POLYMORPHIC MICROSATELLITES IN COFFEA ARABICA

R. METTULIO*, P. ROVELLI*, F. ANTHONY**, F. ANZUETO***, P. LASHERMES****, G. GRAZIOSI*

* Dipartimento di Biologia, Università di Trieste, Trieste Italy.
** CATIE, Turrialba, Costa Rica.
*** PROMECAFE Network, Guatemala City, Guatemala.
****IRD, Montpellier, France.

INTRODUCTION

DNA polymorphisms are being applied on an increasingly wider scale in the field of biotechnology, as for example in variety characterisation, agronomic traits identification and marker assisted breeding programs. Some DNA polymorphisms have also been found in Coffea arabica through different technical approaches such as RFLP (Lashermes et al., 1996a), RAPD (Orozco-Castillo, 1994; Lashermes et al., 1996b) and AFLP (Lashermes et al., 1999). However, it has been reported that the degree of polymorphism of this species is relatively low (Paillard et al., 1993; Paillard et al., 1996). C.a. is an autogamous species and this reproductive strategy undoubtedly leads to a high degree of homozygosity. Furthermore, the genetic base of most coffee cultivars is rather narrow (Bertraud and Charrier, 1988) thus reducing the degree of variability.

Microsatellites are highly polymorphic DNA repetitive sequences. They have been found in all animal and vegetal species so far analysed and are therefore expected to be present in C. arabica too. Moreover, they have a relatively high mutation rate which should increase the heterozygosity of coffee, thus compensating for the restricted genetic base. We carried out screening and selection of two genomic libraries enriched in Simple Sequence Repeats (SSR) to identify polymorphic microsatellites, in view of constructing a low density genetic map of Coffea arabica.

MATERIAL AND METHODS.

Samples.

The genomic libraries were constructed from DNA of a Caturra plant of the IRD collection. The polymorphism were assessed on a F2 population (Caturra x Ethiopia ET30, IRD) and on a limited number of cultivars.

DNA extraction.

Particular care was taken in DNA extraction and purification when preparing the genomic libraries. The methods reported by Murray and Thompson (1980) and Orozco-Castillo et al (1994) were modified as reported by Vascotto et al, 1999.

Preparation of the genome libraries.

Two genomic libraries were prepared, one enriched in (TG)n and the other in (ATC)n. The basic approach adopted for the enrichment in SSRs has already been reported by Rafalski et al. (1996),
Morgante et al. (1998). The relevant selection steps were a first enrichment through magnetic beads conjugated with biotin-streptavidin oligonucleotides complementary to TG and ATC and a second degree selection performed on the clones by colony hybridisation with TG or ATC oligonucleotides. The DNA fragments obtained following the magnetic beads step were cloned into the EcoRI site of λ-ZAPII (Stratagene, La Jolla, Calif.).

Sequencing and primer design.

The positive clones were sequenced using a Thermo Sequenase dye terminator cycle pre-mix kit (Amersham Pharmacia Biotec) following the producer's instructions. The reaction products were analysed on an ABI 373A sequencer. The sequences were screened for presence of SSRs and primers were designed for the positive sequences using the on-line programs Primer3 (Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA) or Primers! (Williamstone Enterprises). A constant tail KS (5'-TCGAGGTTCGACGGTAC-3') was added to one of the primers for each primer pair.

Amplification and analysis of the microsatellites.

To avoid using radioactive labels, we developed a three primer system: two primers were locus specific primers while the third primer was complementary to the constant tail of one of the primers and was tagged by either 6-FAM (6-carboxyfluoresceine) or JOE (2',7'-dimethyl-4',6'-dicloro-6-carboxyfluoresceine). Amplification conditions are reported elsewhere (Vascotto et al., 1999). The amplified fragments were run on sequencing gels in an automatic sequencer ABI 373A and alleles were identified via GENESCAN 672 (Perkin Elmer) software.

RESULTS.

Both genomic libraries contained a large number of clones carrying SSR. Thus the selection procedures proved to have been very effective. Table I reports the numbers of clones analysed in the various successive steps of selection. The clones presently screened constitute approximately 20% of the libraries.

<table>
<thead>
<tr>
<th>Clones screened</th>
<th>7,800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive clones</td>
<td>692</td>
</tr>
<tr>
<td>Clones sequenced</td>
<td>349</td>
</tr>
<tr>
<td>Clones containing SSRs</td>
<td>249</td>
</tr>
<tr>
<td>Primer designed</td>
<td>46</td>
</tr>
<tr>
<td>Clones containing polymorphic microsatellites</td>
<td>13</td>
</tr>
</tbody>
</table>

Some of the 249 SSR containing clones are still being analysed for primer design, hopefully they will provide more polymorphisms. The 46 primer analysed so far gave the following results: 14 gave no amplification product, 5 were aspecific, 2 gave an unexpected product, 12 were monomorphic and the remaining 13 showed polymorphic bands.

The screening for polymorphism was carried out on a limited number of cultivars and on a F2 population (12 plants) and accordingly a large number of different alleles was not expected. Nevertheless in our screening population we found from 2 to 5 different alleles. Normally each single plant tested had either one or two alleles, presumably they were either homo or heterozygote. Only locus E12-3CTG showed 3-4 alleles in the same plant. The result for the locus C2-2CATC can be seen in fig.1 where the parental plant Caturra is heterozygote, plants F1-1 is apparently homozygote for the 209 bp allele and plant F2-18 carries two alleles one of which is common to the Caturra progenitor.

DISCUSSION

As clearly shown by the sequencing, the approaches adopted here to generate two genomic libraries enriched in microsatellites were very effective. On the bases of the polymorphisms so far identified we can estimate that the two libraries contain at least 200 polymorphic microsatellites.

The second point of interest is the number of alleles found in each plant. As C. arabica is tetraploid and we could expect our primers to recognise the homologous locus on both the two pairs of ancestral homologous chromosomes. This is most probably the case for the locus E12-3CTG, as we
obtained 3-4 alleles in the same plant and the E12-3CTG primer definitely amplifies multiple loci. The remaining primer pairs are apparently specific for only one of the ancestral genomes.

Finally, we wish to point out that, as shown by the analysis of the F_2 segregating population, microsatellites in *Coffea arabica* behave as in any other species: they are codominant and can be easily traced through a family together with possible useful associated traits.

ACKNOWLEDGEMENTS.
This research project has been supported by the European Community grant, INCO-DC Contract n. ERBIC18CT970181

REFERENCES.
Lashermes, P., Trouslot P., Anthony F., Combes M.C., Charrier A. 1996b. Genetic diversity for RAPD markers between cultivated and wild accessions of *Coffea arabica*. Euphytica 87:59-64
Paillard M, Duchateau N, Petiard V. 1993. Diversité génétique de quelques groupes de carrières; utilisation des outils moléculaires; RFLP et RAPD. ASIC, 15º Colloque, Montpellier, pp.33-40.

SUMMARY.
We are currently screening two genomic libraries enriched for the sequences (TG)$_n$ and (ATC)$_n$. The identification of microsatellites is based on the following strategy: a) sequencing of the DNA inserts; b) design of specific primers for those clones containing Simple Sequence Repeats (SSRs); c) primer test on a panel of cultivars and on an F_2 population. Until now we sequenced about 350 clones, 71% contained a microsatellite. Of the 46 primer pairs designed, 13 gave polymorphic bands. As far as the allele distribution is concerned, we found loci with 2, 3 or 4 alleles. Each single plant carried only one or two alleles, presumably they were either homozygotes or heterozygotes. One single locus showed a peculiar behaviour: all the samples so far analysed carried either 3 or 4 alleles.
Fig. 1 Electropherograms of the amplification products of locus C2-2CATC: Pane (A) Caturra progenitor plant. Two examples of the F₂ segregating population are reported in the panes (B) and (C). The numbers close to the peaks refer to the allele expressed in bp.
18ème

COLLOQUE SCIENTIFIQUE
INTERNATIONAL SUR LE CAFÉ

18th

INTERNATIONAL SCIENTIFIC
COLLOQUIUM ON COFFEE

18.

INTERNATIONALES
WISSENSCHAFTLICHES
KOLLOQUIUM ÜBER KAFFEE

18º

COLÓQUIO CIENTÍFICO
INTERNACIONAL SOBRE
EL CAFÉ

Helsinki, 2-6 août 1999
DIX-HUITIEME COLLOQUE SCIENTIFIQUE INTERNATIONAL SUR LE CAFE

Helsinki, 2 - 8 août 1999

Association Scientifique Internationale du Café (ASIC)
Siège social : 18, rue de la Pépinière, 75008 PARIS
Introduction
- Universities and Companies in collaboration, Risto Hamuolla: 9
- New challenges for the coffee sector, Bertel Paullig: 13

Communications et posters

Chimie
Communications
- Key odorants of roasted coffee: evaluation, release, formation, W. Grosch: 17
- Evolution of coffee aroma characteristics during roasting, C. Gretsch et al.: 27
- Differences in chemical composition of electronically sorted green coffee beans, G. Full et al.: 35
- Characterization of mouldy / earthy defect in green Mexican coffee, E. Cantergiani et al.: 43
- The detection and characterization of free radicals generated during the decomposition of solutions of the coffee flavour compound furfuryl mercaptan, E.C. Pascual et al.: 50
- Retardation of coffee beverage volatiles by different milk products, H. Steinhard, M. Bücking: 58
- Diterpene degradation products in roasted coffees, K. Speer et al.: 65
- Carboxyatractylygenin and atractylygenin glycosides in coffee, A.G.W. Bradbury, H.H. Baizer: 71
- Stable isotopes and coffee quality: preliminary report, F. Serra et al.: 78
- Nonvolatile compounds in coffee, S. Homma: 83
- Structural aspects of polysaccharides from Arabica coffee, M. Fischer et al.: 91
- Isolation and characterisation of a foaming fraction from hot water extracts of roasted coffee, M. Petracco et al.: 95

Posters
- Effects of saliva and milk additives on the coffee flavour release in the oral cavity, M. Bücking et al.: 106
- Evaluation of acidity and bitterness of coffee brew, K. Aino, M. Motoyoshi: 110
- A new method for the determination of 16-O-Methylcafeol in roasted coffee, I. Körting-Spear et al.: 114
- Determination of the relationship between phosphat concentration and perceived acidity in coffee, M.I. Griffin, D.N. Blauch: 118

Génie alimenstaire
Communications
- Structural properties of coffee beans as influenced by roasting conditions, S. Schenker et al.: 127
- Online analysis of food processing gases by resonance laser mass spectrometry (RREMPI-TOFMS) : coffee roasting and related applications, R. Dorfner et al.: 136
- Evaluation of a microwave sensor for inline measurement of roasted and green whole coffee bean moisture, G.A. Wiseman: 143
- The relation between volatile retention and movement of ice front during freeze drying of coffee, J.M. Pardo et al.: 150
- Kinetics of coffee infusion: determination of the geographical origin of medium roasted coffees using extraction kinetics, D. Jagayli: 159
- Decaffeination of non-aqueous solvents using caffeic acid, B.L. Zeller, F.Z. Saleeb 168

Posters
- Computer simulation as a tool to model coffee brewing cellular automata for percolation processes; 2D and 3D techniques for fluid-dynamic simulations, R. Cappuccio, P. Suguio Liverani 173
- Mapping of Brazilian coffee quality, E.E.M. Mori et al. 179

Effects physiologiques
Communications
- A new physiological method to evaluate gastric irritation of different coffees, P.W. Lücker 185
- Biotransformation and lack of mutagenicity of ochratoxin A using combinations of mammalian biotransformation enzymes, H. Zepple et al. 193

Workshop I
- Workshop report: effects of coffee on brain and behaviour. What does coffee consumption bring in daily life? A. Nehlig 201
- Behavioral effects of caffeine in coffee, A. Smith, C. Brice 204
- Effects of caffeine on attention, J. Snel et al. 208
- Effects of coffee and caffeine on memory and aging, M.P.J. van Bostel et al. 209
- Neurochemical effects of caffeine and behavioural tolerance, B.B. Fredholm et al. 212
- Reinforcing effect of caffeine, E. Zvartau 213
- Caffeine does not activate the brain structures involved in drug addiction, A. Nehlig 215

Workshop II

- Modelling and HACCP tools for coffee quality improvement, J.M. Frank 223
- Fungi associated with the coffee berry borer Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae), F.E. Vega et al. 229
- Fungi producing ochratoxin A in coffee, M.H. Taniwaki et al. 239
- Recent international developments in the field of mycotoxins, E. Boutrif 248
- ICO/FAO/CFC project: enhancement of coffee quality through prevention of mould formation, E. Boutrif 257
- First Uganda FAO mission: How near is an HACCP system in dry Robusta coffee production? R. Viani 258
- Enhancement of quality in coffee by prevention of mould formation project, C.P.R. Dubois 260
- Studies on ochratoxin A in Indian coffees and its management strategies, R. Naidu et al. 261
- Enhancement of coffee quality through the prevention of mould growth: start up experiences in Uganda, H. Ngabirano 265
- Levels of ochratoxin A in blood from Norwegian and Swedish blood donors: estimated intakes and correlation between blood levels and food consumption habits, A. Thuwander et al. 276

Agronomie
Bioteletechnologie
Communications
- Potential, progress and future thrust areas of coffee biotechnology research in India, H.L. Sneath, R. Naidu 281
- A technically and economically attractive way to propagate elite Coffea canephora (Robusta) clones: in vitro somatic embryogenesis, J.P. Duocet et al. .. 295
- Coffee tissue culture as a new model for the study of somaclonal variation, V.M. Loyola-Vargas et al. .. 302
- Cryopreservation of seeds for long-term conservation of coffee germplasm and elite varieties: successful application at CATIE, S. Duocet et al. .. 308
- Molecular characterisation of the cultivar Bourbon L.C, S. Zelina et al. .. 314
- Cloning and characterisation of fruit-expressed ACC synthase and ACC oxidase from coffee, K.R. Neupane et al. .. 322
- Cloning and characterisation of xanthosine-N7-methyltransferase the first enzyme of the caffeine biosynthetic pathway, S. Misyadi et al. .. 327
- Genetically modified coffee trees for resistance to coffee leaf miner. Analysis of gene expression, resistance to insects and agronomic value, T. Leroy et al. .. 332
- In vitro culture of immature embryos of Coffea arabica cv Catimor, M.C. Simões-Costa et al. .. 339

Poster
- Polymorphic microsatellites in Coffea arabica, R. Mettullo et al. .. 344

Sélection et amélioration génétique

Communications
- Première évaluation d'hybrides naturels entre Coffea canephora et Coffea arabica de Nouvelle-Calédonie, P. Jagoret et al. .. 349
- Creation and selection of Coffea arabica hybrids in Tanzania, N.E. Nyange et al. .. 356
- Evaluation of an advanced breeding population of Arabica coffee, C.O. Omondi et al. .. 371
- Flavour: an ideal selection criterion for the genetic improvement of liquor quality in Arabica coffee, C.O. Agwanda .. 383

Posters
- Increasing Robusta production in Brazil. The potential of 200 000 hectares in São Paulo state, H.P. Medina-Filho et al. .. 390
- Coffee cultivars in Brazil, L.C. Fazniol et al. .. 396
- Twenty seven years of coffee breeding in Kenya: prospects for the release of new varieties, C.O. Agwanda .. 405

Pratiques agronomiques

Communications
- The influence of available water on crop development and yield of coffee (Coffea arabica L.) at Aiyura, Papua-New Guinea, J.V. Enden, P.H. Hombunaka .. 407
- Small holder coffee irrigation research in Kenya, M.P.H. Gathara .. 415
- Response of clonal Robusta coffee to organic and mineral fertiliser application in lake Victoria crescent zone, R.J. Ouma et al. .. 418
- The effect of green manure application to coffee plants growth, yield and quality in Kenya, J.K. Kimemia et al. .. 426
- Mise en évidence du transfert d’azote des légumineuses aux cafétiers par l’utilisation des méthodes isotopiques, D. Snoeck, A.M. Domenach .. 430
Posters

- Evaluation of some leguminous species for the establishment of Robusta coffee in Ghana, K.
 Osei-Bonsu et al. ... 438
- Preliminary investigations into the use of intercropping for weed management in young coffee in
 Ghana, K. Opoku-Ameyaw et al. 441
- Coffee pruning and spacing - management of tall Arabica coffee (*Coffea arabica* L.) in
 Papua-New Guinea, P. Talopa, J-M. Kiara 445
- Use of humic acid in promoting growth of young coffee Robusta seedlings in Nigeria, C.R.
 Obatolu .. 449
- Prediction of yield stability in Arabica coffee based on the stability of morphological
 components, C.O.Agwanda et al. 452
- Towards efficient coffee marketing in Kenya, M.T.
 Osongo .. 454

Technologie après-récolte

- How to avoid mould troubles in green coffee preparation, A.A.
 Teixeira ... 457
- Cell wall polysaccharides of coffee bean mucilage.
 Histological characterisation during fermentation, S. Avallone et al. 463

Maladies et insectes

Communications

- Effet de différentes conditions agro-écologiques sur le développement de l’anthuracose des baies du caféier Arabica dans
 l’ouest du Cameroun. Incidence sur le mode de conduite des plantations et l’application des traitements phytopharmaceutiques, D.
 Biyeysse et al. ... 471
- Histochemical differences during infection of *Coffea arabica*
 varieties by *Colletotrichum kahawae* isolates, E.K. Gichuru
 et al. .. 477
- Piégeage de masse du scolyte du café *Hypothenemus hampei* Ferr. (Col., Scolytidae) en conditions
 réelles : premiers résultats, B.
 Dubay et al. .. 480
- The role of parasites in the natural control of *Antestia*
 (*Anastrepias intricata* (Ghesquière and Carayon). Possibilities for further control
 using exotic parasites, M. Abebe 492

Posters

- Pre-selection methods for coffee berry disease resistance in
 Ethiopia, E. Derse ... 497
- Protolytic enzyme activity in *Coffea arabica* varieties varying in resistance to coffee berry
disease, E.K. Gichuru, P.N.
 Kingori .. 504
- Techniques for screening resistance to coffee berry disease
 (*Colletotrichum kahawae* Waller & Bridge), D. Kilambo et al. 508
- Evaluation en champ de l’efficacité de certaines
 formulations de fongicides vis-à-vis de l’anthuracose des baies du caféier Arabica, J. Bakala, E.
 Nyembo .. 512
- Method of rearing larvae and some aspects of the biology and
 control of cocoa stem borer
 Eulophus myrmeleon (Felder), M. Abebe ... 517
- Caffeine does not protect coffee against the leaf miner
 Perileucoptera cofeella, O.
 Guerreiro Filho, P. Mazafera ... 520
- Insects associated with coffee berries in Ghana, B. Padi 524

Rapports de synthèse / Summary reports ... 529

Participants .. 549