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INTRODUCTIOK 

As Cushing (Gulland, 197713) emphasizes, the" inte- 
gration of stock-recruitment relations in studies of 
population dynamics now appears to be more and 
more necessary. Therefore interest is moving from 
models simply describing the recruited phase towards 
self-regenerating models. Essentially the models used 
up to now have been deterministic. 

However, one need only examine an experimental 
stock-recruitment diagram to become convinced that 
a strong random component exists. In "addition, 
especially in connection with hydrological phenomena, 
the catchability of a number of stocks can flúctuate 
significantly from one year to another. These two 
domains appear to be the ones where the random 
dimension of the phenomena is most important. If 
we imagine the establishment of modeh aimed, 
a posteriori, at explaining the evolution of a stock, we 
can imagine a reduction in the significance of the 
random component by carefully examining the impact 
of hydrological factors and interspecific relations. 
Still, the random aspect remains important, at least 
with respect to hydrological Factors as long as we are 
not able to predict hydrological phenomena, and 
thus, practically, climatic ones, in projecting tGe 
evolution of a stock in the future. 

Therefore it is understandable that the integration 
of random components has aroused growing interest 
in recent years. This interest, which seems to be 
particularly important within the framework of scir- 

Original doculnent in French. English translation courtesy of 
the National Marine Fisheries Service, Southwest Fisheries Cen- 
trr, La Jolla, California, USA. (Contribution scientifique 597 du 
clfpartemcnt scientifique du Centre Océanologique de Bretagne'). 

CNEXO, Centre Océanologique de Bretagne, B.P. 337 29273, 
Brest Cedes, France. 

a ORSTOiM, Centre Octanologique de Bretagne, B.P. I 337 
29273, Brest Cedex, France. 

Formerly with ORSTOM, Centre de Recherches Océan;- 
graphiques. B.P. TI 18, Abidjan, Côte d'Ivoire. t Deceased 1979. 

The order of the co-authors has been determined by a MQnte 
Carlo method. 

plus production models (Doubleday, 1976), has ap- 
peared egually in connection with structural self- 
regenerating models. In this respect salmon stocks 
have been the object of particular attention (Allen, 
1973; Walters, 1975; Peterman, 1977). 

This article is not intended in any way to exhaust 
the subject of stochastic self-regenerating models, but 
very modestly to prolong a debate. I t  does so first 
by presenting several fundamental points in the con- 
struction of such models, then it studies the possible 
deviations in conclusions between deterministic and 
stochastic models on an essential problem recently 
advanced by Clark (1974), Gulland (1977a), and 
Peterman (1977), namely stock stability. 

CONSTRUCTION OF STOCHASTIC SELF- 
REGENERATING hlODELS 

STANDARD DETERMINISTIC MODELS 

We have had recourse to a traditional structural 
model, distinguishing a recruited phase, described 
simply by a Ricker exponential model (1958) and a 
stock-recruitment relation. 

iUoodelling Lhe recruited phase 
The exponential model used takes the year as a 

step in time. Animals are recruited when one year 
old. The number of age classes taken into considera- 
tion is variable and denoted JVB. The natural mor- 
tality is presumed constant and denoted M, as is 
customary. The individual weight is grouped in the 
vector W, \vhere M'l is the weight of an animal of 
age i. In  the basic model, Fi, the mortality suffered 
by a cohort betrveen the ages i and i+ 1, is proportional 
to nominal fishing cffort, f, and to the corresponding 
catchability. 

Since the accent is put on problems of stock stability, 
it has seemed useful to envisage the possibility of 
variations in catchability lvith stock size. The impor- 
tance of this phenomenon has actually been demon- 





424 b' A. L-iurec, A. Fontcneau, and C. Champagnat  

strated by Fox (1974) and Gulland (1977a). The 
factor to take into Consideration has been presumed 
to be the biomass exploited, equal to the sum of the 
weight of all age classes exploited, even partially. 
This biomass will be denoted Be. Following Fox (1974) 
in this, we have presumed that for a nominal effort 
J and exploited biomass Be, the effective fishing effort 
fe u-odd be equal to f c/(Bed), d being constant5. By 
convention it \.vas decided that f =fe for Be = Bo at 
the level of original stock abundancc. This implies 
that c = Bo". Therefore there exists a single parameter 
d. lye are reduced to the simple model for d = O. For 
d we envisage only positive or zero values. At the 
worst, Be varies throughout a fishing year where f is 
constant, and this means that fe must evolve. For 
simplification we have presumed that fe retained its 
initial value throughout the year. This is only an 
approximation which may introduce some bias. This 
bias could easily be reduced by operating with a 
time fraction less than a year. 

Finally the spawning biomass must be predicted 
for the needs of the stock-recruitment relation. I t  is 
assumed that the eggs are laid at the beginning of 
the year. Therefore the total fecundity must be cal- 
culated at this time. If the abundance of class i at this 
moment is Ari, with the individual weight being PVi, 
a corrective factor f c r i  will be used making the contri- 
bution of class i to total fecundity six Wgxfcrg, with 
fcri being called relative fecundity. This is a factor 
which may involve the sex ratio, and the relative 
degree of maturity. I t  is obviously zero for the im- 
mature classes. Concretely it is possible to reduce 
Ni x J V f  x f c r t  to the number of eggs laid by class i, 
as Garrod and Jones (1974) have done, if we acknow- 
ledge that there is no compensatory mechanism before 
the eggs are laid. If such mechanisms exist, the 
fecundity calculated is only a potential fecundity. 

Total fecundity, S, equivalent for us to a spawning 
biomass, u41 therefore be given by 

2 JV~ x 1Vi x fcri. 

Noting that f c a i  = PVixfcri, wit4 fcai thus designat- 
ing absolute fecundity, total fecundity will be given by 

N B  

i=1 

S = 1 J v g  x f k i .  
i 

Stock-recruitmetif relataons 
We shall not go into detail with respect to matura- 

tion phenomena and survival of eggs and larvae. 
We shall simply presume that there is a relation be- 

5T\hen Be tends toward O, q tends toward infinity. This 
paradoxical fact should not be the rule. Far a given range of 
values of Be, escluding very small values, the formalism used 
still probably constitutes a useful approximation. 

twcen the spawning biomass S and thc recruitment 
derived from it a year later, denoted R, as is customary. 

Ricker base relation 
As a basic model we used the traditional Ricker 

(1938) stock-recruitment relation R = a 5' c-ß*s. We 
have not liad recoursc to relations of thc type of 
Beverton and Holt (19571. because in general \ve are 
dealing \rith the left portion of the stock-recruitment 
curves, considering high levcls of esploitation capable 
of putting the stock in clangcr. In  this left portion the 
curves of Ricker and of Beverton and Holt are close. 
We know that in the Ricker relation masimal recniit- 
ment is reached \\.hen S = l /ß ,  and is then equal to 
a@. We can better grasp the concrete meaning of a 
by referring to the concept of fecundity per recruit 
(Suda, 1966; Le Guen, 1971), estimated, if it is 
assumed that the stock is in equilibrium and that the 
exploitation regime is invariable in time, by dividing 
total fecundity S by recruitment. Then it is easily 
verified (cf. Laurec? 1977, for example) that the 
minimal fecundity per recruit under which the stock 
no longer survives, is equal to l la .  Maximal recruit- 
ment is achieved when fecundity per recruit is equal 
to ela. 

IXTRODUCTION OF XS INFLECTION POIXT IN T H E  
ASCENDING PORTIOS 

A simple method has been used: it consists of 
multiplying a simple Ricker function, as e-ß5 by 
(1 -e-sS). A supplementary parameter F is thus intro- 
duced. When F tends toward infinity, the tendency 
is toward the ordinary Ricker relation. 

The introduction of an inflection point corresponds 
to giving consideration not only to compensatory 
phenomena in stock-recruitment relations, but also 
depensatory phenomena, assumed to be preponderant 
at lo~v stock levels. 

With respect to problems of stock stability, the most 
important point is not so much the inflection point, 
as the point where the tangent to the stock-recruit- 
ment curve passes through the origin (Gulland, 1977a). 
The slope of this particular tangent corresponds to the 
inverse of the minimal fecundity per recruit \chich 
can support the stock in a lasting way. At this stock 
level the recruitment per unit of fecund biomass, 
RIS, is maximal. If Sdiminishes, RIS does not increase, 
which would eventually have permitted the stock to 
survive. It is intuitively true that the stock cannot 
continue to resist exploitation which tends to reduce 
its biomass to a value below the threshold mentioned. 

The corresponding level of the stock can be cal- 
culated in a relatively simple way: if the stock- 
recruitment relation is given by R = as e-ßS (1 -e-sS), 
it is equal to (116) log (l+ß]S). 



, 

A study of the stability of some self-regenerating stochastic models 42 5 

Figure 1. Ricker stock recruitment curve modified, with inflec- 
tion; a = 147, ß = 0.006, 6 = 0.01. 

Figure 1 presents a stock-recruitment curve of the 
type used. This figure corresponds directly to Figure 1 
in Gulland (1977a), where, however, the stock- 
recruitment relation has been given an exact mathe- 
matical formulation. This author gives a discussion 
of the differences between points A and B; only point 
B corresponds to a stable stock equilibrium. 

ISTRODUCrION OF RANDOM COMPONENTS 

I n  the recruited phase 
Basic model: catchability independent of the stock size 

At this level, as mentioned in the introduction, 
catchability can be made random from one year to 
another. Then it will be supposed that ¿j corresponds 
to mean catchability, which can be multiplied each 
year by a corrective random factor qa, which is ex- 
pected to equal 1. It only remains to choose a distri- 
bution for qa. I t  has seemed useful to us e6 have 
recourse to a dissymmetric distribution, opposing the 
possibility of very high but not very probable catch- 
ability to the possibility of more mediocre catchability 
but with a relatively higher frequency. In  this sense 
Tve used a log-normal distribution; log (qa) then 
follows a normal law Tvith a standard deviation 
marked oq and a mean qm. The expectation of qa is 
equal to exp[qm+(oq2/2)]. For qa to have a mean 
equal to 1, it is necessary for qm to be equal to -oqz/2. 
Therefore only a single parameter remains to be 
chosen, crq, which will actually define the importance 
of the random variations in catchability. It is possible 
to refer to the variance of qa to understand this 
variability. It is preferable to refer to the complete 
distribution, and in Figure 2 we have presented the 
probability density of qe, associated with increasing 
values of oq. 

Note the deviation between the modal value and 
the mean value of these distributions, connected with 
their dissymmetry. This dissymmetry is important at 
the level of population dynamics: it corresponds to 
the fact that some years of very intense exploitation 

are countered by more years of exploitation with an 
intensity moderately below the mean. 

It has been acknowledged that catchability could 
vary in a random way from year. to year, but would 
remain constant rvithin one year. In addition it has 
been presumed that the random variations were in- 
dependent from one year to another. The random 
factors qa thus form a n  annual series ivhich is pre- 
sumed to constitute \chite noise. This can only cor- 
respond to a primary approximation. There must 
necessarily exist variations Ivithin the year, and in 
addition there must be a certain amount of continuity 
in time, not a disruption at the beginning of each year. 
I n  any event it is necessary to consider a process 
continuous in time to describe the random variations 
in catchability. We have to some extent rendered 
such a process discrete. The process, and the hypo- 
thesis of independence of variations in various time 
intervals, _must be rethought for each stock. The same 
is true for the nature of the random distributions 
retained. The simple framework defined appears suf- 
ficient to us for a general surve)' of the problems. 

Variable catchability according to stock level 
Catchability \\'as multiplied by a random factor qn 

presumed to be independent of stock level. 
Thus, with Be being the biomass exploited at the 

beginning of the year, real stock catchability during 
this year will be given by: (rlBed)qa, \vith log (qa) 
following a log-normal law lvith a standard deviation 
oq, with expectation - oq3/2. 

The hypothesis according to which the variance 
of log (qa) does not depend on the stock condition 
does not necessarily follow. In  particular it is possible 
to ima.gine situations where oq x\.ould tend to increase 
when the stock became scarce. Here again the simple 
hypothesis must be re-examined for each particular 
case. 

Random stock-recruilment relatioils 
We shall essentially refer to rhe case \\.here the basic 

model is provided by Ricker's stock-recruitment re- 
lation. T ~ v o  methods can be envisaged for extending 
this deterministic model into a random model: 

For any stock level it is possible suddenly to interject 
a random residual of zero expectation, or a multi- 
plicative factor of expectation 1, which \vil1 be added 
or multiplied by the mean value predicted by the 
deterministic model, as exp(-ßS). The second ap- 
proach consists of considering the parameters a and Q 
of Ricker's law as random ones. Allen (1973), for 
example, uses a procedure of this type. 

The second approach can be considered more satis- 
factory from the theoretical point of view. If we were 
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(2) up = 0.2, (3) uq = 0.3. 
Figure 2. Distribution of q factors (log-normal law). ( I )  q = 0.1, 

- .  
able, for example, to connect the values of a and ß 
to rates of development or to the abundance of food, 
a random factor, because it is dependent for instance 
on temperature, we could even deduce a and ß from 
the temperature distribution. 

In this sense it would be interesting to reexamine 
the models devoted to the survival of eggs and larvae 
(Jones, 1973; Cushing and Harris, 1973; Lett et al., 
1975). 

Because of a lack of sufficiently detailed knowledge 
and because we have no inclination to study a given 
stock, we followed the first approach; it would be 
interesting with an exact stock to recall, a t  least, the 
second approach, even if we did not follow it strictly. 
We have considered that a random multiplicative 
factor r ,  also intervenes at every level S of total 
fecundity, if the mean recruitment value is equal to 
a s  exp(-ßS). 

It has been acknowledged that the values taken by 
rn  are independent from one year to another. Here 
again this hypothesis must be questioned for each 
precise stock. Everything actually depends on the causes 
of the variability in recruitment. If, for example, it 
is related to the abundance of a long-lived predator, 
this will imply a certain amount of continuity from 
)-ear to year. Even if the question concerns plankton, 
i t  is known that the multiyear variations do not 
necessarily constitute white noise (Colebrook, 1972). 
I t  we come back to the primary causes, such as 
hydrological variations, the existence of more or less 
long-term variations is frequently mentioned. Here 
again, if we continue initially with the simplest model, 
it may be necessary to adapt this basic model to each 
stock. 

To specify the stochastic model, the major traits 

of Ivhich havc been qualitatively described, it is 
necessary to choose the distribution of ra for each 
level of parental stock S. 

Here it seemed useful to havc rccoursc to a dis- 
symmetric distribution and w c  chose a log-normal 
distribution. Log (rm) thercfore folloivs a normal laiv 
of the standard deviation or (S), capable as \ve shall 
see of varying \\.ith S. It is necessary .to choose a mean 
of log (ra:, equal to -or2(Sj,’2 for ru tn have an es- 
pectation of 1 .  

It is still necessary to fix the variations in the 
standard deviation of log ( y n )  with S. If ire simply 
assume that this standard deviation is constant, the 
recruitment variability tends to diminish too quickly 
in the left branch of the stock-recruitment curve, 
when reference is made to the majority of cases known. 

In order to remedy this, it-is necessary to increase 
or(S) when S diminishes. The simplest procedure is 
to set or(S) = b/S. This time i t  is on the right that 
the variability appears too weak. The respective 
merits of the t\co previous solutions can be combined 
by setting or(S) = a+b/S.s This is illustrated in 
Figure 3, with a = 0.2 and b = 30. 

It is obviously possible to envisage more complex 
variations of o r ( S )  according to 5‘. The formula pro- 
posed is the simplest which is not in obvious contra- 
diction with knoivn facts. As an esample ire can 
verif>r that the stock-recruitment diagram presented 
by Garrod and Jones (1974) seems to fit the frame- 
work defined in this way. In a more general \\-ay it 
takes into consideration very great variability in the 
left limb of the curve. This makes very significant 
recruitment possible, even \\.hen the mean recruitment 
is mediocre. Perhaps these are the terms which should 
be used to interpret the opinion sometimes advanced 
that excellent recruitment can precede a drop in 
recruitment. Actually it is possible xvithin the frame- 
work of the model to reconstitute analogous situations 
by simulation. The stochastic model proposed could 
also be used for estimating stock-recruitment relations 
on the basis of experimental diagrams. The traditional 
adjustment by least squares is an optimal procedure 
only xvithin the framework of an exact stochastic 
model, where the random residuals are additive, 
normally distributed, and with a variance indepen- 
dent of the stock size. The unsuitability of this model 
is obvious, and it lvould be interesting to esaniine 

For a Ion- value of S, the variability becomes very important. 
I t  may appear too high, in tvhich case it \vottlcl be preferable 
to use a relation such as r(S) = I/[(a+ b ) / S ] .  \\ïth the relation 
used in this paper, the very high variability at lo\v levels of the 
stock. associated with a log-normal distribution, means that when 
the stock is very depleted, a good, and even a very good. recruit- 
ment may occur, but with a very small probability. In most 
cases one gets only poor recruitments; in practice we are very 
close to a situation where an absorbing state esists a t  low stock 
levels. 

- 
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Figure 3. Stochastic stock-recruitment relation derived from 
Ricker's curve. u = 1.47, ß = 0.006, a = 0.2, b = 30. Solid 
line, average; long broken line, median; short broken lines, 
quantiles, 25%; dotted lines, quantiles, 16.6%. 

its effects on an estimate of the parameters of the 
mean stock-recruitment relations. 

While the reasoning followed was made with re- 
ference to a mean recruitment stock relation accord- 
ing to Ricker, we followed the same procedure exactly 
in the relations involving an inflection point in the 
left limb. For a parental stock of level S, the mean 
recruitment is as exp(-ßS) x [ I  -exp(-ßS)]. This is 
complicated by a random multiplicative factor Ta. 
Log (ra)  follows a normal law of which the standard 
deviation is equal to a+b/S as previously. 

Finally the stock-recruitment relation and catch- 
ability can be presumed to be random. The corre- 
sponding random factors have been presumed to be 
independent. This could be discussed for each case: 
it is conceivable that recruitment and catchability 
are subject to the same hydrological phenomena. I n  
this case independence, a priori, cannot be admitted. 
A model including a dependence between variability 
of recruitment and catchability would also be of 
interest, because it can bring out the importance of 
the random phenomena: if, for example, an abnorm- 
ally great catchability is associated with mediocre 
recruitment, the dangers entailed by this could be 
grasped intuitively. 

STABILITY OF STOCK AND STOCHASTIC MODELS 

While the problems of stability are not the only 
ones which merit study within the framework of 
stochastic models, they do have particular importance. 
The concept of equilibrium is different in a stochastic 
context: the conditions of equilibrium can also be 

different. The most famous example in this respect 
is provided by the model of Lotka-Volterra which, 
when it is completed by random components, syste- 
matically predicts the final extinction of one or the 
the other of the two populations involved (cf. for 
example, Bartlett, 1960). Other examples can be 
found in May (1 974). I 

This discussion of the problems of stability will 
begin \\-ith several generalities. In this second stage 
we shall be interested in the so-called basic model 
which combines a Ricker stock-recruitment relation 
with a Ricker exponential model, Jvhere catchability 
does not depend on stock size. Ive shall end with the 
influence of the complications discussed by Gulland 
(1977a.) : the presence of an inflection point in the 
stock-recruitment relation and variations in catch- 
ability according'to stock size. 

GENERALITIES 

Studies of equilibrium and transition situations 
Within the framework of a deterministic self- 

regenerating model, the definition of a stable equili- 
brium is simple. A stock is in equilibrium when it 
remains in the same condition year after year, apart 
from any external disturbance. Equilibrium is stable 
if, when the stock is slightly displaced from its equili- 
brium condition, it tends to return to it spontaneously, 
as long as the disturbance is sufficiently slight for the 
stock to remain in a so-called attraction domain 
encompassing the equilibrium condition. The more 
or less great attraction of the equilibrium condition 
corresponds to the concept of elasticity. For more 
detail, in an area exceeding the fishing framework, 
one can refer, for example, to Orians (1975). 

If a level of stock exploitation is considered, the 
first stage consists of stud!-ing whether or not there 
is a state of equilibrium corresponding to this exploita- 
tion level. This is not sufficient. It is necessary to 
study the transition situations to find out if a stock 
is endangered by fishing in the short term or in the 
long term. This is even more true because it is incon- 
ceivable that an  exact model would remain satis- 
factory for a stock over a very long period of time. 
I n  this sense we have not so much accented the fact 
of knowing whether there might or  might not be 
extinction at the end of a possibly very long period, 
but in relation to the future of the stock for several 
decades. More exactly we limited the study to 50 
years of a given fishing pattern. While the evolution 
throughout these 50 years has been studied, particular 
attention has been accorded to the situation after 
20 years. 

In  order to be complete a study of exploited stock 
stability should include an investigation of stock re- 

,/") 
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cuperation with reduced exploitation. Actually this 
restoration could be of various degrees of difficulty, 
according to the stock-recruitment relation and ac- 
cording to possible variations in catchability with 
stock size (Fox, 1974; Gulland, 1977a). 

Here again the stochastic dimcnsion of the pheno- 
mena complicates thc model. I n  order to limit the 
size of the present document, we have postponed this 
research for future studies. 

Eqziìlibrium and pseudo-equilibrium in  stochastic 
models 

If we exclude the possibility of extinction of the 
stock for the moment, we can easily transpose the 
idea of equilibrium as defined with respect to deter- 
ministic models. I t  is no longer a question of the stock 
rcmaining identical; but if the condition of the stock 
undergoing random fluctuations is described by a 
stationary annual series, we can speak of a state of 
equilibrium. This corresponds to the existence of‘ a 
stationary distribution : concretely, if some changes 
are possible from year to year, they do not reveal 
any evolution (May, 1973). 

If extinction is possible, it is even more probable 
the longer one waits. Thus it is possible to evaluate 
the probability of extinction for a given delay. 
Naturally this probability continues to rise as years 
elapse. 

It is also possible to become interested in the distri- 
bution of situations by excluding cases where extinc- 
tion has occurred. In  certain stochastic models (mono- 
type branching processes), it is demonstrated that the 
distribution of these situations stabilizes (Yaglom, 
1974; in Lebreton, 1978), and we then speak of 
quasi-stationary distributions. Lebreton (1978), using 
a population of storks as an  example, finds that this 
remains true for a multi-type branching process. The 
processes studied are not branching processes. It 
would still be interesting to examine whether or not 
a phenomenon close to the quasi-stationary states 
mentioned is found. 

Without entering into a mathematical study, the 
complexity of which is beyond us, it is  still interesting 
to study the evolution of the probability of extinction 
with the passage of years and the evolution of the 
distribution of remainders (excluding extinction). 
Finally, in order to obtain a complete picture of what 
the stochastic dimension involves, several typical 
evolutions should be envisaged. 

Practical stzidy by the Monte Carlo method 
The complexity of the stochastic models used is 

sufficient for an explicit resolution of them to exceed 

our mathcmatical ability. Therefore w e  havc had 
recourse to simulation according to thc Monte Carlo 
method, using an algorithm generating pseudorandom 
numbers. 

Considering effort f, we shall begin \vith a stock 
at the level corresponding to the virgin stock in the 
deterministic model. For 10 years the stock !vil1 cvolve 
\vithout any exploitation. During the next 10 years 
the stock is subjected to exploitation at level f 2. I t  
is not until the 21st year that the effort stabilizes at 
levelf. The stage at levelf/:! aims at reducing discord 
which can create too sudden a variation in effort. 

For each value of effort f, the simulation \vas re- 
peated 100 times, the limitation corresponding to the 
necessary calculation time. More precisely we followed 
the evolution of the spawning biomass S. For a given 
year w e  did not consider absolute extinction, corre- 
sponding to an absolutely zero stock, but a virtual 
extinction. In  effect we considered that if the spawn- 
ing biomass was less than 1150 of \\.hat it was in the 
virgin stock, the stock was ‘%rtually” extinct. This is 
the sense in which the frequencies of estinction pre- 
sented below must be interpreted. Since the Monte 
Carlo method is used, these frequencies ase probability 
estimates based on samples of size 100. It is easy to 
construct confidence intervals. We have not added 
them to the figures in order not to overburden the 
graphs. 

Theoretical stocks taken as examples 
Two stocks were studied, differing essenbially in 

their longevity. This factor appears essential, a priori, 
because a stock of‘ great longevity should be more 
capable of correcting random variations. 

We shall speak of stocks 1 and 2, which respectively 
entail 8 and 3 age classes. Stock 1 J\.ill be follolved 
kvith particular attention. For the recruited phase \ve 
\\‘ere guided by the example of the yellowfin (Thuntiza 
albacares) for stock 1 and that of the Ghana sardine 
(Sardinella aurita) for stock 2. We do not make any 
pretence of describing these stocks, the stock-recruit- 
ment relation and structure of which remain largely 
unknown. 

For stock 1 the vectors indicating the weight in- 
crease, the relative and absolute fecundity and catch- 
ability are compiled in Table 1. Table 2 is similarly 
associated with stock 2. In both cases the age at first 
capture is less than maturity. This has the purpose 
of augmenting the problems of stability and also 
corresponds to observations. 

For the stock-recruitment relation \ve used the basic 
model a = 1.47 and ß = 0.006 for stock 1, according 
to previous notations in Ricker’s formula. Within the 
framework of the deterministic model this corresponds 
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Table 1. Fundamental characteristics of stock 1. NB = 8, hj! = 0.7, a =. 1.47, ß = 0.006 

&e 1 2 3 4 5 6 7 8 9 

\\.’eight at age i 1 2.7 10.5 30 so 76 99 1 O0 1 O0 
Relative fecundity a t  age i O O 0.57 0.666 1 0.79 0.6 1 0.60 - 
Absolute fecundity at age i O O 6 20 50 60 60 60 - 
and age i+ l  0.1 0.1 0.1 0. 1 0. I O. 1 00.1 o. 1 - 
Catchability between age i 

to a minimal fecundity per recruit of 0.68. The 
corresponding effort is essentially equal to 810. It can 
be verified that the total mortality can scarcely exceed 
twice the natural mortality. 

In the basic model for stock 2, a = 0.45 and ß = 
0.0025. In  the deterministic model framework the 
limiting fecundity per recruit is 2.22 for an effort 
of 1500. Thus the stock can support a total mortality 
as high as 2.5 times the natural mortality rate. 

BASIC MODEL 

Itflueiice of recruitment variability 
Stock 1 

As we have said, the limiting effort in the deter- 
ministic model is essentially equal to 810. If we con- 
sider virtual extinction in the sense defined earlier, 
this essentially corresponds to the effort leading to 
virtual extinction in 50 years. To reach virtual ex- 
tinction in 20 years, a level of effort equal to 900 is 
needed. 

The stock-recruitment relation has been rendered 
random according to the procedure indicated in the 
first part of this paper, with a = 0.2 and 6 = 30. 
Therefore refer to Figure 3 to judge recruitment 
dispersion by quantiles. The conclusions relative to 
stability obviously depend on the variability, and 
especially on 6, which controls this variability at low 
levels of abundance. Depending on whether 6 is strong 
or weak, the features directly related to the random 
component will be marked or slight. 

Figure 4 shows the virtual extinction frequencies in 
20 and 50 years for different effort levels. The sigmoid 
curves obtained in this way are to be compared with 
the “step” curves found in the deterministic model. 
If virtual extinction in 50 years is considered, this 
seems possible from an effort of 600. At the 650 level 
it is relatively frequent. At the 800 level, or approx- 
imately that of extinction in the deterministic model, 
extinction is quasi-systematic. Therefore the deviation 
is practically in a uniform direction: the r p d o m  
component renders unstable stocks which the deter- 
ministic model would consider as stable. The range 
of efforts concerned is not negligible, since for an 
effort equal to 650 (or 200,; lower than the critical 
deterministic effort), the risk of extinction in 50 years 
is significant. 

As May (1973) notes, for an equilibrium to exist 
in a random frameivork it is necessary that the power 
of attraction of the equilibrium situation over neigh- 
bouring situations be sufficiently strong. In other 
words elasticity must be sufficient. This deserves to 
be refined mathematically, but can intuitively assist 
in showing that in  practice there is no equilibrium 
possible if the fecundity per recruit is too close to 
the limit. 

O n  a theoretical basis this again demonstrates that 
it is not necessary systematically to attribute stock 
decline either to fishing activity or to hydrological or 
climatic accidents. There is interaction when a hydro- 
logical accident intervenes in a stock previously thin- 
ned out by fishing; this stock would have survived 

Table 2. Fundamental characteristics of stock 2. 
NB = 3, il4 = 1, a = 0.45, ß = 0.0025 

Age 1 2 3 4 

\Vcight at age i 5 40 80 120 
Relative fecundity 
at age i O 0.6 0.5 - 
Absolute fecundity 
at age i O 24 40 - 
Catchability between 
age i and age if1 0.1 o. 1 o, 1 - 

,..‘ I 
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EFFORT 
SOO 600 700 800 900 loo0 

Figure 4. Frequency of virtual stock extinction with random 
recruitment for stock 1. Solid line, after 20 years of full exploi- 
tation; broken line, after 50 years. 
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Figure 5. Histograms of spawning stock biomass S for stock 1, after 50 years for a virgin stock and after 5, 10, 20, and 50 years of full 
exploitation, with a fishing effort equal to 650, 750, and 850. The arrows indicate the x-alues predicted by the deterministic model. 

without this accident, but equally it would have been 
able to endure the accident if fishing had not thinned 
it out. 

If the probabilities of extinction in 20 years are of 
interest, we come to analogous conclusions. We can 
even note that in the stochastic model it is possible 
to extinguish in 20 years a stock which the deter- 
ministic model predicts as stable for the effort under 
consideration. This is particularly true for level 750. 

If interest goes beyond extinction probabilities, 
reference can be made to Figure 5. This figure presents 
histograms of the values of the spawning stock biomass 
5' after 5, 10, 20, and 50 years of full exploitation. 

On the abscissa the unit is equal to 1/50 of the spawn- 
ing stock biomass of the virgin stock in the deter- 
ministic model. The class farthest to the left thus 
defìnes what we have called virtual extinction. These 
histograms are given for three effort levels: 650, 750, 
and 800. With respect to the last level, we can see 
that extinction is relatively rapid and tolerates almost 
no exceptions. As we have seen, chance can scarcely 
assure survival of a stock condemned by the deter- 
ministic model. If we consider level 750, we see cases 
appear after 20 years where the stock is not only not 
extinct, but is at a level of relatively high abun- 
dance, comparable on the whole to that predicted 



1 

t 

,' , . ., 
. "  

A study of the stability of some self-regenerating stochastic models 43 1 

by thc dcterministic model. However, after 50 years, 
survival is much less probable. 

Level 650 is even more intcresting, because we 
can clearly see the divergence of cases of extinction 
and cases where it maintains itself at a high level, or 
rven at a vcry high level in certain cases. If we con- 
sider the distribution of non-extinguished stocks, we 
see that this distribution has scarcely evolved between 
the 20th and 50th years, \\.hile the frequency of es- 
tinction has increased. This can be compared with 
the existence of quasi-stationary distributions men- 
tioned in the generalities. The evolution of the stocks, 
\vithin the framework of our hypotheses, does not 
seem to proceed by a systematic decrease year after 
)-ear. I n  a number of cases the stocks maintain them- 
selves \vithout any notable. evolution, but gradually 
as time passes there are more and more frequent 
breaks. Therefore it is relatively normal for a stock 
to be able to niaintain itself for a greater or lesser 
period of time, despite exploitation, and then suddenly 
to collapse. This does not necessarily imply a definitive 
evolution of the environment (for example, one re- 
lated to a multispecific phenomenon), but a simple 
accident ivhere the stock diminished by fishing is not 
capable of recovering. 

Stock 2 
The coefficients a and b \vere chosen in such a way 

as to obtain a relative variability comparable to that 
of stock 1. Thus, for this variation to be the same for 
high levels of abundance, we kept the same value for 
o, i.e., 0.2. In order for the relative variability to be 
the same at the mean maximal level of recruitment, 
Ive chose the value 72 for b instead of 30. Thus the 
variability is the same to the point where, if the analog 
of Figure 3, corresponding to stock 1, were plotted 
for stock 2, we Ivould get the same curves, including 
the quantiles, by changing the abscissa scale. 

As could be understood fiom the generalities, with 
an equal variability the differences between the deter- 
ministic and stochastic models become clearer for 
stock 2 Tvjth respect to stock 1. This appears in Figure 
6, the analog of Figure 4, Lvhere the frequencies of 
virtual extinction are presented. This time, in 50 
years, extinction appear? a number of times, beginning 
with level 800, instead of 1500 in the deterministic 
model. The frequency of extinction is very significant 
beginning with effort 1000 (66% of the critical level 
in the deterministic model). From effort 1200 on, 
extinction is practically systematic. 

Analogous conclusions are drawn if the situation 
after 20 years of full exploitation is considered. 

If, as for stock 1, we follow the evolution of the 
spawning stock biomass by means of histograms, w e  
see even more clearly a divergence appearing between 

FREPUENCY 
OF EXTINCTION 

, 

Figure 6. Frequency of virtual stock extinction with random 
recruitment for stock 2. Solicl line. arter 70 years of full exploi- 
tation; broken hic.  after 50 years. 

the cases of extinction and the cases where a relatively 
abundant stock would survive. This appears in Figure 
7 where,, if we compare the situation after 5, 10, and 
50 years of exploitation with the effort of 1000, the 
situation is again reminiscent of quasi-stationary 
distributions. 

This can be seen better if we refer to several typical 
cases. These cases are presented in Figure 8, where 
we can follow in one column the evolution of effort, 
spawning-stock biomass, recruitment, weight of catch- 
es, and catches per unit of effort. The fishing is 
analysed for 70 years with 10 years of no fishing 
effort, followed by 10 years of fishing effort equal to 
500 units of effort, followed by 50 years of effort equal 
to 1000 units. The left-hand column corresponds 
to the deterministic model; the centre column cor- 
responds to a favourable case where the stock is 
maintained at a high level after JO years of high fishing 
effort; the right-hand column corresponds to a case 
where sudden extinction occurred rapidly after 22 
years of exploitation. If reference is made, for example, 
to the c.p.u.e., a sudden drop of strictly random 
origin can be seen in the unfavorable case. 

Examination of these two cases shows very well 
how the destiny of t\.vo stocks governed by the same 
stochastic model can differ, depending upon whether 
recruitment has been above or below the mean. Note 
in passing that excellent recruitment preceded the 
collapse in the unfavourable cases. 

Random catchability 
Deterministic recruitment, random catchability 

The typical deviation of the logarithm of qa was cho- 
sen as equal to 0.2. Here again, depending upon wheth- 
er oq is increased or reduced, the originality of the 
random model is marked to a greater or lesser degree. 

If we consider stock 1, \ve can again study the 
frequency of virtual extinction in 20 and 50 years, 
depending on the effort levels. These frequencies are 
shown in Figure 9. This can be compared with 
Figure 4, relative to the case where recruitment was 
random. The originality of the stochastic model ap- 
pears this time as much less marked. 

, 
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If we are interested in the frequency of extinction 
in 20 years, an effort level of 850 must be achieved 
for it to result. The risk of extinction is not propagated 
in any significant way by efforts below the critical 
effort in the deterministic model. In addition it can 
also be seen that, beyond the limiting effort of the 
deterministic model, the stock may have a chance of 
survival in the stochastic model. This time the devia- 
tion is not systematic. In  the cases studied there is 
even quasi-symmetry. 

If we go beyond the probabilities of extinction to 
study the distribution of survivors, we can again see 
empirical histograms with variations reminiscent of a 
quasi-stationary distribution. 

The originality of the stochastic model is again 
clearer if we return to stock 2. However it is much 
less marked than when recruitment is random (Fig. 
10, compared with Fig. 6). 

Random recruitment and catchability 
Whether stock 1 or stock 2 is considered, there does 

not appear to be any dangerous synergic effect. 

Essentially the same results are found as when recruit- 
ment alone was random. This is illustrated as regard. 
the frequencies of extinction for stock 1 in Figure 11 
and for stock 2 in Figure 12. 

Xaturally this i s  only true if the random compo 
nents of recruitment and of catchability are indepen 
dent. If the cases of extinction are removed, Ive cai 
equally well find the phenomenon of quasi-stabiliza 
tion of the stock level again. 

In summary the random fluctuations of recruitmen 
are more important than those of catchability wit1 
the hypotheses, and especially the distributions, chosen 
and with the values retained for the parameter: 
characterizing the various variabilities. In  addition 
in the cases studied the random fluctuations o 
catchability can just as well save a stock condemnec! 
by the deterministic model as endanger a stock con- 
sidered as stable by the deterministic model. Likewisc 
there is always the unavoidable progressive increas 
in the frequency of extinction as the years pass 
forming a contrast with an apparent stabilization O 

the distribution of survivors. Therefore in all cases W( 
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Figure 8. Examples of the temporal evolution for: fishing effort, spawning stock biomass, recruitment, catch, and catch per unit of 
effort for stock 2. Left-hand column, deterministic model; centre column, stochastic model, favourable case; right-hand column, 
stochastic model, unfavourable case. 

will tend to witness sudden drops rather than pro- 
gressive reduction if a stock can be extinguished. 

IMPACT ON T H E  SOPHISTICATED MODELS 

We shall successively examine the interaction of the 
random phenomena with the two sophistications dis- 
cussed by Gulland (1977a): the introduction of an 
inflection point in the stock-recruitment relationship 
and the variation in catchability according to stock 
size. Finally we shall make several remarks on the 
unstabilizing effect of the random components. 

Introduction o f  an injection point in the stock-recruitment 
relation 

We chose 0.01 as the value for 6. The values of a 
and ß were modified so that extinction would occur 

at the same effort level as in a simple Ricker relation. 
Essentially we shall study the interactions with the 

random component of recruitment. In this case, 
therefore, the deterministic model predicts extinction 
if effort exceeds 805. The introduction of a random 
component does not significantly increase the danger 
in the case of lower effort levels: the increase is much 
less than with a simple Ricker relation (Fig. 13). 

Variations i n  catchability with stock size 
In  principle these variations are an  important un- 

stabilizing factor. Actually a random reduction in 
stock entails an increase in catchability which increases 
mortality and also accents the effect of reduction. 
Still the interactions with the random fluctuations of 
recruitment and catchability are not very great. 

28 
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Figure 9. Frequency of virtual extinction for stock 1. Random 
catchability. Solid linc, after 20 years of full exploitation; 
broken line, after 50 ycars. 

JvOteS on the destabilization caused by the random con2ponents 
If we consider an exploitation leading to a stable 

equilibrium in a deterministic framework, as has been 
mentioned already, this stability is not necessarily 
preserved in a stochastic model. There exist conditions 
for it to be preserved. The first condition has already 
been mentioned: i t  is necessary that there be an 
attraction force sufficient to pull back the system 
displaced by a random fluctuation toward the point 
of equilibrium. This may be quantified within the 
framework of surplus production models, or equiva- 
lently in populations limited to a single age class 
(May, 1973). Thus we end with local conditions, 
calling on the derivations of the state variables at the 
point under consideration. These strictly local con- 
ditions are necessary, but not sufficient. Near one 
state there may exist a domain such that, if the 
system is brought there by a random fluctuation, it 
tends to remain there. This is particularly true when 
the domain leads to extinction. This remains true even 
when it includes other points of equilibrium (Peter- 
man, 1977). 

Referring to the two criteria (local and connected 
with the proximity of a danger), we can try to anal).se 
the destabilization phenomena by random fluctua- 
tions, such as have appeared in the basic and sophi- 
sticated models. The latter models include domains 
where attraction toward extinction is great. One may, 
a priori, think that the proximity of these domains can 
propagate destabilization toward moderated effort 
levels, associated with high stock levels. In  our simu- 
lations this has not been very noticeable. The intro- 
duction of random phenomena entails rather fewer 
new facts than the basic models. This can be under- 
stood intuitively by referring to the so-called local 
conditions of stability. At low stock levels equilibrium, 
as noted, is weakly stable. In the basic models there 

is a rclatively wide range of efforts leading to equili 
brium for low stock levels in the deterministic fiamc. 
work. This equilibrium is easily upsct by randon 
fluctuations. On  the other hand, in the more sophi- 
sticated models which have heen discusscd in thi. 
paragraph, we can pass very quickly from a higl 
stock level to extinction with a slight increase il 
effort (Gulland, 1977a). There is only a reduced rangt 
of efforts leading to iveakly stable ecpilibrium, accord- 
ing to local conditions. These considerations can 
a posteriori, help in having one result acknowledged 
The fact remains that it is extremely difficult to judgc 
the greater or lesser destabilizing effcct of randon 
fluctuations without calculations. The facts founc 
could not be generalized anyway. O n  the other hanc 
in such circumstances it is always usehl to keep ir 
mind the existence of local stability conditions and o 
conditions associated with the proximity of a danger- 
ous domain. 

Finally, leaving the basic deterministic model, i 
may be of interest to compare the effect of the intro- 
duction of the complications discussed in this para- 
graph with the effect of the introduction of a randon 
component in recruitment. With respect to the firs 
point, as we have said, following Gulland (1977a) 
it is possible to arrive at stock extinction in thc 
sophisticated models at the cost of a slight increase ir 
fishing effort. The introduction of random component. 
produces a not identical, but similar, result: with i 

slight increase in effort we do not pass, this time, fron 
favourable situations to systematic extinction but tc 
exploitation regimes involving considerable danger 

COXCLUSIONS 

Undoubtedly the conclusions reached depend to 2 

large degree on the basic hypotheses relating to thi 
models, and the values used for the different para 

1100 1300 1500 1700 
FISHING EFFORT 

Figure 10. Frequency of virtual estinction for stock 2. Randon 
catchability. Solid line, after 20 years of fill1 exploitation 
broken line, after 50 years. 
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Figure 11. Frequency of virtual extinction for stock 1. Random 
recruitment and random catchability. Solid line, after 20 years 
of full exploitation; broken line, after 50 years. 

meters. However, if there \\.ere any need, this study 
confirms that the stochastic models can lead to con- 
clusions, in the matter of stock stability, quite different 
from those provided by the deterministic models. 
This is particularly true with respect to random re- 
cruitment fluctuations. 

I n  addition, a very important characteristic appears 
in the stochastic models used: for a moderate increase 
in fishing effort, \ve can rapidly pass from a favorable 
situation, where recruitment is maintained’ at high 
levels with equilibrium, to situations involving con- 
siderable risk of fishery collapse. 

If collapse occurs, the manner in which it takes 
place ivithin the framework of our models is of equal 
importance. With the passage of years we cannot see 
a systematic decline except when overexploitation is 
very marked, but rather a divergence between cases 
where estinction takes place and those where, on the 
contra?, stock maintains itself a t  a satisfactory level. 
Collapses then tend to occur relatively abruptly and 
without being systematic. If we consider recruitment 
involving a random component, precisely in accord 
with the risk of recruitment, we may have the illusion 
of equilibrium for at least a limited period of time, 
or on the contrary may witness collapse of the stock. 

I n  terms of fishery management, the major dangers 
appear to be connected with two facts which have 
been mentioned : 

a) The risks of collapse can arise fi-om a moderate 
increase in effort. 

b) The dangers do not necessarily appear very 
rapidly, and can be masked throughout favour- 

’ When no “growth overfishing” is possible, because the growth 
slows down fast (stock 2), this means that good catches are main- 
tained. When growth overfishing is possible (slow growth and 
low natural mortality), the appearance of such overfishing may 
Protect the stock against the more dangerous “recruitment 
overfishing”. 

able periods by good recruitment of random 
origin. 

We have pointed out that we make no claim to 
systematic extrapolation of the results obtained within 
the framework of our simulations. At the level of 
stock-recruitment relations, the results relating to 
questions of stability are extremely sensitive with 
respect to the variability which the model attributes to 
recruitment at l o ~ v  stock levels. As an example, by 
using a random stock-recruitment relation of the type 
suggested by Allen (1973) and used by Tt’alters (1975) 
and Peterman (1977), the risks of destabilization 
brought about by random fluctuations are much more 
reduced. This indicates the danger there would be 
in hastily generalizing our conclusions. This also shows 
that the care with which we discussed the construction 
of random models in the first paragraphs of this study 
is absolutely indispensable. With constant respect to 
the random stock-recruitment relationships and their 
discussions, it  appears to us that the general for- 
mulations defined in this study can be a useful basis. 

I n  practice the habit should be acquired o f ,  de- 
bating stock management Ivithin the framework of 
stochastic models. This should not be limited to 
problems of stability, but to a treatment of all the 
consequences of various possible choices, as has been 
shown by Walters (1975) and Lett and Benjaminsen 
(1977). In  most cases the conclusion will be complex 
models in which exact mathematical resolution ex- 
ceeds the capacity of most of those studying population 
dynamics. I t  is important to attract the attention of 
specialized mathematicians to such problems. In  the 
immediate future the Monte Carlo methods of simu- 
lation should permit most researchers concerned to 
reach the essential conclusions. Effort must in the 
immediate future be brought to bear on the con- 
struction of realistic stochastic models, i.e., adapted 
to each particular case. 

800 1000 1200 1400 
FISHING EFFORT 

Figure 12. Frequency of virtual extinction for stock 2. Random 
recruidment and random catchability. Solid line, after 20 years 
of full exploitation; broken line, after 50 years. 
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Figure 13. Frequency of virtual extinction for stock 1, Random 
recruitment, combined with an  inflection point in the basic 
stock recruitment curve. Solid line, after 20 years of full 
exploitation; broken line, after 50 years. 

SUM MARY 

Deterministic self-regenerating models appear to be 
useful for investigating the basic facts in population 
dynamics. I n  a second stage it appears that such 
models give only rough approximations and that 
stochastic models are more realistic. They are also 
more complicated; one should first wish to know 
whether or not they are necessary in the sense that 
they would have a significantly different behaviour 
from deterministic models. This paper does not try 
to answer this question in all its generality, but aims 
to highlight some basic facts about an  especially 
important point, fish stock stability. 

While this paper is especially interested in stability 
problems in stochastic models, it also pays consider- 
able attention to the construction of such models. 
This is the purpose of the first part. Basically a self- 
regenerating model will be considered where recruit- 
ment is obtained from a spawning stock with a Ricker 
stock-recruitment curve. This model can first be 
randomized at the level of recruitment. For a given 
stock it is considered that if the Ricker curve gives 
an average value, there exists a random multiplicative 
factor (ru)'; this factor is considered to follow a log- 
normal distribution. The variance of log (Ta) can 
change with the level of the parental stock: var 
(log(ra)) = a + blS. The catchability may also be 
affected by a random component. I t  is assumed that 
this corresponds to a multiplicative factor (qa) which 
affects the fishing mortality vector. It is also assumed 
that this factor qu follows a log-normal distribution 
with a mean equal to 1. The variance of log(qa) is 
considered to be constant (independent of the level 
of stock and of fishing mortality). 

The second part of this paper is devoted to the 
study of some basic facts about fish stock stability prob- 
lems in stochastic models constructed as shown in the 

first part. Tlvo hypothetical stocks are considered 
cxamples, with a different life span (8 and 3 year: 
and different natural mortality (0.7 and 1.0). Undc 
the assumption of the model, and given our data, 
appears that a moderate fishing effort associated wit 
random variability of recniitmcnt u41 producc 
significant number of stock collapses. 

This difference betlveen deterministic and stochast. 
models is greater with a 3-year-class stock. Stock 
which have not yet collapsed appear to be in a sem 
stationary state, fluctuating in the neighbourhood ( 

the situation predicted by the deterministic model. 
The effects of a random catchability are less sign 

ficant than the previous ones. There is danger 1 

collapse with effort slightly smaller than the critic: 
deterministic effort, but also some opportunity i 
sustain a fishery with efforts slightly greater than th 
level. 

Combining variabilities of recruitment and catcl 
ability does not produce any dangerous synergy an 
gives results similar to those of random recruitmei 
alone. 

Possible effects of a random variability upon 
Ricker stock-recruitment curve \vith an inflectic 
point on the left have been briefly explored. Differei 
ces between stochastic and deterministic models a1 
pear to be relatively small, because in such mode 
there are fewer subcritical situations that can becon 
critical with a stochastic component. 

A model assuming increasing catchability with d 
creasing stock, as described in Fox (1974), has al 
been explored and shows minor differences betwet 
deterministic and stochastic models. 

All of these results are provisional ones, dependi] 
on the assumptions of the model and on the dat 
However, they indicate that variability of recruitme 
produces a danger of collapse which must be careful 
estimated in the management of a stock, especial 
a pelagic stock. 

RESUME 

Les modèles déterministes autorégénérants sont util 
pour explorer dans un premier temps les règles 1 

base de la dynamique des populations. Dans u' 
deuxième étape il semble que les modèles stochastiqu 
peuvent apporter des conclusions plus réalistl 
L'emploi de ce deuxième type de modèles étant pl 
complexe, il est nécessaire de déterminer si les dei 
catégories arrivent 8. des conclusions divergentes 
ceci dans quelles conditions. Cette note a pour sei 
ambition de dégager certaines différences de ba 
principalement dans le domaine important de 
stabilité des stocks de poissons. Cet article prête to 
d'abord une certaine attention 8. la construction c 
modèles stochastiques. Fondamentalement un simi 
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modèle autorégénérant est employé, dans lequel le re- 
crutement est calculé à partir d’une courbe stock-re- 
crutement de Ricker. Ce modèle peut être rendu alé- 
atoire tout d’abord en ce qui concerne le recrutement: 
pour chaque niveau du stock, le recrutement est mul- 
tiplié par un facteur aléatoire ya de moyenne égale à l ~ 

qui suit une loi log-normale. La variabilité du recrute- 
ment est accrue aux niveaux décroissants du stock 
pour tenir compte des faits observés. La capturabilité 
du stock peut aussi varier aléatoirement grâce à un 
facteur multiplicatif du vecteur des mortalités par 
pêche qui suit aussi une loi log-normale de moyenne 1. 

La deuxième partie de cette note est consacrée à 
l’analyse de certains résultats de base. Deux stocks 
hypothétiques l’un à 8 classes d’âges et M = 0.7, 
l’autre à 3 classes et Ad = 1.0 ont été employés. Les 
modèles et les données employées conduisent aux con- 
clusions suivantes : le danger d’extinction des stocks 
est accru par l’introduction d’un recrutement stocha- 
stique. On constate ainsi, pour des efforts inférieurs 
au niveau critique en régime déterministe, qu’un 
certain nombre de stocks demeurent un certain temps 
dans un régime quasi-stationnaire alors que d’autres 
stocks s’effondrent. La fréquence des effondrements 
s’accroit avec la durée de l’exploitation. Les diver- 
gences entre les conclusions des régimes déterministes 
et stochastiques sont particulièrement importantes 
dans le cas du stock à 3 classes d’âge. 

Les effets d’une captyabilité aléatoire du stock 
sont moins significatifs et semblent être tantôt positifs, 
tantôt négatifs pour l’effondrement des stocks. La 
combinaison d’un recrutement et d’une capturabilité 
aléatoires n’introduit par de synergie notable dans la 
dynamique du modèle et donne des résultats com- 
parables à ceus obtenus avec la variabilité du re- 
crutement seule. 

Les effets d’une variabilité du recrutement dans la 
relation de Ricker modifiée par l’introduction d’un 
point d‘inflexion, sont jugés peu importants. I1 en 
est de même dans le modèle où la capturabilité du 
stock est accrue quand le stock décroilt. Ceci peut 
s’expliquer simplement par le fait que dans ces deux 
modèles il existe moins de situations subcritiques que 
l’introduction d‘une composante aléatoire pourra 
rendre instable. Toutes ces conclusions sont provi- 
soires et dépendent à la fois du modèle employé et 
des données de base. Ils semblent indiquer que la 
variabilité du recrutement introduit pour une pêche- 
rie en exploitation une probabilité d’extinction des 
stocks non négligeable. Dans ces conditions il serait 
important d’appliquer ce modèle (ou des modèles 
dérivés) à l’analyse de la dynamique de certains stocks 
Précis, spécialement les stocks de pélagiques côtiers 
qui semblent les plus sensibles aux dangers d’un 
effondrement brutal. 
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