)

| Family/Species voucher specimen               | Plant part | Yield | XODa * | PPE <sup>a</sup> |
|-----------------------------------------------|------------|-------|--------|------------------|
| SAPOTACEAE                                    |            |       |        |                  |
| Beccariella seberti (Pancher) Pierre (DN 26)  | leaves     | 14    | 0      | <10              |
|                                               | bark       | 11    | 38     | 0                |
| SAPOTACEAE                                    |            |       |        |                  |
| Mimusops elengi L.var. parvifolia             | leaves     | 20    | 66     | <10              |
| (R. Brown) H. J. Lam (PC 3158)                | bark       | 26    | 39     | 0                |
| STERCULIACEAE                                 |            |       |        |                  |
| Commersonia bartramia (L.) Merril (PC3161)    | leaves     | 8.8   | 44     | <10              |
|                                               | bark       | 6.0   | 38     | 0                |
| THYMELAEACEAE                                 |            |       |        |                  |
| Lethedon balansae (Baillon) Kostermans (DN 4) | bark       | 18    | <10    | 0                |
| TILIACEAE                                     |            |       |        |                  |
| Grewia crenata Schinz & Guillamin (PC3176)    | leaves     | nd    | 0      | 0                |
| · · · · · · · · · · · · · · · · · ·           | bark       | 3.7   | <10    | 0                |
| ULMACEAE                                      |            |       |        |                  |
| Trema orientalis (L.) Blume (DN 35)           | leaves     | 18    | 61     | <10              |
| (======================================       | bark       | 16    | <10    | 66               |

<sup>&</sup>lt;sup>a</sup> Enzyme inhibition (% of control) was evaluated at concentration of 50  $\mu$ g/ml of crude extract. In control samples,  $\Delta$  Abs was 0.280  $\pm$  0.009/min for PPE activity (mean  $\pm$  s.e., n = 15);  $\Delta$  Abs was 0.312  $\pm$  0.005/min for XOD activity (mean  $\pm$  s.e.; n = 10).

Table 2.  $IC_{50}$  values (µg/ml) for XOD and PPE inhibition.

| Plant              | XOD           | PPE          |  |
|--------------------|---------------|--------------|--|
| C. montana bark    | 23 ± 0.82     | 41 ± 3.5     |  |
| A. scandens leaves | $13 \pm 0.48$ | $44 \pm 2.2$ |  |

The data are the mean  $\pm$  s.e. of 3 assays, two replications/assay.

b nd = not determined
c mean ± s.e of 4 assays, two replications/assay
d Under the described experimental conditions quercetin 10 μM gave an inhibition of the XOD activity of 75 ± 2.2% (mean ± s.e., n = 12 assays); PPE inhibition by 3,4-DCI 5μM was 73 ± 2.9 (mean ± s.e., n = 4 assays)

