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. ’ .  Plasmodium fakiparum has a complex transmission cycle. Public health planning and research would benefit 
from the ability of a calibrated model to predict the epidemiologic characteristics of populations living in areas of 
malaria endemicity. This paper describes the application of Bayesian calibration to a malaria transmission model 
using longitudinal data gathered from 176 subjects in Ndiop, Senegal, from July 1, 1993, to July 31, 1994. The 
model was able to adequately predict F! fakiparum parasitemia prevalence in the study population. Further 
insight into the dynamics of malaria in Ndiop was provided. During the dry season, the estimated fraction of 
nonimmune subjects goes down to 20% and then increases up to 80%. The model-predicted time-weighted 
average incidences contributed by nonimmune and immune individuals are 0.52 cases per day and 0.47 cases 
per day, respectively. The median times needed to acquire infection ‘(conversion delay) for nonimmune and 
immune individuals are estimated at 39 days and 285 days, respectively. Am J €pidemio/ 2000;1!32:760-70. 
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Malaria-induced mortality and morbidity are increasing 
worldwide (1). New orientations for control of the disease 
are emphasizing reduction in mortality and morbidity rather 
than eradication (2, 3). Particular attention is being given 
today to the development of vaccines. For scientists seeking 
to isolate potenfjal vaccines, for clinicians evaluating vac- 
cine safety and efficacy, and for public health managers 
developing malaria control programs, it is important to 
know the epidemiologic characteristics of the disease and of 
the populations living in areas of endemicity. For example, 
in clinical trials organized to test the efficacy of potential 
vaccines, ways to minimize the proportion of nonsuscepti- 
ble, eventually immune recruited subjects would improve 
statistical power. 

. However, malaria is a complex disease. Plasmodium fal- 
cipumm infection confers only labile and partial immunity. 
Acquisition of such immunity only-reduces the hcidence of 
.clinical malaria attacks without preventing infection (4-7); 
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tion rate. 
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an infected subject may acquire a new infection before 
recovering from a previous one (a phenomenon known as 
“superinfection”) (8); and immunity is acquired slowly and 
is a function of exposure to infecting mosquitoes (9). To fur- 
ther complicate the problem, exposure to infectious mos- 
quito bites is difficult to measure (10). Practically, exposure 
cannot be assessed for each subject, and all individuals are 
usually considered identically exposed; this constitutes a 
potential‘ confounding factor for acquisition of immunity. 
The presence of parasites in individuals gives little infonna- 
tion on exposure, because parasitemia can last a long time in 
the absence of treatment (1 1). Finally, in some geographic 
areas, exposure shows marked seasonality and can be very 
different from one year to the next (4). 

An epidemiologic model accounhg for these complexi- 
ties would be a useful tool with which to describe the 
dynamics of malaria and assess the epidemiologic status of 
exposed populations (12), answering the needs of both pub- 
lic health planners and malaria researchers. Among the rele- 
vant models reported in the literature (8, 12-25), few have 
been statistically calibrated (i.e., formally fitted to data) 
because of a lack of extensive longitudinal data and ade- 
quate statistical techniques. In two cases (16, 21), three or . 
four of the model parameters were estimated through mini- 
mization of x2 or G2 (akin to entropy) criteria of fit. 
Simulation results from these models have never been pre- 
sented with confidence intervals allowing an assessment of 
their reliability. Newly developed Bayesian numerical tech- 
niques (e.g., Markov chain Monte Carlo methods) (26-28) 
offer the possibility of an extensive statistical treatment of 
complex epidemiologic models, including inference about 
model parameter values, calculation of confidence intervals 
for model predictions, model-checking, and hypothesis- 
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testing. In this paper, we apply these techniques to the 
malaria model described by,Struchiner et 91. (23). This 
model embodies a series of coherent, plausible research 
hypotheses about the natural history of I? falciparum 
malaria and offers a synthesis of previous work carried out 
by MacDonald (8), Dietz et al. (16), and Nedelman (21). We 
use Mpkov chain Monte Carlo simulations to fit the model 

. to longitudinal data gathered from the village of Ndiop in a 
meso-endemic area of Senegal. Model simulations of the 
underlying infection dynamics are presented. 

MATERIALS AND METHODS 

Population and data 

> The data used were' gathered in the village of Ndiop 
(13"41'N, 16"23W) in the Sahelo-Soudanian region of 
Senegal. Since 1993, a longitudinal study has been con- 
ducted in Ndiop, in ,w$ich entomologic, parasitologic, and 
clinical data have.been collected. This analysis used data 
gathered from July 1, 1993, to July 31, 1994. The cohort 
follow-up was particularly intense from July to October, of 
1993, when the prevalence of P. fakiparum parasitemia was 
highest. The rainy season usually lasts from June to October. 

Human data. Only the 176 villagers (of a total of 396) 
who were continuously present in the village during the 

' study period were included. Exclusions can be considered 
random with respect to exposure (in particular, it is very 
unlikely that people left the village because of mosquito 
bites or to obtain treatment elsewhere), and no bias should 
have been introduced by the removal of the traveling vil- 
lagers. On the other hand, traveling villagers had unmea- 
sured exposure to mosquitoes during their outings, and they 
could have introduced bias if included. A local medical care 
unit was created to support the study after agreement was 
reached with the population of the village and the public 
health authorities. Informed consent was obtained individu- 
ally from the participants or from their parents (for chil- 
dren); approval was obtained from the Ministère du Plan et 
de la Coopération and from the Ministère de la Santé 
Publique. The local medical care unit was provided with 
basic equipment for malaria diagnosis. A team of four physi- 
cians, two technicians, and four fieldworkers stationed in 
the village was in charge of the contacts with the community 
and clinical follow-up. They were all trained in the clinical 
and laboratory diagnosis of malarial infection. Active sur- 
veillance consisted of: 1) a daily visit to each villager at 
home, to record body temperature and clinical symptoms of 
any type that had occurred during the previous 24 hours; and 
2) collection of thick blood smears once per week from July 
to October of 1993 and once per month from November 
1993 to August 1994. Passive surveillance included collec- 
tion of thick blood smears from subjects reporting to the 
health unit on any occasion. Special attention was paid to 
the use of antimalarial drugs in the community, and the pop- 
ulation was asked not to use any such drugs without pre- 
scription. The only .antimalarial drug used was quinine 
(Quinimax; Sanofi-Labaz, Paris, France), administered at a 
'dose of 25 mg/kg/day for 7 days to the following types of 
patients: children under 10 years of age with fever (temper- 
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ature higher than 38°C) and high parasitemia (over 30 
trophozoites per 100 leukocytes); pregnant women with 
clinical symptoms suggestive of malaria; persons with fever 
and very high parasitemia (over 200 trophozoites per 100 
leukocytes); and persons with severe malaria symptoms 
(coma, etc.). 

A total of 5,736 thick blood smears were collected from 
L the 176 villagers studied. To study the natural evolution of 

parasitemia without interfering with antimalarial treatments, 
we excluded from the analysis thick blood smears collected 
within 15 days after the beginning of treatment, As a result, 
only 5,000 thick blood smears were considered in our analy- 
sis. All smears were double-read, once in the field by the 
technicians and once by an expert microscopist at the 
Institut de Recherche pour le Développement laboratory in 
Dakar, whose reading was definitive. Slides were stained 
using 4 percent Giemsa stain, and up to 200 microscopic oil- 
h e r s i o n  fields were examined at a magnification of 100. 
Asexual-stage parasite (trophozoite) densities were reported 
as parasite count for 100 leukocytes (detection limit: 0.01 
trophozoites for 100 leukocytes). The number, O@), of 
trophozoite-positive '&ck blood smears on any given day 
for which subjects were seen, given the total number of 
thick blood smears examined, M(f) ,  constituted a single data 
point. The entire data set is denoted D below. The observed 
prevalences presented in figure 2 were obtained by dividing 
D(f) by M(f) at each time f. Table 1 gives the distribution of 
subjects, positive thick blood smears, and total thick blood 
smears examined, by age and sex. 

Mosquito data. The main anopheline species in Ndiop 
are Anopheles arabiensis and Anopheles gambiae. They 
both contribute to the high endemicity of I? falciparum 
malaria (29). Nighttime captures of mosquitoes attracted to 
human volunteers were used to sample mosquito popula- 
tions. Adult mosquitoes were captured on 12 humans for 

. 

. 

TABLE 1. Numbers of individuals and thick blood smears 
included in a study of Plasmodium falciparum malaria, by sex 
and age, Ndiop, Senegal, July 1993-August 1994 

No. of No. of Total no.of . 
Age subjects trophozoite-positive smears 

(years) in class smears examined 

Females 

<1 5 67 160 
1 4  9 69 222 
5-9 15 207 ' 454 
10-14 14 190 396 
15-19 8 1 47 241 
20-30 15 171 405 
>30 21 21 4 594 

Males 

<1 6 52 192 
1 4  23 , 265 71 9 

10-14 8 106 178 
15-19 6 106 149 

>30 , 25 265 637 

5-9 16 220 485 

20-30 5 65 i 68 
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three consecutive nights each month from July to November 
of 1993; apd then weekly on four humans. Hourly human- 
bait collections ,were made on adult volunteers from 7:OO 
p.m. to 7:OO a.m. The volunteers were always placed at the 
same locations in the village, half of them indoors and the 
other half outdoors. The infectivity of captured mosquitoes 
for E! falcipamm was assessed by detection of circumsporo- 
zoite antigen protein with enzyme-linked immunosorbent 
assays (30,31). The number of infected mosquito bites per 
person (the entomologic inoculation rate @IR), h,(t)) was 
hence obtained for each collection day. . 

Dynamic model. 

The deterministic compartmental model developed by 
Struchiner et al, (23) was used to describe the natural history 
of the infection in humans. A brief summary is given here, 
since the model has been described elsewhere in full detail 
(23,32,33). The model equations and the definiton of each 

In the model, the human population is divided into four 
epidemiologic classes or compartments (figure 1): nonim- 
mune subjects and immune negative subjects, in proportions 
X&) and X3(t), respectively; and nonimmune subjects and 
immune positive subjects, in proportions Y2(t) and Y3(t), 
respectively. TheSe. proportions are time-varying, and fhe 
model can predict their full time course. Nonimmune posi- 
tive subjects infectious to mosquitoes, in proportion Y,(t), 
are the subset of the nonimmune positives showing sexual- 
stage (gametocyte) parasitemia. It is assumed that immunity 
does not totally protect against infection but reduces the 
probability of becoming infected. Individuals are deemed 
positive if th@ show trophozoite parasitemia (as assessed 
by thick blood smear examination). For ow study, the birth 
and death rate, 6, was equal to zero. 

Nonimmune negative individuals receive effective inocu- 
lations, in a proportion bl of the ER, and become infected. 
They show positive parasitemia after an incubation period 
of NI days. An infected person may either acquire immunity 
or return to the nonimmune negative state. The maximum 

parameter, are given in the Appendix. .‘i 

. 

. 

. 

FIGURE 1. Epidemiologic model of Plasmodium falciparúm malar- 
ia in humans (23):The compartments represent the four epidemio- 
logic classes considered in the human population. Arrows indicate 
transitions among compartments. Symbols are explained in the 
Appendix (see text). 

limiting rate at which immunity can be acquired is %. 
Immune positive individuals are not infectious to mosqui- 
toes and recover more quickly than nonimmune persons. 
Immune negative individuals receive inoculations, in a pro- 
portion b2 of the EIR resulting in infection. The model spec- 
ifies that b2 < bl. Immune negative individuals can lose their 
immunity if they receive no “booster” inoculation within the 
time interval T. Immunity-boosting inoculations are a pro- 
portion f of the ER. Such inoculations prolong an already 
acquired immunity but do not lead to an established brood 
of parasites. 
An effective inoculation by an infectious mosquito pro- 

duces one brood of parasites within the human host. 
Different mosquito bites can each inject a brood into an indi- 
vidual, and those broods are cleared independently of each 
other. We did not model the mosquito part of the parasite 
cycle: The EIR defined in Struchiner et al.’s model (23) was 
replaced by our measurements, linearly interpolated. 

Assuming all subjects, at t = O, to be nonimmune and 
negative (Xl(0) = 1) is not realistic for Ndiop. However, 
neither initial conditions nor the actual “initial time” are 
known a priori. Preliminary simulations showed that, when 
starting with realistic conditions, equilibrium is reached in 
approximately 2.5 years. In that period of time, the system 
has also practically lost memory of its initial state. 
Consequently, the initial time was chosen to be December 
22, 1990. To acknowledge uncertainty in their values, the 
initial proportions of individuals in the compartments and 
initial average numbers of broods in individuals were con- 
sidered as parameters to estimate. To respect the constraint 
of the summation to 1 of the initial proportions, we used the 
reparameterization given in the Áppendix (equations 
17-19). No data on E R  were available íÌom December 22, 
1990, to July 1, 1993, before the beginning of parasitologic 
monitoring. To supply realistic weekly EIR values for input 
to the model (equations 9, 10,14, and 16 in the Appendix) 
during that period, we used the average of the values 
recorded in Ndiop from July 1993 to December 1996 foI 
each week. 

The model differential equations are nonlinear and include 
delays. They were integrated numerically, using the 
“Lsodes” algorithm provided by MCSim software, version 
4.2 (34). For given parameter values, integration of the equa- 
tions shown in the Appendix gives the time courses of its 

over +y period of time starting on December 22,1990. The  
sum, Y(t), of Y#) and Y,@) is a model-computed estimate oi 
the instantaneous prevalence of I? falcipamm parasitemia ir 
humans. 

variables (W), Xdt) ,  Ydt), Y2(t), Y3(0, zd0, z2(t), and Z3(t)> 

Statistical computations 

ABayesian approach was used to calibrate the model using 
the counts of P. falciparum trophozoite-positive thick blooc 
smears in Ndiop (the data, D). Basically, each model parame. 
ter (see the list in table 2 and in the Appendix), €li, was con. 
sidered as a random variable and assigned an independen 
prior distribution, ~ ( 0 ~ ) .  Those distributions were updater 
together to yield a joint posterior distribution, p(elD), sucl 
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TABLE 2. Prior distributions adopted for the model parametes in a study of Plasmodium falciparum malaria, Ndiop, Senegal, 
1993-1994 - - - I ~ 

_ ”  ~“ 

Parameter Sources . Distribution Mean Minimum Maximum 

‘1 ’ Molineaux and Gramiccia (9) and Nedelman (21) Lognormal 0.00118* 5 t  
‘2 Molineaux and Gramiccia (9) and Nedelman (21) Lognormal 0.01 34* 5 t  
al r. Molineaux and Gramiccia (9) and Nedelman (21) Lognormal 0.01 08* 5 t  

z Molineaux and Gramiccia (9), Earle et al. ( l l ) ,  Truncated 365* 2 t  

Gilles and Warfell (4) and Molineaux and Truncated 15* 2t N I  

b, 
b* -* Uniform fl2 

% Molineaux and Gramiccia (9) and Nedelman (21) Lognormal 0.00026* 5 t  

and Anderson and May (12) lognormal 

~ Gramiccia (9) lognormal - 
f -* Uniform 0.5 0.289 -* Uniform (1 + b2)/2 (1 - b ) / f i  

f l h  
%(O) -* Uniform 0.5 0.289 
FV,(O) -* Uniform 0.5 0.289 
Fy2m -* Uniform 0.5 0.289 

I .  Uniform 50 28.9 
Uniform 50 28.9 

ZI(0) -* 
<(O) -* 

90 

5 

O 

’ O  
O 
O 
O 
O 
O 

b* 

1,095 

50 

1 
1 
f 
1 
1 
1 

’ 100 
1 O0 

‘ 40) -* Uniform 50 28.9 O 1 O0 

* Geometric mean. 
t Geometric standard deviation (exponential of the standard deviation in log space). * Given the lack of prior information, an uninformative uniform prior was used. 

that model-computed time comes of prevalence (using pa- 
rameter values drawn from that joint posterior) would be 
compatible with the data. According to Bayes’ rule, p(0lD) is 
proportional to the product of the prior distributions by the 
data likelihood, p@l e), under the model (35,36). 

The prior distributions summarize our knowledge about 
parameter values before seeing the Ndiop data (table 2). A 
priori lognormal or truncated lognormal distributions were 
assigned to several parameters. Their geometric means were 
set on the basis of the literature (4, 9, 11, 12,21,23). Their 
standard deviations were set by us to large values corre- 
sponding to a factor 5 or 2 (the latter for time delays, for 
which we had better information a priori), with eventual 
truncation when ranges were suggested by the literature. 
Uniform distributions over feasible or large regions were 
assigned in the absence of prior information, particularly for 
the initial state variables (X,(O), zl(0), z2(0), and z3(0)) or 
their deconstraining parameters (Fy,(o) and F,,3(o)). 

To defrne the data likelihood, the observed number, O@), 
of trophozoite-positive thick blood smears at time t _was 
assumed to be binomially distributed-with parameters Y(t), 
the model-predicted prevalence (O c Y(t) e l), and M(t), the 
total number of thick blood smears counted at t. The joint 
posterior is therefore of the form 

Unfortunately, because the dynamic model is nonlinear, 
there is no known analytical form for p(e/D). It is impossi- 
ble to describe it and report inference about the parameters 
in a direct way. It remains possible to summarize that distri- 
bution by drawing random sets of parameter values using 
Metropolis sampling (26). This iterative procedure belongs 
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to a class of Markov chain Monte Carlo techniques which 
has recently received much interest (27,37-39). Briefly, the 
algorithm was as follows: At the start of a sampling 
“chain,” all parameters were assigned values sampled from 
the priors. For any following iteration of the sampler, each 
component, €li, of the parameter vector was eventually 
updated by drawing a ‘Lproposed” new value, e/, out of a 
Gaussian “proposal” distribution centered on O+ Values of 
the joint posterior density at ei and e{ were then computed 
using the displayed equation (this required run@ng the 
differential model to obtain all needed values for Y@)). The 
two obtained density values were labeled n and n’. If n‘in 
exceeded 1, the new value e! was accepted and replaced Oi; 
otherwise, 0; was accepted only with probability n’in. In 
the case of rejection of e:, the value €li was kept. After 
updating (eventually) all model parameters sequentially 
(the updating order does not matter in the long run), we 
recorded their values, therefore completing one iteration of 
the chain., Iterations were performed until the chain had 
reached equilibrium, i.e., until all parameters had approxi- 
mately converged in distribution to p(0lD). The standard 
deviation of the Gaussian proposal distribution was 
adjusted periodically to yield an acceptance rate of 25 per- 
cent (40). The convergence of several Markov_chains to 
p(0lD) was assessed using Gelman and Rubin’s R diagnos- 
tic (41). The parameter sets recorded after equilibrium was 
reached were used to form histograms or compute summary 
statistics of the posterior distributions for estimands of 
interest (e.g., marginal parameter distributions, combina- 
tions of parameters, or model predictions). Obtaining the 
posterior distribution of model predictions required running 
the malaria model once for each parameter setrecorded. All 
of the above computations were performed using MCSim 
software, version 4.2 (34). , 
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RESULTS 

Model fit . 
1 ,  

Convergence of three independent Markov c h k  Mobe 
Carlo chains was reached after approximately 40,000 itera- 
tions (R)  diagnostic at 1.07 on average, ranging from 1 to 
1.2). Fifteen thousand parameter sets were sampled, by 
keeping one out of every six iterations from an additional 
30,000 of each chain (each iteration kept yielded a parame- 
ter set). All simulations and inferences presented below 
were made using this final sample from p(8  ID). 

A good fit to the data was obtained, while maintaining 
scientifically plausible parameter values. Figure 2 shows the 
daily trophozoite parasitemia prevalences (D(r)/M_(‘t)) 

’ together with the corresponding model predictions, Y(Y), 
made‘with the parameter set having the highest posteribr 
density in the final sample. This model prediction is’ the 

’ “best” of all, but it is also quite representative of the set. Ten 
other model-predicted time courses of prevalence, obtained 

.using parameter vectors randomly drawn from p(B1D); are 
presented. The differing model trajectories for all of these 
curves reflect uncertainty in model predictions. However, 
they all have similar behavior. The posterior 95 percent con- 
fidence interval for predictions is also displayed. The rise to 
the pez& (from -20 percent prevalence to 70-80 percent) .is 
somewhat jagged and is mostly driven by the randbm biting 
rate of mosquitoes. The subsequent decrease is smoother 
and is driven by the gradual recovery of the infected. sub- 
jects in the dry season. Prevalence returns to approximately 

. 
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FIGURE 2. Time course of the daily prevalence of Plasmodium fa/- 
ciparum malaria (number of thick blood smears with positive tropho- 
zoites divided by the total number of smears) among 176 people liv- 
ing in Ndiop, Senegal, from July 1,1993, to July 31,1994.The points 
correspond to observations. The thick line depicts the model- 
predicted prevalence in the population as a function of time. It was 
obtained by running the model with the vector of parameter values 
having the highest posterior density (among a random sample of 
15,000 posterior vectors). The thin lines are also model predictions 
of prevalence, generated with 10 other random parameter vectors 
drawn from their posterior distribution (see text). The outermost two 
lines represent the 95% confidence interval for predicted prevalence. 

20 percent at the end of the dry season. Running a standard 
smoothing curve through the data would be purely descrip- 
tive and would provide no insight into the underlying 
dynamics. Our goal was not so much to “fit” the data as to 
extract from them information about the model parameters. 

Posterior parameter distributions 

The joint posterior distribution of al l  parameters can be 
viewed in several dimensions, but for simplicity only the 
marginal distribution of each parameter is described here. 
Table 3 summarizes these distributions on the basis of the 
final parameter sample. For all biologic parameters, the pos- 
terior location is noticeably dierent from the correspond- 
ing prior mean. Posterior standard deviations are much 
lower than specified a priori (compare tables 2 and 3), 
because important information about those parameters has 
been extracted from the data. 

The median sojourn time (Url) of a parasite brood in non- 
immune human hosts is 204 days (95 percent confidence 
interval (CI): 18, 2,000). Although.it is lower, this is still 
compatible with the 850 days previously assumed (9, 21, 
23). For immune subjects, this sojourn time is 19 days (30 
percent coefficient of variation; 95 percent CI: 11, 30). 

’ Immunity appears to affect the life span of the parasite ïn 
human hosts. 

The recovery rate from infectiousness to mosquitoes 
among nonimmune positive hosts (a,) is high but poorly 
identified. It corresponds to a median half-life of 6 days (95 
percent CI: 0.5, 125). The window of infectivity is therefore 
quite small (as expected from the relative brevity of the 
prevalence peak during the year). 

As indicated by the median value of cq?, 213 days 
(110.0047) are necessary for a human host to acquire immu- 
nity to I? faleiparum. This estimation is quite precise (coef- 
ficient of variation of -10 percent) and is much lower than 
the a priori value. Simulations indicate that for an inhabitanl 
of Ndiop exposed to seasonal meso-endemic transmission. 
the numbers of infectious and noninfectious parasite broods 
present at any time in nonimmune hosts (zl and zz) average 
approximately 10 (data not shown). Under such condition5 
(see equation 13 in the Appendix), the actual i”uniQ 
acquisition delay (A,) is equal to 214 days on average 
which is close to its minimum value. Immunity appear: 
more quickly than expected a priori, but it still takes at leas 
half a year to be in effect. 

The interval of time, ‘c, until an immune host loses immu. 
nity in the absence of exposure to infectious mosquito bite: 
is approximately 230 days (95 percent CI: 180, 290). Thc 
incubation period, N,, lasts 22 days, on average (95 percen 
CI: 15,28). 

Few infectious bites cf = -3 percent) are able to boos 
immunity, and this boosting does not seem to be very impor 
tant a posteriori. The proportion of potentially infectiou, 
bites actually resulting in infection is much higher in non 
immune hosts (b, = 40 percent; 95 percent CI: 26,91) tha 
in immune subjects (b2 = 2.5 percent; 95 percent CI: 1.5 
3.5). Immunity, although it is progressively acquired, seem 
to effíciently protect against infection. 
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TABLE 3. Summary of the posterior (fitted) distributions for the model parameters in a study of PIasmodium falcparum malaria, 
Ndiop, Senegal, 1993-1994 

Parveter Median 
t "  ' 

25th 25th 75th 975th 
percentile percentile percentile percentile 

0.030 (0.1 8) 0.0047 (3.3) 0.0005 0.0026 0.0082 0.057 
0.055 (0.015) 0.054 (1.3) 0.033 0.045 0.063 0.095 

0.0047 (4.6 x 10-4) 0.0047 (1.1) 0.0037 0.0044 0.0051 0.0055 

Geometric Mean mean 
(SD*) ' . (GSD*) 

0.33 (0.51) 0.12 (4.9) 0.0055 0.04 0.39 2.0 

235 (30) 230 (1.1) 180 220 260 290 
22.5 (2.9) 22 (1.2) 15 21 24 27.5 
0.038 (0.051) 0.032 (1.5) 0.019 0.026 0.035 0.076 

0.024 (0.005) 0.023 (1.2) 0.015 0.021 0.027 0.035 
0.62 (0.26) 0.525 (2.0) 0.080 0.42 0.84 0.98 
0.42 (0.28) 0.30 (2.7) 0.025 0.18 0.66 0.96 
0.45 (0.27) 0.33 (2.6) 0.030 0.22 0.66 0.95 

0.43 (0.1 6) 0.41 (1.4) 0.26 0.33 0.48 0.91 

50.5 (28) 39 (2.5) 3.7 27 74 96 
49 (28) 37 (2.5) 3.3 25 72 96 
51 (28) 38 (2.6) 2.7 27 75 97 

* SD, standard deviation; GSD, geometric standard deviation. 

The marginal posterior distributions of the sampled initial 
state variables or their reparameterizations (X,(O), Fy2(ol, 
Fy,or zl(O), z2(0), and z3(0)) are very close to the corre- 
sponding priors. This shows the insensitivity of the model to 
those parameters: Their values do not appreciably affect the 
results. 

Model predictions of the underlying dynamics 

After fitting, the model can be used to simulate various 
scenarios to better understand the dynamics of P. falci- 
parum infection in our study population. Figure 3 shows 
predictions of the time course of malaria immunity status 
during the year of our study and the following wet season 
(July 1993 to December 1994), together with the measured 
EIR. At the end of the dry season, the population compo- 
sition is as follows: 63 percent (95 percent CI: 35,85) non- 
immune negative (XI), 12 percent (95 percent CI: 10, 15) 
nonimune positive (Y2), 1 percent (95 percent C I  0.7,2) 
immune positive (Y3), and 24 percent (95 percent CI: 5, 
50) i m u n e  negative (X3). These proportions vary from 
year to year as mosquito biting fluctuates in timing and 
intensity. Nonetheless, some behaviors appear stable. The 
proportion of nonimmune negative individuals falls very 
quickly, and practically to zero, as soon as mosquito biting 
increases. Infected subjects initially transfer to a nonim- 
mune positive status, whose proportion reaches a peak at 
approximately the same time as the biting rate (with a 
short delay imposed by incubation). Nonimmune positive 
subjects then transfer mostly to the immune status. 
However, the fraction of immune positive individuals does 
not increase much, and individuals quickly eliminate par- 
asites to become immune negative. Near the end of the dry 
season, immune negative individuals lose immunity and 
the fraction of nonimmune negative persons increases 
quickly. Overall, most subjects move through the four 
states as the year progresses. 
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Other epidemiologic data poht to. the dependence of 
immunity on continued exposure (9). For example, in a 
malaria control program consisting of insecticide spraying 
against mosquitoes and mass antimalarial treatment of the 
human population for two wet seasons, malaria prevalence 
during the subsequent wet season was higher than in a con- 
trol population; the following year, in the absence of inter- 
vention, prevalence became similar for the two populations 

1 .o 4 
Nonimmune positive (Y,) I Immune positive (Y,) 

July Oct Jan. April July Oct. July Oct. Jan. April July Oct. 

Time (months) 

FIGURE 3. Model predictions of the fractions of the human popu- 
lation in four epidemiologic states (see figure 1) with regard to 
Plasmodium fakiparum malaria, Ndiop, Senegal, 1993-1 994. The 
thick lines show the predictions obtained by running the model with 
the vector of parameter values having the highest posterior density. 
The thin lines show the predictions generated with 10 random pos- 
terior parameter vectors. The outermost two lines in each section 
represent the 95% confidence interval for the predictions. The dotted 
lines correspond to the entomologic inoculation rate (EIR) for the 
same period of time. 
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(9). This behavior, also discussed by Halloran et al. (32), is 
reproduced by the present model (data not shown). 

The incidence of malarial infection is difficult to measure, 
since it requires identification of new infections in individu- 
als who are potentially already parasitemic. The model can 
easily provide an estimate for various incidence rates. 
Figure 4 presents the model-reconstructed instantaneous 
incidence rates (number of new cases per day) of tropho- 
zoite parasitemia contributed by nonimmune and immune 
individuals during the 1993 wet season in Ndiop (incidence 
was null during the dry season). These rates correspond to 
the products h,(t) x Xl x 396 and A&) x X, x 396, respec- 
tively (396 being the total size of the population of Ndiop). 
The time-weighted average incidences, over the year, con- 
tributed by nonimmune and immune individuals are approx- 
imately the same-4.52 (95 percent CI: 0.40,0.63) and 0.47 
(95 percent CI: 0.30, 0.67) cases per day, respectively. 
However, the incidence time profiles for these two subpop- 
ulations do differ. Early incident cases are contributed 
mostly bfr nonimmune individuals and late cases by immune 
subjects. This is explained by the progressive,decline of the 
nonimÏnúne negative population as the wet season pro- 
gresses (figure 3). For the whole population, the time- 
weighted average is estimated at 0.99 (95 percent C I  0.87, 
1.2) cases per day. 

Figure 5 gives the immunity acquisition delay and the 
conversion delays for nonimmune and immune subjects as a 
function of the ER. These delays are time-dependent when 
the EIR varies (see equations 9 and 10 in the Appendix). To 
avoid this time dependency, the model predictions presented 
here were computed with constant ERS. Computations 
were made wit$ the parameter set having the highest poste- 
rior density. When biting is seasonal, as in Ndiop, the curves 
in figure 5 can still be used to compute approximate delays 
given yearly average Ems. The immunity acquisition delay 

' 

;1 
July Aug. 

4 . .  

Time (months) . .  1 

FIGURE 4. Model-reconstructed incidence rate of Plasmodium fal- 
cipanrm trophozoite parasitemia in the population of Ndiop, Senegal, 
during the 1993 wet season. The thick solid line shows the incidence 
rate contributed by nonimmune subjects; the thick dashed line 
shows the incidence rate contributed by immune subjects. The thin 
solid line shows the entomologic,inoculation rate (EIR). 

. . 10' 
Immune 

10' ' , '. .,,.., , , ,,.,.,I , . ... < a , ,  . . . . ' ."1 . I ....n/ , 

" O.&l O.&l 0.01 0.1 1 10 

Entomologic Inoculation rate (infectious biteslpersonlday) 

FIGURE 5. Model-predicted immunity acquisition and conversion 
delays for Plasmodium falciparum as a function of the entomologic 
inoculation rate, Ndiop, Senegal, 1993-1 994. Computations were y 

made with the parameter set having the highest posterior density. 

(UAl) first decreases proportionally to the inoculation rate. 
It starts flattening at 0.01 bites per person per day. After that 
point, it remains at a minimum value of approximately 210 
days (equal to Ut&). The conversion delays are the average 
times it takes a disease-free individual to acquire an infec- 
tion. They are given by Nl + l/h,(t) and NI + l /b(t)  for 
nonimmune and immune subjects, respectively. At low inoc- 
ulation rates (at least below the Ndiop average of 0.1 poten- 
t i d y  infectious bites per person per day), the conversion 
delay is approximately 16 times (bl/b2) lower for immune 
subjects than for nonimmune subjects. These delays first 
decrease proportionally to the inoculation rate, and, as it 
increases, they tend toward a common minimum: the incu- 
bation period. For a nonimmune individual in Ndiop in 
1993, the median estimated conversion delay was 39 days 
(95 percent C I  29,46). For an immune subject, it was equal 
to 285 days (95 percent C I  205,440). The 95 percent con- 
fidence intervals for al l  delays presented in figue 5 span 
approximately a factor of 2. 

DISCUSSION 

This work demonstrates the possibility of statistically cal- 
ibrating a complex mathematical model with epidemiologic 
data, using a Bayesian frameworK*"As a result, a reasonable 
fit of the parasitemia prevalence data was reached, showing 
that the model is compatible with the observations, and a 
sample of model parameter values was obtained from their 
joint posterior distribution. The model was then used to pre- 
dict quantities that are otherwise difficult to measure, given 
the current state of knowledge. For example, we obtained 
estimates of instantaneous and average incidence rates of P. 
falcipantm parasitemia. Among the statistical methods 
available to us, Bayesian updating is particularly appropri- 
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ate for integrating two forms of information (28, 42, 43): 
“prior knowledge” from the scientific literature and “data” 
from field studies. Still, several issues can be raised regard- 
ing the data used, the structure of ,the chosen model, and var- 
ious assumptions we made. 

The data were obtained through intensive follow-up. A 
potential bias in subject recruitment arose as individuals 
were offered the opportunity to present themselves for clin- 
ical examination. l? falciparum-infected individuals with 
presenting symptoms may have been overrepresented. 
However, blood samples were analyzed at all self-motivated 
visits, regardless of whether lhe visits were related to 
malaria, and only 16 percent of the samples analyzed were 
obtained during such visits. We also verified, through exam- 
ination of residuals after model calibration, that the preva- 
lence of €? falciparum parasitemia in self-motivated consul- 
tations was not higher than that in systematic screenings. 
The impact of a potential bias in self-motivated consulta- 
tions should therefore have been small or nonexistent. We 
only analyzed data on the prevdence of l? falciparum 
trophozoite parasitemia, but it would be interesting to 
extend the‘model to also consider data on the number of 
clinical malaria attacks. 

The model developed by Struchiner et al. (23) offers a 
reasonable, albeit simplified, description of malaria phys- 
iopathology. We did not include the original description by 
Struchiner et al. of the parasite cycle in mosquitoes. That 
was not needed, since our data included ER throughout the 
year. However, that rate was assumed to be precisely mea- 
sured and identical for all  subjects. This assumption ‘was 
needed because the full treatment of “error in variables” 
problems is difficult in the context of large and computa- 
tionally intensive models. Another important set of model- 
ing assumptions concerns immunity. In the model, an 
infected person does not necessarily acquire immunity after 
one inoculation, and immunity can be lost with time. 
Although the hypothesis of a definitive acquisition of i”u- 
nity to the different antigenic strains of parasite seen during 
an individual’s lifetime (18) is not explicitly considered, the 
model does assume that the acquisition of immunity is a 
function of the number of coinfecting strains. 

Our analysis was performed by pooling data on all sub- 
jects (but still preserving the longitudinal aspect of the data 
at the population level). This could be improved by taking 
into account the age structure of the population-for exam- 
ple, through a hierarchical statistical model (44). This could 
shed light on age-related differences in susceptibility to l? 
falciparum infection. At this occasion, it might be possible 
to take into account the fact that the feeding behavior of 
mosquitoes is affected by a number of host- or environment- 
related factors (4548). 

According to the model, under conditions similar to those 
in Ndiop, the fractidn of susceptible subjects is the highest 
at the very end of the dry season, when mosquitoes start bit- 
ing again. This makes sense given what is known of the nat- 
ural history of malaria. The advantage of using a calibrated 
model, assuming it is correct or sufficiently robust, is that it 
offers a quantitative estimate of this fraction and of the asso- 
ciated uncertainty. Use of such information in vaccination 

trial design can help researchers assess and improve statisti- 
cal power. Power calculations show that the effective size of 
a trial is proportional to the fraction of susceptible subjects 
(e.g., a study with 10,000 person-days and 50 percent sus- 
ceptible subjects in each group has the same power as a 
study with 5,000 person-days and 100 .percent susceptible 
subjects). Location-specifrc EIRs could be used for input to 
the model to assess the best time of the year for a study in 
areas other than Ndiop. 

A dynamic perspective on malaria, as embodied in an epi- 
demiologic model able to disentangle time-varying expo- 
sures, superinfections, and complex immunity acquisition 
processes, is essential for a proper analysis of malaria field 
study data. Too many pitfalls of confounding and bias, dif- 
ficult to avoid, await standard data analyses. The model ana- 
lyzed here is by no means complete or perfect, but it offers 
a reasonable basis for extension and improvement. Several 
research teams worldwide are currently attempting to 
improve malaria models. These efforts would benefit from 
the statistical techniques presented, here. Calibrated models 
can be powerful predictive tqols for experimental design 
and exploration of public health measures. 
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' . I  APPENDIX 

The following equations; from Struchiner et al. (23), describe the transitions among model compartments: 

' -.(l) -- - S(t) + Rl(t)Y2(t) - (h,(t)  + S(t))X,(t) + A3(t) 
dt  

(2) -- dx3(t) - R,(t)Y,(t) - ( b ( t )  + S(t))X3(t) - A3(t) 
dt  
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-= dY2(t) h,(t)x,(t) - [A,@) + R,(t)  + G(r)]Y2(t) (3) 

-= dY3(t) %(t)&(t) + Adt)Y2(t) - [R&) + 8(t)lYdt) (4) 

dt 

dt 

-- dzl(r) - h,(f) - a,(t)z1(t) 
dr 

. .  
. . .  

2 '  , '  

. .' 
. .  

. . e .  . 
. .  . .  

, , . ~  

. .  

: ' _  

- 
A3(t) = {R2(r - 2) X Y,(t - 'c) + (f- b,) X h,(t - 'c - NI) X X3(r - 'c)}e-(hb+G)r, (14) 

with: 

i t 
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The symbols used in the above equations and in the text are defined below (in alphabetical order). 

Al: rate at which immunity to Plasmodium falciparum infection is acquired by a human host. 
bl: proportion of bites by infectious mosquitoes on negative nonimmune hosts actually resulting in infection. 
b2: proportion of bites by infectious mosquitoes on negative immune hosts actually resulting in infection. 
f: boosting factor (i.e., proportion of bites by infectious mosquitoes on immune hosts resulting in boosted immunity). 
Fy,(o): deconstraining parameter for Y,(O). 
Fy,o: deconstraining parameter for Y,(O). 
he(.): entomologic inoculation rate (ER): number of l? falciparum infectious bites per human per day. 
NI: P. fakiparum parasitemia incubation period in humans (in days). 
rl: rate constant of elimination of a brood of parasites by nonimmune positive hosts (in days-'). 
r,: rate constant of elimination of a brood of parasites by immune positive hosts (in days-'). 
RI:  recovery rate for nonimmune positive individuals (in days-'). 
R2: recovery rate for immune positive individuals (in days-'). 
Xl: proportion of nonimmune negative (i.e., naive) individuals in the population. 
Xl(0): initial value (at time O, i.e., December 22, 1990) of Xl. 
X,: proportion of immune negative individuals. 
X,(O): initial value of X,. 
Y': proportion of nonimmune positive individuals potentially infectious for mosquitoes. 
Y2: proportion of nonimmune positive individuals. 
Y2(0): initial value of Y> 
Y,: proportion of immune positive individuals. 
Y3(0): initial value of Y3. 
zl: average number of infectious broods of the parasite per nonimmune positive human host. 
zl(0): initial value of zl. 
z2: average number of noninfectious broods of the parasite per nonimmune positive human host. 
z2(0): initial value of z2. 
z3: average number of noninfectious broods of the parasite per immune positive human host. i 

z3(0): initial value of z,. 
al: recovery rate from infectiousness to mosquitoes among nonimmune positive hosts (in days-'). 
%: maximum rate at which immunity to l? fakiparum infection can be acquired by a human host (in days-'). 
6: death and birth rate in the human population (in days-'). 
A,: daily fiaction of immune negative subjects losing immunity. 
hl: infection rate for nonimmune negative subjects (probability per day of such a subject's becoming infected). 
5: infection rate for b"mne negative subjects (probability per day of such a subject's becoming infected). 
'c: time delay needed for an immune host to lose immunity in the absence of exposure to infection (in days). 
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