

POLYMORPHIC MICROSATELLITES IN *COFFEA ARABICA*

R. METTULIO*, P. ROVELLI*, F. ANTHONY**, F. ANZUETO***, P. LASHERMES****, G. GRAZIOSI*

*Dipartimento di Biologia, Università di Trieste, Trieste Italy.

**CATIE, Turrialba, Costa Rica.

***PROMECAFE Network, Guatemala City, Guatemala.

****IRD, Montpellier, France

Fonds Documentaire IRD
Cote : B* 22619 Ex : 1

INTRODUCTION

DNA polymorphisms are being applied on an increasingly wider scale in the field of biotechnology, as for example in variety characterisation, agronomic traits identification and marker assisted breeding programs. Some DNA polymorphisms have also been found in *Coffea arabica* through different technical approaches such as RFLP (Lashermes et al., 1996a), RAPD (Orozco-Castillo, 1994; Lashermes et al, 1996b) and AFLP (Lashermes et al., 1999). However, it has been reported that the degree of polymorphism of this species is relatively low (Paillard et al., 1993; Paillard et al., 1996). *C.a.* is an autogamous species and this reproductive strategy undoubtedly leads to a high degree of homozygosity. Furthermore, the genetic base of most coffee cultivars is rather narrow (Bertraud J. and Charrier A, 1988) thus reducing the degree of variability.

Microsatellites are highly polymorphic DNA repetitive sequences. They have been found in all animal and vegetal species so far analysed and are therefore expected to be present in *C. arabica* too. Moreover, they have a relatively high mutation rate which should increase the heterozygosity of coffee, thus compensating for the restricted genetic base. We carried out screening and selection of two genomic libraries enriched in Simple Sequence Repeats (SSR) to identify polymorphic microsatellites, in view of constructing a low density genetic map of *Coffea arabica*.

MATERIAL AND METHODS.

Samples.

The genomic libraries were constructed from DNA of a Caturra plant of the IRD collection. The polymorphism were assessed on a F2 population (Caturra x Ethipia ET30, IRD) and on a limited number of cultivars.

DNA extraction.

Particular care was taken in DNA extraction and purification when preparing the genomic libraries. The methods reported by Murray and Thompson (1980) and Orozco-Castillo et al (1994) were modified as reported by Vascotto et al, 1999.

Preparation of the genome libraries.

Two genomic libraries were prepared, one enriched in (TG)_n and the other in (ATC)_n. The basic approach adopted for the enrichment in SSRs has already been reported by Rafalski et al. (1996),

Fonds Documentaire IRD
010022619

Morgante et al. (1998). The relevant selection steps were a first enrichment through magnetic beads conjugated with biotin-streptavidin oligonucleotides complementary to TG and ATC and a second degree selection performed on the clones by colony hybridisation with TG or ATC oligonucleotides. The DNA fragments obtained following the magnetic beads step were cloned into the *EcoRI* site of λ -ZAPII (Stratagene, La Jolla, Calif.).

Sequencing and primer design.

The positive clones were sequenced using a Thermo Sequenase dye terminator cycle pre-mix kit (Amersham Pharmacia Biotech) following the producer's instructions. The reaction products were analysed on an ABI 373A sequencer. The sequences were screened for presence of SSRs and primers were designed for the positive sequences using the on-line programs Primer3 (Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA) or Primers! (Williamstone Enterprises). A constant tail KS (5'-TCGAGGTCGACGGTATC-3') was added to one of the primers for each primer pair.

Amplification and analysis of the microsatellites.

To avoid using radioactive labels, we developed a three primer system: two primers were locus specific primers while the third primer was complementary to the constant tail of one of the primers and was tagged by either 6-FAM (6-carbossifluoresceine) or JOE (2',7'-dimetossi-4',5'-dichloro-6-carbossifluoresceine). Amplification conditions are reported elsewhere (Vascotto et al., 1999). The amplified fragments were run on sequencing gels in an automatic sequencer ABI 373A and alleles were identified via GENESCAN 672 (Perkin Elmer) software.

RESULTS.

Both genomic libraries contained a large number of clones carrying SSR. Thus the selection procedures proved to have been very effective. Table I reports the numbers of clones analysed in the various successive steps of selection. The clones presently screened constitute approximately 20% of the libraries.

Table I

	N.	%
Clones screened	7.800	
Positive clones	692	9%
Clones sequenced	349	50%
Clones containing SSRs	249	71%
Primer designed	46	18%
Clones containing polymorphic microsatellites	13	25%

Some of the 249 SSR containing clones are still being analysed for primer design, hopefully they will provide more polymorphisms. The 46 primer analysed so far gave the following results: 14 gave no amplification product, 5 were aspecific, 2 gave an unexpected product, 12 were monomorphic and the remaining 13 showed polymorphic bands.

The screening for polymorphism was carried out on a limited number of cultivars and on a F_2 population (12 plants) and accordingly a large number of different alleles was not expected. Nevertheless in our screening population we found from 2 to 5 different alleles. Normally each single plant tested had either one or two alleles, presumably they were either homo or heterozygotes. Only locus E12-3CTG showed 3-4 alleles in the same plant. The result for the locus C2-2CATC can be seen in fig. 1 where the parental plant Caturra is heterozygote, plants F_2 -1 is apparently homozygote for the 209 bp allele and plant F_2 -18 carries two alleles one of which is common to the Caturra progenitor.

DISCUSSION

As clearly shown by the sequencing, the approaches adopted here to generate two genomic libraries enriched in microsatellites were very effective. On the bases of the polymorphisms so far identified we can estimate that the two libraries contain at least 200 polymorphic microsatellites.

The second point of interest is the number of alleles found in each plant. As *C. arabica* is tetraploid and we could expect our primers to recognise the homologous locus on both the two pairs of ancestral homologous chromosomes. This is most probably the case for the locus E12-3CTG, as we

obtained 3- 4 alleles in the same plant and the E12-3CTG primer definitely amplifies multiple loci. The remaining primer pairs are apparently specific for only one of the ancestral genomes.

Finally, we wish to point out that, as shown by the analysis of the F_2 segregating population, microsatellites in *Coffea arabica* behave as in any other species: they are codominant and can be easily traced through a family together with possible useful associated traits.

ACKNOWLEDGEMENTS.

This research project has been supported by the European Community grant, INCO-DC Contract n. ERBIC18CT970181

REFERENCES.

Bertraud J., Charrier A. Genetic Resources of Coffea. In "Coffee", Vol. 4, Agronomy, R.J. Clarke and R. Macrae Ed.s, Elsevier Applied Science, London 1988 pp1-41

Lashermes P., Andrzejewski S., Bertrand B., Combes M.C., Dussert S., Graziosi G., Trouslot P., Anthony F.. 1999 Molecular analysis of introgressive breeding in coffee (*Coffea arabica* L.) *Theor. Appl. Genet.* (in print).

Lashermes P., Cros J., Combes M.C., Trouslot P., Anthony F., Hamon S., Charrier A. 1996a Inheritance and restriction fragment lenght polymorphism of chloroplast DNA in the genus *Coffea* L. *Theor. Appl. Genet.* 93: 626-632.

Lashermes, P., Trouslot P., Anthony F., Combes M.C., Charrier A. 1996b. Genetic diversity for RAPD markers between cultivated and wild accessions of *Coffea arabica*. *Euphytica* 87:59-64

Morgante M, Pfeiffer A, Jurman I, Paglia G, Olivieri AM. 1998. Microsatellite markers in plants. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Plants and animals. Chapman and Hall, pp. 206-208, 288-296.

Orozco-Castillo, C., Chalmers K.J., Waugh R., Powell W. 1994 Detection of genetic diversity and selective gene introgression in coffee using RAPD markers. *Theor. Appl. Genet.* 87:934-940.

Paillard M, Duchateau N, Petiard V. 1993. Diversité génétique de quelques groupes de cafétiers: utilisation des outils moléculaires: RFLP et RAPD. ASIC, 15^e Colloque, Montpellier, pp.33-40.

Paillard M, Lashermes P, Petiard V. 1996 Construction of a molecular linkage map in coffee. *Theor. Appl. Genet* 93: 41-47.

Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C, Tingey SV (1996) Generating and using DNA markers in plants. In: Birren B, Lai E (eds) Nonmammalian genomic analysis: a practical guide. Academic Press, London New York, pp.75-134.

Vascotto F., Degli Ivanissevich S., Rovelli P., Anthony F., Anzueto F., Lashermes P., Graziosi G. (1999) Microsatellites in *Coffea arabica*: Construction and Selection of Two Genomic Libraries. III SIBAC, Londrina (in print)

SUMMARY.

We are currently screening two genomic libraries enriched for the sequences $(TG)_n$ and $(ATC)_n$. The identification of microsatellites is based on the following strategy: a) sequencing of the DNA inserts; b) design of specific primers for those clones containing Simple Sequence Repeats (SSRs); c) primer test on a panel of cultivars and on an F_2 population. Until now we sequenced about 350 clones, 71% contained a microsatellite. Of the 46 primer pairs designed, 13 gave polymorphic bands. As far as the allele distribution is concerned, we found loci with 2, 3 or 4 alleles. Each single plant carried only one or two alleles, presumably they were either homozygotes or heterozygotes. One single locus showed a peculiar behaviour: all the samples so far analysed carried either 3 or 4 alleles.

Fig. 1 Electropherograms of the amplification products of locus C2-2CATC: Pane (A) Caturra progenitor plant. Two examples of the F_2 segregating population are reported in the panes (B) and (C). The numbers close to the peaks refer to the allele expressed in bp.

IASIC

Association Scientifique
Internationale
du Café

18^{ème}

COLLOQUE SCIENTIFIQUE
INTERNATIONAL SUR LE CAFÉ

18th

INTERNATIONAL SCIENTIFIC
COLLOQUIUM ON COFFEE

18.

INTERNATIONALES
WISSENSCHAFTLICHES
KOLLOQUIUM ÜBER KAFFEE

18°

COLÓQUIO CIENTÍFICO
INTERNACIONAL SOBRE
EL CAFÉ

Helsinki, 2-6 août 1999

ISBN 2-900212-17-0

DIX-HUITIEME COLLOQUE SCIENTIFIQUE INTERNATIONAL SUR LE CAFE

Helsinki, 2 - 8 août 1999

Association Scientifique Internationale du Café (ASIC)
Siège social : 18, rue de la Pépinière, 75008 PARIS

**DIX-HUITIÈME COLLOQUE SCIENTIFIQUE
INTERNATIONAL SUR LE CAFÉ**
Helsinki, 2-6 août 1999

Introduction

- Universities and Companies in collaboration, Risto Ihmuvirta .. 9
- New challenges for the coffee sector, Bertel Paulig 13

Communications et posters

Chimie

Communications

- Key odorants of roasted coffee : evaluation, release, formation, W. Grosch 17
- Evolution of coffee aroma characteristics during roasting, C. Gretsch *et al.* 27
- Differences in chemical composition of electronically sorted green coffee beans, G. Full *et al.* 35
- Characterisation of mouldy / earthy defect in green Mexican coffee, E. Cantergiani *et al.* 43
- The detection and characterisation of free radicals generated during the decomposition of solutions of the coffee flavour compound furfuryl mercaptan, E.C. Pascual *et al.* ... 50
- Retardation of coffee beverage volatiles by different milk products, H. Steinhart, M. Bücking 58
- Diterpene degradation products in roasted coffees, K. Speer *et al.* 65
- Carboxytracyligenin and atractylygenin glycosides in coffee, A.G.W. Bradbury, H.H. Balzer 71
- Stable isotopes and coffee quality: preliminary report, F. Serra *et al.* 78
- Nonvolatile compounds in coffee, S. Homma 83
- Structural aspects of polysaccharides from Arabica coffee, M. Fischer *et al.* 91
- Isolation and characterisation of a foaming fraction from hot water extracts of roasted coffee, M. Petracco *et al.* 95

Posters

- Effects of saliva and milk additives on the coffee flavour release in the oral cavity, M. Bücking *et al.* 106
- Evaluation of acidity and bitterness of coffee brew, K. Aino, M. Motoyoshi 110
- A new method for the determination of 16-O-Methylcafestol in roasted coffee, I. Kölling-Speer *et al.* 114
- Determination of the relationship between phosphate concentration and perceived acidity in coffee, M.J. Griffin, D.N. Blauch 118

Génie alimentaire

Communications

- Structural properties of coffee beans as influenced by roasting conditions, S. Schenker *et al.* 127
- Online analysis of food processing gases by resonance laser mass spectrometry (RREMPI-TOFMS) : coffee roasting and related applications, R. Dorfner *et al.* 136
- Evaluation of a microwave sensor for inline measurement of roasted and green whole coffee bean moisture, G.A. Wiseman ... 143
- The relation between volatile retention and movement of ice front during freeze drying of coffee, J.M. Pardo *et al.* 150
- Kinetics of coffee infusion : determination of the geographical origin of medium roasted coffees using extraction kinetics, D. Jaganyi 159

– Decaffeination of non-aqueous solvents using caffeic acid, B.L. Zeller, F.Z. Saleeb	168	• Modelling and HACCP tools for coffee quality improvement, J.M. Frank.....	223
Posters		• Fungi associated with the coffee berry borer <i>Hypothenemus hampei</i> (Ferrari) (Coleoptera : Scolytidae), F.E. Vega <i>et al.</i>	229
– Computer simulation as a tool to model coffee brewing cellular automata for percolation processes ; 2D and 3D techniques for fluid-dynamic simulations, R. Cappuccio, F. Suggi Liverani.....	173	• Fungi producing ochratoxin A in coffee, M.H. Taniwaki <i>et al.</i>	239
– Mapping of Brazilian coffee quality, E.E.M. Mori <i>et al.</i>	179	• Recent international developments in the field of mycotoxins, E. Boutrif.....	248
Effets physiologiques		• ICO/FAO/CFC project : enhancement of coffee quality through prevention of mould formation, E. Boutrif	257
Communications		• First Uganda FAO mission - How near is an HACCP system in dry Robusta coffee production ? R. Viani	258
– A new physiological method to evaluate gastric irritation of different coffees, P.W. Lücker....	185	• Enhancement of quality in coffee by prevention of mould formation project, C.P.R. Dubois.....	260
– Biotransformation and lack of mutagenicity of ochratoxin A using combinations of mammalian biotransformation enzymes, H. Zepnick <i>et al.</i>	193	• Studies on ochratoxin A in Indian coffees and its management strategies, R. Naidu <i>et al.</i>	261
Workshop I		• Enhancement of coffee quality through the prevention of mould growth : start up experiences in Uganda, H. Ngabirano	265
– Workshop report : effects of coffee on brain and behaviour. What does coffee consumption bring in daily life ? A. Nehlig	201	• Levels of ochratoxin A in blood from Norwegian and Swedish blood donors : estimated intakes and correlation between blood levels and food consumption habits, A. Thuvander <i>et al.</i>	276
• Behavioral effects of caffeine in coffee, A. Smith, C. Brice.....	204	Agronomie	
• Effects of caffeine on attention, J. Snel <i>et al.</i>	208	Biotechnologie	
• Effects of coffee and caffeine on memory and aging, M.P.J. van Boxtel <i>et al.</i>	209	Communications	
• Neurochemical effects of caffeine and behavioural tolerance, B.B. Fredholm <i>et al.</i>	212	– Potential, progress and future thrust areas of coffee biotechnology research in India, H.L. Sreenath, R. Naidu.....	281
• Reinforcing effect of caffeine, E. Zwartau	213		
• Caffeine does not activate the brain structures involved in drug addiction, A. Nehlig	215		
Workshop II			
– Report on the workshop "Enhancement of coffee quality by reduction of mould growth", G. van der Stegen, M. Blanc.....	219		

– A technically and economically attractive way to propagate elite <i>Coffea canephora</i> (Robusta) clones : <i>in vitro</i> somatic embryogenesis, J.P. Ducos <i>et al.</i>	295	– Etude des paramètres génétiques de la production et de caractères associés à partir d'un plan de croisement diallelique chez <i>Coffea arabica</i> , C. Cilas <i>et al.</i>	363
– Coffee tissue culture as a new model for the study of somaclonal variation, V.M. Loyola-Vargas <i>et al.</i>	302	– Evaluation of an advanced breeding population of Arabica coffee, C.O. Omondi <i>et al.</i>	371
– Cryopreservation of seeds for long-term conservation of coffee germplasm and elite varieties : successful application at CATIE, S. Dussert <i>et al.</i>	308 ✕	– Flavour : an ideal selection criterion for the genetic improvement of liquor quality in Arabica coffee, C.O. Agwanda...	383
– Molecular characterisation of the cultivar Bourbon L.C., S. Zezilina <i>et al.</i>	314	Posters	
– Cloning and characterisation of fruit-expressed ACC synthase and ACC oxidase from coffee, K.R. Neupane <i>et al.</i>	322	– Increasing Robusta production in Brazil. The potential of 200 000 hectares in São Paulo State, H.P. Medina-Filho <i>et al.</i>	390
– Cloning and characterisation of xanthosine-N7-methyltransferase the first enzyme of the caffeine biosynthetic pathway, S. Moisyadi <i>et al.</i>	327	– Coffee cultivars in Brazil, L.C. Fazuoli <i>et al.</i>	396
– Genetically modified coffee trees for resistance to coffee leaf miner. Analysis of gene expression, resistance to insects and agronomic value, T. Leroy <i>et al.</i>	332	– Twenty seven years of coffee breeding in Kenya : prospects for the release of new varieties, C.O. Agwanda	405
– <i>In vitro</i> culture of immature embryos of <i>Coffea arabica</i> cv Catimor, M.C. Simões-Costa <i>et al.</i>	339	Pratiques agronomiques	
Poster		Communications	
– Polymorphic microsatellites in <i>Coffea arabica</i> , R. Metulio <i>et al.</i>	344	– The influence of available water on crop development and yield of coffee (<i>Coffea arabica</i> L.) at Aiyura, Papua-New-Guinea, J.V. Enden, P.H. Hombunaka	407
Sélection et amélioration génétique		– Small holder coffee irrigation research in Kenya, M.P.H. Gathaara	415
Communications		– Response of clonal Robusta coffee to organic and mineral fertiliser application in lake Victoria crescent zone, R.J. Onzima <i>et al.</i>	418
– Première évaluation d'hybrides naturels entre <i>Coffea canephora</i> et <i>Coffea arabica</i> de Nouvelle-Calédonie, P. Jagoret <i>et al.</i>	349	– The effect of green manure application to coffee plants growth, yield and quality in Kenya, J.K. Kimemia <i>et al.</i>	426
– Creation and selection of <i>Coffea arabica</i> hybrids in Tanzania, N.E. Nyange <i>et al.</i>	356	– Mise en évidence du transfert d'azote des légumineuses aux cafiers par l'utilisation des méthodes isotopiques, D. Snoeck, A.M. Domenach	430

Posters

- Evaluation of some leguminous species for the establishment of Robusta coffee in Ghana, K. Osei-Bonsu *et al.* 438
- Preliminary investigations into the use of intercropping for weed management in young coffee in Ghana, K. Opoku-Ameyaw *et al.* 441
- Coffee pruning and spacing - management of tall Arabica coffee (*Coffea arabica* L.) in Papua-New-Guinea, P. Talopa, J.-M. Kiara 445
- Use of humic acid in promoting growth of young coffee Robusta seedlings in Nigeria, C.R. Obatolu 449
- Prediction of yield stability in Arabica coffee based on the stability of morphological components, C.O. Agwanda *et al.* 452
- Towards efficient coffee marketing in Kenya, M.T. Osongo 454

Technologie après-récolte

- How to avoid mould troubles in green coffee preparation, A.A. Teixeira 457
- Cell wall polysaccharides of coffee bean mucilage. Histological characterisation during fermentation, S. Avallone *et al.* 463

Maladies et insectes**Communications**

- Effet de différentes conditions agro-écologiques sur le développement de l'antracnose des baies du caféier Arabica dans l'ouest du Cameroun. Incidence sur le mode de conduite des plantations et l'application des traitements phytosanitaires, D. Biessye *et al.* 471
- Histochemical differences during infection of *Coffea arabica* varieties by *Colletotrichum kahawae* isolates, E.K. Gichuru *et al.* 477

- Piégeage de masse du scolyte du café *Hypothenemus hampei* Ferr. (Col., Scolytidae) en conditions réelles : premiers résultats, B. Dufour *et al.* 480

- The role of parasites in the natural control of *Antestia*, *Anastesiopsis intricata* (Ghesquière and Carayon). Possibilities for further control using exotic parasites, M. Abebe 492

Posters

- Pre-selection methods for coffee berry disease resistance in Ethiopia, E. Derso 497
- Proteolytic enzyme activity in *Coffea arabica* varieties varying in resistance to coffee berry disease, E.K. Gichuru, P.N. Kingiori 504
- Techniques for screening resistance to coffee berry disease (*Colletotrichum kahawae* Waller & Bridge), D. Kilambo *et al.* 508

- Evaluation en champ de l'efficacité de certaines formulations de fongicides vis-à-vis de l'antracnose des baies du caféier Arabica, J. Bakala, E. Nyemb 512

- Method of rearing larvae and some aspects of the biology and control of cocoa stem borer *Eulophonotus myrmeleon* (Felder), M. Abebe 517

- Caffeine does not protect coffee against the leaf miner *Perileucoptera coffeella*, O. Guerreiro Filho, P. Mazzafra 520
- Insects associated with coffee berries in Ghana, B. Padi 524

**Rapports de synthèse /
Summary reports**

- Participants 549