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Abstract. The analysis of spatial pattern in plant ecology 
usually implies the solution of some edge effect problems. We 
present in this paper some explicit formulas of edge effect 
correction that should enable plant ecologists to analyse a 
wider range of real field data. 

We consider the local correcting factor of edge effect for 
Ripley's K-function, that can also be used for other statistics of 
spatial analysis based on the counting of neighbours within a 
given distance. For both circular and rectangular study areas, 
we provide a review of explicit formulas and an extension of 
these formulas for long and narrow plots. In the case of 
irregular-shaped study plots, we propose a generalization of 
the method that computes edge effect correction by excluding 
triangular surfaces from a simple (rectangular or circular) 
initial shape. 

An example in forest ecology, where the soil characteris- 
tics determine a study plot of complex shape, illustrates how 
this edge effect correction can be effective in avoiding misin- 
terpretations. 

Keywords: Circular plot; French Guiana; Irregular-shaped 
plot; Local correcting factor; Qualea rosea; Rectangular plot; 
Second-order neighbourhood analysis; Spatial point pattern; 
Tropical rain forest. 

Introduction 

Ripley's K-function (Ripley 1976,1977,1981) and 
the related functions of second-order neighbourhood 
analysis of spatial point patterns (e.g. function L in 
Besag 1977; KI, in Lotwick & Silverman 1982; Li in 
Getis & Franklin 1987; K,,, and g in Stoyan et al. 1987) 
have been used recently in many plant ecological stud- 
ies (e.g. Szwargryk 1990; Duncan 1991; Penttinen et al. 
1992; Moeur 1993; Goulard et al. 1995; Haase et al. 
1996,1997; Ward et al. 1996; Couteron & Kokou 1997; 
Martens et al. 1997; Goreaud et al. 1998; P6lissier 
1998). Considering plant locations as points in an (x;y) 
coordinate system, the point pattern can be summarised, 
undgr the assumptions of stationarity-and isotropy (i.e. 
invariance by translation and rotation , by its first- and 1 \ -- - _  - 
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second-order characteristics: its intensity il correspond- 
ing to the expected number of points per unit area; and 
Ripley's K-function, defined so that X ( t )  is the ex- 
pected number of neighbours in a circle of radius t 
centred on an arbitrary point of the pattern (Ripley 
1977). Classical estimators of these characteristics are: 
- N  

S 
where N is the number of points in area of size S; 

(1) a = -  

l l N  k(t) = 7 kii 
n 1" j=1 pi 

where kv = 1 if the distance between points i and j I t; 
and kv = O if the distance between points i and j > t. 

However, for points located near the boundary of the 
study area, the real number ~Fneighbours within dis- 
tance t can be underestimated because some of them can 
be located outside of the study area (Fig. 1). 

Gignoux et al. (1999) showed that it was not always 
necessary to take this edge effect into account to test 
precise point process hypothesis. However, the edge ef- 
fect correction is highly recommended to compare point 
patterns or to use K(t) values for ecological interpreta- 
tions (neighbourhood, competition, etc.). Ripley (1982) 
and more recently Haase (1995) made reviews of various 
methods to correct this edge effect, such as the use of a 
buffer zone; the toroidal duplication of the study area; a 
global correcting factor proposed by Osher & Stoyan 
(198 1); and the local correcting factor proposed in Ripley 
(1977). All these methods can be used with every func- 
tion based on the counting of neighbours within a given 
distance. However, Ripley's local correcting factor 
presents several advantages: (1) it allows unbiased and 
robust ( S e u  & Mora 1996) estimation of K(t) without 
drastically reducing the data set under analysis; and (2) it 
can also be used with individual-point statistics such as 
Lift) (Getis & Franklin 1987). According to this method, 
for a point i located closer to the boundary of the study 
area than to its neighbouring pointj, kv -in Eq. (2) -is 
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b) c) Fig. 1. Intersection cases be- 
tween Cc (the circle centred on 
i and passing throughj) and the 
boundary of the study area. a. 
Circular study area of radius R 
and centred on O; b, c. rectan- 
gular study area with comer 

di 

\ - - - * '  
CL I CO", I outside (b) or inside (c) Cr 

computed as the inverse of the proportion of the perim- 
eter of the circle C, (centred on i and passing throughj) 
which is inside the study area (Fig. 1). 

Precise formula of this corrected kv depends on the 
shape of the study area and on the location of point i in 
relation to the boundaries. Diggle (1983) gave explicit 
formulas for circular and rectangular study areas. Errors 
and incomplete transcriptions appeared later (e.g. Getis 
& Franklin 1987; Haase 1995). Various programs to 
compute K(t) can also be found, for instance on Intemet, 
even for study areas of complex shape. But edge effect 
correction procedures are rarely detailed. We thus pro- 
pose below: (1) areview of edge effect correcting formu- 
las for both circular and rectangular study areas, with an 
extension for long and narrow plots; (2) a general method 
to deal with study areas of complex shape, by excluding 
triangular surfaces from a simple (rectangular or circular) 
initial shape. The efficiency of the method is then illus- 
trated with a short example of spatial pattem analysis of 
trees in an experimental forest plot in French Guiana. 

Explicit formulas 

Let us call t the distance between the points i andj; 
C, the circle centred on i and passing throughj; C, the 
part of C, which is inside the study area; Co,, the part of 
C, which is outside the study area and sou, the corre- 
sponding angle (Fig. 1). 

The correcting factor k, can then be calculated as: 

2n - - 2nt 2 n  t kv =- = 
cin 2nt - Co,, 2n - a,,, (3) 

The simplest method to compute k, is then to calcu- 
late first a,,, by using classical geometrical properties. 
Various cases of the relative position of Cv and the study 
area boundaries have to be considered. 

Circular study area 

As far as a circular study area (of radius R and 
centred on O) is concerned, we only have to consider 
two cases: (1) no intersection between C, and the bound- 
ary of the circular study area; (2) two intersection points 
(A and A') between C, and the boundary (Fig. la). For 
this case, the simplest way to calculate a,,,is to develop: 

(4) 

where is the scalar product of vectors. As 
+ 2  + 2  -9 

OA = R 2 ,  Oì = d 2 ,  iA = t  , (5) 

(6)  and Oie ìA = dt COS((X,,, I 2 ) ,  

, and we can deduce that:  COS(^,,, 12) = 

thus obtain the explicit formula given in Table 1, which 
is the same as the one proposed by Diggle (1983). 

+ 3  

R2 -d2 -t2 
2td 

Rectangular study area 

The rectangular shape is a little more complicated, 
because there are many intersection cases between C, 
and the rectangle boundaries. They can be distinguished 
by comparing t, the distance between the points i andj, 
to: (1) d,, d,, d3 and d4, the distances between i and each 
of the four sides; and (2) the distance from i to the four 
comers of the rectangle. For each point i, aOut is esti- 
mated by taking into account the global contribution of 
the four sides and comers. If the circle intersects a side 
twice its contribution to a,,, will be 2 Arccos (d I t), 
where d corresponds either to d,, d,, d3 or d4. Thus, in 
Fig. lb, a,,, will contribute for 2 Arccos (d, I t) and 
a,,, for 2 Arccos (d, I t) , the total aOut value being in 
that case a,,, + a,,,. If the circle intersects a side only 
once because the comer is inside Cij, the contribution of 
this side to a,,, will be only Arccos ( d l  t), the comer 
itself will contribute for n l 2  and the perpendicular side 
may also contribute. Thus, in Fig. IC, the total mou, value 
will be Arccos (d,  I t) + n 1 2  + Arccos (d2 I t) . There 
are then 27 different configurations that correspond to 
the eight elementary cases described in the second part 
of Table 1: no intersection; intersection with one, two or 
three sides, with comer(s) inside or outside Cr Cases of 
intersection with four sides are not considered because 
they correspond to excessively high values of t. 

Diggle (1983) gave equivalent formulas for the first 
four cases of the rectangular study area in Table 1, 
which allow computation of K(t} for t  up to half of the 
shorter side of the rectangle. The latter four cases allow 
computation of K(t} for tup to half of the longer side of 
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the rectangle, which is useful to deal with long narrow 
plots. Other equivalent formulas can of course be ob- 
tained, for instance with the Arctan function. 

Generalization to study areas of complex shape 

Simple circular and rectangular study areas are com- 
monly used for experimental plots. But more complex 
shapes are sometimes designed by natural or artificial 
obstacles. Moreover, as the K-function is only defined 
for homogeneous processes (Ripley 1977), it can be 
necessary to omit some parts of a heterogeneous study 
area in the computation. The shape of the final study 
plot can thus be very complex. Therefore .we propose 
here a method to compute K(t) with edge effect correc- 
tion in the case of a study area of complex shape. 

First, the real shape of the study area must be ap- 
proximated by removing some polygonal surfaces from 
a simple (rectangular or circular) initial zone (Fig. 2). 
These surfaces may be omitted either near the boundary 
of the initial zone in order to design a polygonal study 
area, or within the zone itself to remove potential het- 
erogeneous areas. In order to simplify the computation, 
the omitted surfaces must then be decomposed in trian- 
gles, that (1) do not overlap each other; and (2) do not 
cross the boundary of the initial shape (Fig. 2b). 

After deletion of the points initially located within 
the triangles, the correcting factor kii can still be com- 
puted through Eq. (3) by considering that Co,,,, the part 
of the perimeter of Cg lying outside the study area, is 
composed of parts lying outside the initial rectangular 
(or circular) study area (Cinir) and of parts inside the 
removed triangles (C,J The global sou, angle is thus 
computed as the sum of the contributions of the initial 
shape (according to formulas given above), and of each 
removed triangle: a,,, = ainit + Catri (Fig. 2b). The 
contribution of a,, depends once more on the relative 
position of circle Cu and the triangle ABC. Various 
intersection cases have thus to be considered (Fig. 3). 

They can be analytically distinguished by consider- 
ing: (1) the distances from the circle Cii to each vertex of 
the triangle (this will give the number of vertices inside 
the circle); and (2) the intersection points between Cu 
and the triangle sides. The calculations are made through 
usual geometrical considerations: coordinates of the 
intersection points are calculated with line and circle 
equations, and the excluded angles are calculated with 
the Arccos function applied to scalar products. The 
explicit formulas of arri corresponding to the cases 
described in Fig. 3 are given in Table 2 (we do not detail 
here the fastidious calculation of the intersection points' 
coordinates and scalar products). 

Table 1. Explicit formulas of ao,,[ for circular and rectangular study areas. Cases of intersection with four sides of a rectangular study 
area are not considered. 

Condition 

Circular study area (Fig. la) 

Explicit formula of ao,, in Eq. (3) 

t l R - d  sour = 0 
R - d  2 2  - t  

t > R - d  aOtU=2Arcc0s [ 2td ) 
Rectangular study area (Fig. Ib-c) 

%ur = 0 t I d i ,  4 ,  d3, d4 - 

a,,, = 2Arccos(d,/t) 

t2sq+4 a,,, = 2Arccos(d,/f) + 2Arccos(d2/t) 

t 2 > q + g  ao,,, = n/ 2 + Arccos(d,/t) + Arccos(d2/t) 

aoUt = 2Arccos(d,/t) + 2Arccos(d,/f) 

aOut = 2Arccos(d,/t) + 2Arccos(d2/t) + 2Arccos(d3/t) 

t2 Sd? +d; 

t2 > d i  +d: 
sour = n l 2  + 2Arccos(d,/t) f Arccos(d,/t) + Arccos(d3/f) 
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0 . 7  --, -- 

Hydromorphic soils: swamps I ; temporary blocked II 
Non-hydromorphic soils @ 

Fig. 2. Spatial pattem of the tree species Qualea rosea Aublet 
(Vochysiacece) in a 150 m x 250 m experimental plot in 
Paracou, French Guiana, with three soil categories (from 
Collinet 1997). a. Real, complex study area; b. Its approxima- 
tion with a geometrical shape obtained by removing triangular 
surfaces from an initial rectangular shape. 

Example 

We now illustrate the efficiency of the method of 
edge effect correction with an example of analysis of 
spatial pattern of trees in an experimental forest plot in 
Paracou, French Guiana. The data set was provided by 
Collinet (1997), who showed that Qualea rosea Aublet 
(Voclzysiaceae) avoids hydromorphic soils (i.e. swamps 
and soils temporary blocked during the rainy season), so 
that the species distribution is heterogeneous and almost 
strictly limited to non-hydromorphic areas (Fig. 2 4 .  In 
order to take into account this heterogeneity, we digi- 
tised the soil map and approximated the hydromorphic 
part of the plot with a polygon secondarily divided into 

A 

Fig. 3. Intersection cases between Cii (the circle centred on i 
and passing throughj) and one elementary triangle. 

seven contiguous triangles (Fig. 2b). Ripley’s function was 
then computed (1) on the entire rectangular study area 
without any edge effect correction; (2) on the entire study 
area with the edge effect correction for rectangular plots; 
(3) on the polygonal non-hydromorphic area with the 
corresponding edge effect correction for complex shapes. 
The results are presented in Fig. 4, using the linearized 

L-function (Besag 1977): i ( t )  = .,/= - t , which is 
easier to interpret than K(t) (the expectation of L(t) 
under complete spatial random pattern is O for all t; it 
becomes greater than O when the pattern is clustered and 
lower than O when it is regular). A 90% confidence 
interval for the complete spatial randomness hypothesis 
was obtained by the Monte Carlo method (Besag & Diggle 
1977) using 1000 simulated Poisson pattems of same 
density than the one observed. More details on these meth- 
ods can be found, for instance, in Goreaud et al. (1998). 

Finally, the curves of L(t) corresponding to cases 
(l), (2) and (3) are quite different, and only case (3) can 
be correctly interpreted in terms of spatial structure. 
When computed without any edge effect correction L(t) 
values are highly underestimated (Fig. 4 4 ,  and the bias 
increases with the distance t. In that case the 90 % 
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Table 2. Explicit formulas of ~ l , ~  for one elementary triangle. The symbol: n means ‘intersection’ of the specified line and circle; 
0 (empty set) means that there are no intersection points; and means ‘scalar product’ of the two specified vectors. 

Condition Intersection points Explicit formula of a,; for one triangle (ABO 

A, B, C inside Cu 

A inside C.. 
(8, c outsiJe Cu 

A, B, C outside Cu 

A, B, C outside Cij 

(AB) n Cu = E 
(AC) n Cu= F 

(AB) n Cu = E 
(AC) n Cu = F 
(BC) n cu = 0 

(AC) n Cu= F 
(BQ n cu = (G, G? 

(AB) n Cu = 0 
(AC) n Cu = 0 
(BC) n cu = 0 

(AB) n Cu = 0 
( A C ) n c , = 0  
(BC) n Cu = (G, G’) 

(AB) n Cu = E 

i 

i 

a;, = o 

aln=ArccOs (Y) 
a,ri=Arccos (Y) 

( T E ~ ~ G )  ( TG; ~ T F )  
qri = Arccos - +Arccos 2 

a,ri = o 

iG*;G’ 
al,=ArccOs (+) 

(Fig. 3a) 

(Fig. 3b) 

(Fig. 3c) 

(Fig. 3d) 

(Fig. 3e) 

(Fig. 3 0  

(AB) n Cu = (E, E’) ‘ 

(AC) n Cu = (F, F’) 
(BC) n Cu = 0 

(AB) n Cu = (E, E’) (TC;:’) ( TEt;.) ( T F Y T G ’ )  
(AC) n Cu = (F, F’) = Arccos - +Arccos - +Arccos 2 (Fig. 3h) 
(BC) n Cu = (G, G’) 

(Fig. 3g) i A, B, C outside Cu 

A, B, C outside Cu 

confidence interval is also biased, showing a large depar- 
ture from the theoretical value L(t) = O under complete 
spatial randomness. ln the second case with the edge 
effect correction for rectangular study areas (Fig. 4b), 
the confidence interval is correct, but the L-function 
diverges towards clustering at large distances, indicat- 
ing clearly that the overall pattern is heterogeneous at 
that scale, and thus that the spatial structure of Q. rosea at 
short distances cannot be correctly interpreted from this 
figure. However, when computed only on the non- 
hydromorphic polygonal area with edge effect correction 
for complex shapes (Fig.4c), the L-function remains 
within the confidence interval at large distances, which 
means that the pattern can be considered as homogeneous 
at this scale. The curve can then be interpreted in terms of 
spatial structure, which shows the existence of significant 
clusters of various size in the range 10 - 60 m for Q. rosea 
in non-hydromorphic soil conditions. 

- 

Conclusion 

This paper aims at summarizing explicit formulas to 
take into account the edge effect in the computation of 
Ripley’s K-function (or of similar functions) for study 
areas of various shapes. Circular and rectangular shapes 

are well known (Diggle 1983) and broadly used. More 
complex study areas can also be considered by approxi- 
mating the complex shape and removing triangles from 
a simple (rectangular or circular) initial study area. This 
general method allows to deal with nearly every polygo- 
nal shape by removing triangles near the boundary of a 
rectangular initial shape. But we idso want to point out 
the suitability of the method to study heterogeneous 
areas. The use of triangles to remove particular zones 
within a study area of any shape, allows to define 
homogeneous point patterns without drastically lower- 
ing the number of observations, which would be the 
case if the initial plot had to be cut into smaller homoge- 
neous subplots. This method allowed Collinet (1997) to 
analyse the spatial structure of 36 species in Paracou 
(French Guiana), by removing heterogeneous soil zones 
from an initial square study area. Our illustration shows 
that for such complex shape areas, edge effect correc- 
tion is necessary to avoid misinterpretations. 

However, we must be aware of the limits of the 
method. First, it can be very time-consuming, especially 
when the studied pattern consists of a large number of 
points, and also when an excessive number of triangles is 
defined. As the precision of the shape is related to the 
number of triangles, it must be balanced with the compu- 
tation time and the power of the computer. Secondly, the 
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precision of the results will also depend on the proper 
definition of the homogeneous zone. If the heterogeneity 
is the result of a gradient, or if the homogeneous zone is 
too small, it remains inadvisable to use the K-function. 

All these formulas and the computation of K(t) and 
other classical derived functions have been implemented 
in C a n s ì  by the authors and can be obtained on request. 
Programs for Apple Macintosh and PC with Windows 
are also available with documentation on Internet as 
ADS in ADE-4 program library (Thioulouse et al. 1997). 
Computational and graphical display modules can be 
downloaded from the following Web homepage: 
http://pbil.univ-lyon 1 .fr/ADE-4/ADE-4.html 
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