

Isoenzymes of human lice: *Pediculus humanus* and *P. capitis*

M. D. D. AMEVIGBE, A. FERRER, S. CHAMPORIE*, N. MONTENY†, J. DEUNFF* and D. RICHARD-LENOBLE

Service de Parasitologie, Mycologie et Médecine Tropicale, Faculté de Médecine, University of Tours, 37032 Tours Cedex, *UMR – URA 1853 CNRS ECO-BIO, Laboratoire de parasitologie pharmaceutique, Faculté des Sciences Pharmaceutiques et Biologiques, University of Rennes, 35043 Rennes and †IRD/ORSTOM Laboratoire de lutte contre les insectes nuisibles, Parc scientifique Agropolis, 34000 Montpellier, France

Abstract. Abstract. Human lice (Phthiraptera: Pediculidae) from Africa, America and Europe were electrophoresed for 28 enzymes, with special interest in metabolic factors likely to be involved with insecticide resistance. Zymogram profiles of the body louse (Pediculus humanus L. from France and U.S.A.) and the head louse (P. capitis DeGeer from France, Madagascar, Mali & Senegal) were compared. Only two enzymes, phosphoglucomutase (Pgm) and esterase 3 (Est-3), showed electrophoretic variation. In our starch gel electrophoresis conditions, P. humanus showed three electromorphs of Pgm migrating anodally 6, 11 and 16 mm (designated alleles a, b, c, respectively). Of the putative Pgm alleles, b and c occurred in all samples of both species of lice, whereas allele a was found only in P. humanus lab strain from U.S.A. Esterase 3 had four electromorphs migrating 23, 26, 30 and 35 mm (designated alleles a, b, c and d). Among putative Est alleles, a was found only in P. capitis from Bamako (all 14 specimens aa homozygotes), allele d was found only in P. capitis from Dakar (39% frequency), whereas Est-3 alleles b and c showed apparently balanced polymorphism in all samples of both P. humanus and P. capitis except that from Bamako. Despite the limited amount of isoenzyme variation detected (only 2/31 polymorphic loci), divergences of Est-3 and Pgm among Pediculus populations may be relevant to their biosystematics and resistance.

Key words. *Pediculus capitis, P. humanus*, electrophoresis, insecticide resistance, isoenzymes, lice, pediculicides, France, Madagascar, Mali, Senegal, U.S.A.

Introduction

in Physipper S. Cr.

of for the gard

Elizabeth was grantfiller in

John Strate Fishers .

Tarke ev to Mar

1.63.10 3 1.63 3.65

or it iste till to

with the risks of

Human lice are commonly regarded as indicators of personal hygiene. Body lice (*Pediculus humanus*) transmit epidemic diseases such as typhus and relapsing fevers, but head lice (*Pediculus capitis*) are not so medically important (Buxton, 1947; Fontan *et al.*, 1984; Robert, 1985; Gentilini, 1993). Historically, pediculosis probably affected all strata of all human cultures until modern hygiene practices and pediculicides have almost eliminated body lice from western society, despite the development of resistant strains, beginning with DDT-resistance in Japan (Kitaoka, 1952)

Correspondence: Dr Alain Ferrer, Service de parasitologie, mycologie et médecine tropicale, Faculté de Médecine, Université de Tours, 2 bis boulevard Tonnellé, 37032 Tours Cedex, France

and Korea (Hurlbut et al., 1952). Since the 1970s, however, head lice infestation rates have risen-especially among schoolchildren-in many parts of the world (Gratz, 1997). This could be due to increased pupil density in schools, more social interactions in team sports and while playing, crowding in houses and transport allowing transfer of lice from one individual to another (dependent on hair length), or inadequate and inappropriate use of insecticides. The large increase of international trade that has taken place since the 1970s has resulted in more travel and population mixing, with increased dissemination and transmission of pediculosis (Bertholet, 1976). Many cases of Pediculus resistance to insecticides have been described (Wright & Pal, 1965; Clarck & Cole, 1967; Miller et al., 1972; Moores et al., 1994; Roberts & Andre, 1994; Siegfried & Zera, 1994; Whyard et al., 1994; Mumcuoglu et al., 1995; White

© 2000 Blackwell Science Ltd

419

Fonds Documentaire IRD Cote: 6×24084 Ex: 1

& Walker, 1995; Gratz, 1997). Cross-resistance to pyrethroids is perhaps more likely in populations already resistant to DDT (Maunder, 1991), but this is not inevitable (Hemingway et al., 1999). Resistance generally results from genetic changes affecting synthesis of enzymes such as acetyl-cholinesterase (Lamizana & Mouchet, 1976; Maunder, 1991; Poirié & Pasteur, 1991; Moores et al., 1994; Whyard et al., 1994), monooxygenase (Hemingway et al., 1999), non-specific esterases (Siegfried & Zera, 1994) or transferases (Brogdon, 1989). In addition, pyrethroid resistance in Pediculus may be caused by nerve insensitivity giving so-called 'knockdown resistance' (Hemingway et al., 1999).

Therapeutic trials of pediculicides and studies of Pediculus resistance to insecticides require thorough knowledge of the biology of lice and their metabolism which is governed by many enzymatic reactions. When using various strains of Pediculus for bioassays to assess the activity of pediculicides, the effects of these products may not be the same in strains of different origins (Chosidow et al., 1994; Downs et al., 2000). Variation within and between strains makes it desirable to screen multiple strains (from the laboratory and field isolates from different individuals, schools, cities, countries and continents) when evaluating candidate compounds and formulations such as pediculicides. The susceptibility or resistance status of lice to insecticides depends on the species (body lice and head lice are generally apomictic: Busvine, 1978; White & Walker, 1995), the personal population (P. capitis from one person's head may not be as sensitive as those from somebody else's head) and the geographical strain (reflecting variable therapeutic pressure between communities in different cities, countries and continent) (Gratz, 1997).

To begin to characterize populations of human lice biochemically and genetically, we profiled the electrophoretic variation of 28 enzymes in samples of *P. capitis* collected in schools of tropical Africa, Madagascar and France, compared with *P. humanus* from a French hospital and a long-established laboratory strain from U.S.A. (Culpepper, 1948; Zeichner, 1999). Most of these enzymes appeared to be monomorphic and identical in both species of lice. However, electromorph variations observed for phosphoglucomutase and an esterase allowed us to evaluate differences between *Pediculus* species and strains.

Materials and methods

Reagents

α- and β-naphthyl-acetate, Fast blue RR were from Fluka, Buchs, Switzerland. All other products were obtained from Sigma Chemical Co. (St Louis, MO, U.S.A.).

Lice

Pediculus capitis were collected from schoolchildren in and around Tours and Besançon in France, from Antananarivo in

Madagascar and from two tropical African cities: Bamako in Mali and Dakar in Senegal. Live head lice were obtained using a fine-toothed anti-louse comb (Laboratoire ITAX de P. Fabre, Santé, France) or by manual delousing. To eliminate all host blood enzymes, the lice were kept isolated for 48 h, then deepfrozen in liquid nitrogen for transport.

Pediculus humanus were collected from the clothes of homeless people treated by the Emergency Service of the Centre Hospitalier Régional, Universitaire de Tours, France. The lice were transported in plastic boxes to the laboratory, where they were deep-frozen in liquid nitrogen. A substrain of the original U.S.A. colony of P. humanus (Culpepper, 1948) was obtained from LIN/ORSTOM (now Institute for Research & Development), Montpellier, and maintained in our Laboratoire de Parasitologie, Mycologie et Médecine Tropicale, Faculté de Médecine de Tours, France. Maintenance procedure involved placing the lice (≈ 100/batch) on a piece of cotton cloth for support (1 × 1 cm), kept in plastic boxes at 28°C and 70% relative humidity (Alpatov, 1942; Flemings & Ludwig, 1964). They were fed daily by placing the cotton piece on the shaved abdomen of a rabbit (Valade, 1986). Eggs were laid on the piece of cloth, to which they were stuck by an agglutinant substance produced by the maternal annex glands (Schmidt, 1938, 1939).

Electrophoresis

This was undertaken with 14% starch gels according to the procedure of Second & Trouslot (1980). Gel buffer: 0.005 M histidine HCl, pH9.5, containing 0.0025 M NaCl; migration buffer: 0.41 M sodium citrate, pH8.0. Each louse was squashed individually on a 6-mm diameter disc of Whatman N°1 filter paper. The paper disc was placed on the lower edge of the gel and the electrophoresis was run at 220 V, 25 mA for 4h. Gels were then cut horizontally into slices of 3 mm thickness and each slice was used to assay one enzyme.

Enzyme assays

These followed the procedures of Pasteur et al. (1987). Esterases (EC 3.1.1) were stained with Fast blue RR, alpha and beta naphthyl-acetate dissolved in 0.1 M Tris-HCl buffer, pH 7.1 (Selander et al., 1986; Gilot & Andre, 1995). Each slice of gel was incubated in the dark with 0.0016 M 1-naphthyl acetate, 0.0016 M 2-naphthyl acetate in 2% acetone in water and fast blue RR (0.1% w/y) at 37°C for 3 h.

ada in the are in

Phosphoglucomutase (EC.5.4.2.2) was assayed with nicotinamide-adenine dinucleotide (Sutherland, 1949; Rathaur et al., 1982); NAD 0.0004 M was dissolved in 0.1 M Tris-HCl, pH 8.5; phenazine methosulphate (PMS 6.5×10^{-6} M) and nitro-blue tetrazolium (NBT 250×10^{-6} M) were dissolved in 0.27 M sodium glutamate buffer, pH 7.0. The enzymes were identified by their activities and their relative migrations from the origin.

Table 1. Enzyme assays with Pediculus adults (apparent genetic polymorphism of esterase 3 and phosphoglucomutase represented by italics): Interference + or - with enzymes from rabbit blood, except E=interference between esterases and carbonic anhydrase.

Number	nber Enzyme name		Abreviation E. C. Number I		Migration	Characteristic	
1.1	Lactate dehydrogenase	LDH	1.1.1.27	+	Anodal	Invariable	
2	Malate dehydrogenase	ME	1.1.1.40	+	Anodal	Invariable	
3	Peroxidase	POX	1.11.1.1	+	Cathodal	Invariable	
. 4	Peptidase	PEP	3.4.11.4	+	Anodal	Invariable	
. 5	Alkaline phosphatase	AKP	3.1.3.1	+	Anodal	Invariable	
6	Aconitate hydratase	ACON	4.2.1.3	+ `	Anodal	Invariable	
7	Adenylate kinase	AK	2.7.4.3	+	Anodal	Invariable	
8	Glucose-6-phosphate 1-dehydro-genase	Gd	1.1.1.49	+	Anodal	Invariable	
9	6-phosphogluconate 2-dehydro-genase	PGD	1.1.1.43	+	Anodal	Invariable	
. 10	Superoxide dismutase	SOD	1.15.1.1	_	Anodal	Invariable	
11	Phosphoglucoisomerase	PGI	5.3.1.9		Anodal	Invariable	
12	Malate dehydrogenase	MDH	1.1.1.37	_	Anodal	Invariable	
13	Glutamate dehydrogenase	GDH	1.4.1.2	_	Anodal	Invariable	
: 14	Aspartate aminotransferase	AAT	2.6.1.1	_	Anodal	Invariable	
£ 15	Isocitrate dehydrogenase	ICD	1.1.1.42		Anodal	Invariable	
16	Leucyl aminopeptidase	LAP	3.4.11.1	-	Anodal	Invariable	
· 17 · · · ·	Acid phosphatase	ACP	3.1.3.2	_	Anodal	Invariable	
18	Carbonate dehydratase	. CD	4.2.1.1	E	Anodal	Invariable	
19	Octanol dehydrogenase	OCT	1.1.1.73		Anodal	Invariable	
20	Glycerol 3-phosphate dehydro-genase	GPD	1.1.1.8	, —)	Anodal	Invariable	
21	Catalase	CAT	1.11.1.6	-	Anodal	Invariable	
22	Glucokinase	GK.	2.7.1.2		Anodal	Invariable	
23	Pyruvate kinase	PK	2.7.1.40		Anodal	Invariable	
24	Hexokinase	HK	2.7.1.1	<u> </u>	Anodal	Invariable	
125	3-hydroxybutyrate dehydrogenase	3-HBDH	1.1.1.30	·	Anodal	Invariable	
26	Creatine kinase	CK	2.7.3.2	_	Anodal	Invariable	
27	Phosphoglucomutase	PGM	5.4.2.2	_	Anodal	Variable ·	
28a	Esterase 1	EST1	3.1.1	_	Anodal	Invariable	
28b	Esterase 2	EST2	3.1.1	_	Anodal	Invariable	
28c	Esterase 3	EST3	3.1.1	_	Anodal	Variable ·	
28d	Esterase 4	EST4	3.1.1		Anodal	Invariable	

Esterase inhibition effects

These were assessed in response to three inhibitors: eserine (physostigmine), malathion and ethylenediamine tetra-acetic acid (EDTA). Each inhibitor was dissolved in 1% acetone and added to the substrate solution to give final concentrations of malathion 0.0034 M, EDTA 0.0038 M and eserine 0.004 M.

Results

Selection of marker enzymes

Table 1 lists the 28 enzymes investigated in Pediculus. Those listed as 1-9 were discarded because of possible interference from rabbit blood, as detected by tests on P. humanus laboratory strain. Those listed as 10-26 showed no variation within or between strains and species, i.e. they were electrophoretically monomorphic. Only phosphoglucomutase (27) and esterases (28a-d) showed sufficient electrophoretic variability reflecting genetic polymorphism.

Esterases

Esterase activity profiles segregated as four bands migrating 17, 20, 23-35 and 55 mm during 3 h electrophoresis, designated as esterases 1, 2, 3 and 4 (28-d in Table 1). These esterases were differentiated by means of specific inhibitors (Table 2). Esterase 1 was slightly inhibited by malathion and EDTA but not by eserine. Esterase 2 was inhibited by EDTA only. Esterase 3 was inhibited by malathion and eserine, but not by EDTA, and esterase 4 was slightly inhibited only by EDTA. Esterases 1, 2 and 4 were invariable in all strains of lice tested. Esterase 3 (28c) behaved as a cholinesterase and was included because of its variability and because the rabbit blood esterases caused no interference (Table 1).

The esterase 3 zymogram (Fig. 1) showed a locus with four anodal electromorphs at 23, 26, 30 and 35 mm, designated alleles a, b, c and d, respectively (Table 3). Pediculus humanus carried only electromorphs 26 and 30 (alleles b and c). The wild sample of four specimens from France (genotypes 2bb and 2cc) was insufficient for statistically satisfactory comparison

with the laboratory strain (allele frequencies 0.67b, 0.33c), but they clearly shared the same bc polymorphism of Est-3.

Pediculus capitis from Senegal (Dakar, n=14) was the most polymorphic for Est-3 electromorphs 26, 30 and a fourth band at 35 mm (genotypes bb, bc, bd and dd). The whole sample of P. capitis from Mali (Bamako, n=14) was monomorphic for Est-3 electromorph 23 (genotype aa), but this band was not found in any of the other samples. Allele d (electromorph 35) was not seen in P. capitis from Madagascar (n=4), Mali (n=14) and France (Besançon, n=4; Tours n=18), nor in P. humanus (Tours, n=4; lab strain, n=11). Frequencies of the four putative alleles of esterase 3 are summarized in Table 3, showing apparently balanced bc polymorphism in P. humanus (France and U.S.A.), while P. capitis has apparently the same balanced polymorphism of bc (France and Madagascar), but also bcd (Dakar) and the anomalous Bamako population homozygous for aa genotype of Est-3.

Phosphoglucomutase

The phosphoglucomutase zymogram (Fig. 2) showed a locus with three anodal electromorphs at 6, 11 and 16 mm,

Table 2. Differentiation of four esterases from *Pediculus* by three inhibitors: -, no inhibition; +, total inhibition; ±, decreased activity.

	Esterase	Esterases						
Inhibitor	EST1	EST2	EST3	EST4				
Malathion	· ±	_	+	_				
Eserine	_	_	+	-				
EDTA	<u> </u>	+	_	±				

designated alleles a, b and c, respectively (Table 3). *Pediculus humanus* carried balanced abc polymorphism (laboratory strain: 0.24aa:0.42bb:0.34cc), but only bc polymorphism was detected in the small sample from France (Tours: 1bb:1bc:2cc).

Pediculus capitis from France (Tours, n=27) carried abc polymorphism of Pgm (0.074aa:0.352bb:0.574cc), whereas the samples from Mali (Bamako, n=8) and Senegal (Dakar, n=8) apparently lacked Pgm^a but showed balanced bc polymorphism. Only one specimen of P. capitis from Madagascar was profiled for Pgm and showed homozygous electromorph 16 (genotype cc). Frequencies of the three putative alleles of phosphoglucomutase are summarized in Table 3, showing Pgm allele a to be rarest in both P. capitis (mean 4.2%) and P. humanus, despite reaching the highest frequency in the latter laboratory strain (24%). Pgm alleles b and c showed similar overall frequencies in both head and body lice.

Discussion

Despite their morphological similarity, the biology and medical importance of head and body lice are completely different (Buxton, 1947; Bertholet, 1976; Fontan et al., 1984; Valade, 1986; Gratz, 1997). Because they occupy separate niches on the human body, they seldom interbreed (Busvine, 1978) and their insecticide resistance profiles tend to be distinct (White & Walker, 1995; Gratz, 1997). The head louse *P. capitis* is an obligate human parasite that cannot be maintained for long in the laboratory because it does not feed on rabbits or other mammals and requires multiple, frequent bloodmeals daily. The body louse *P. humanus* lives mainly off the human body, in clothes or bedding (Alliot & Combre, 1977); it can feed on rabbit blood, which is relatively well tolerated (Flemings & Ludwig, 1964) and may survive on only

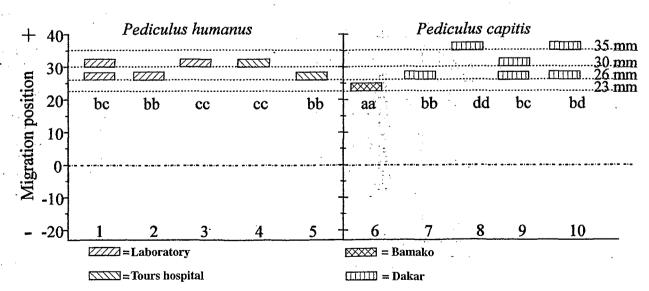


Fig. 1. Schematic representation of esterase 3 zymogram showing genotypes aa, bb, bc, cc. Lane numbers represent P. humanus (laboratory (1-3), Tours hospital (4-5)), P. capitatis (Bamako (6), Dakar (7-10)).

one bloodmeal per day. This makes it possible to maintain P. humanus as a laboratory strain.

As several enzymes have been implicated in resistance to insecticides (Brogdon, 1989; Maunder, 1991; Siegfried & Zera, 1994; WHO, 1998), we investigated the variability of enzymes from several populations of human lice. Electrophoretic analysis of 28 enzymes from various strains of body and head lice identified two polymorphic loci: esterase 3 and phosphoglucomutase, both of general metabolic importance. Because esterase 3 was found to be inhibited by malathion and eserine, it was interpreted as a cholinesterase.

Esterases, particularly acetylcholinesterase, are commonly involved in resistance to insecticides (Beach & Cordon-Rosales, 1989; Coats et al., 1994; Mutero et al., 1994; Siegfried & Zera, 1994; Vaughan et al., 1995; WHO, 1998). Whereas we consider the inbred laboratory strain of P. humanus to be fully susceptible to all insecticides (Zeichner, 1999), our other samples of lice were not tested for insecticide sensitivity. It remains to be seen whether the type of cholinesterase variation we detected (Est-3 polymorphism) in 4/5 populations of Pediculus might form the basis for selection of any resistance mechanism. Otherwise, so little is yet known about Pediculus

Table 3. Allele frequencies (see Figs for codes of alleles and electromorphs) of two polymorphic isoenzymes (esterase and phosphoglucomutase) in seven geographical samples of Pediculus.

			Esterase 3			Phosphoglucomutase				
Species and origin of sample	Date coll.	n	e'morph: 23 allele: a	26 b	30 . c	35 d		e'morph:,6 allele: a	11 b	16 c
P. humanus		``			*, d'			· · · · · · · · · · · · · · · · · · ·	. 5.	
Laboratory strain	01/94	111	0.000	0.720	0.280	0.000	32	0.240	0.420	0.340
Tours, France	01/94	4	0.000	0.500	0.500	0.000	4	0.000	0.375	0.625
Total or mean	01/94	15	. " 0.000	0.666	0.333	0.000	36	0.213	0.414	0.372
P. capitis									*	
Bamako, Mali	12/93	14	1.000	0.000	0.000	0.000	8	0.000	0.500	0.500
Dakar, Senegal	12/93	14	0.000	0.430	0.180	0.390	8	0.000	0.690	0.310
Antananarivo, Madagascar	09/93	4	0.000	0.500	0.500	0.000	. 1	0.000	0.000	1.000
AFRICA	09/93	32	0.438	0.250	0.141	0.172	17	0.000	0.559	0.441
Tours, France	01/94	18	0.000	0.722	0.278	0.000	27	0.074	0.352	0.574
Besançon, France	09/93	4	0.000	0.500	0.500	0.000	4	0.000	0.750	0.250
EUROPE	09/93	22	0.000	0.682	0.318	0.000	31	0.065	0.403	0.532
Total or mean	09/93	55	0,255	0.418	0.209	0.100	48	0.042	0.458	0.500

n=number of diploid specimens tested (allele frequencies based on two haploid genomes per specimen).

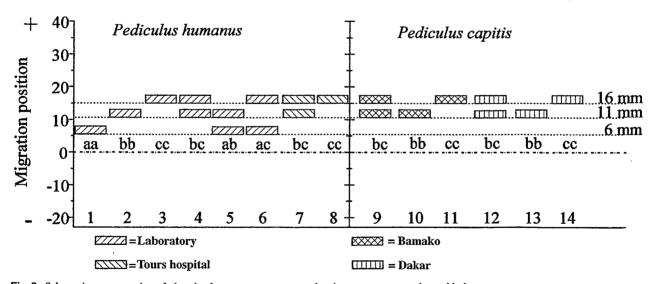


Fig. 2. Schematic representation of phosphoglucomutase zymogram showing genotypes aa, ab, ac, bb, bc, cc. Lane numbers represent: P. humanus (laboratory (1-6), Tours hospital (7-8)), P. capitatis (Bamako (9-11), Dakar (12-14)).

© 2000 Blackwell Science Ltd, Medical and Veterinary Entomology, 14, 419-425

biochemistry, despite efforts to immunize against human lice (Ben-Yakir et al., 1994; Ochanda et al., 1996).

Taxonomically these results show some signs of differentiation between head and body lice that should be further explored. Some African populations of P. capitis carried alleles a and d of esterase 3 (electromorphs 23 and 35) that were not detected in P. humanus. The cases of Est-3a apparently fixed in P. capitis from Bamako, and detection of Est- 3^d only in P. capitis from Dakar (39% frequency), are of special interest to investigate the local and wider significance in biosystematics of Pediculus. Are these geographical populations distinct, or are these alleles of esterase 3 more widespread? The unusually high frequency of phosphoglucomutase allele a in the laboratory strain of P. humanus might reflect genetic drift. Unfortunately, this electromorph is not diagnostic for P. humanus, as it was absent from the wild French sample but present at low frequency in 1/5 strains of P. capitis. The general lack of enzyme polymorphism at about 30 other enzyme loci (or our failure to detect any) proved to be a major limitation for further isoenzyme studies on the genetics, speciation and insecticide resistance potential of Pediculus.

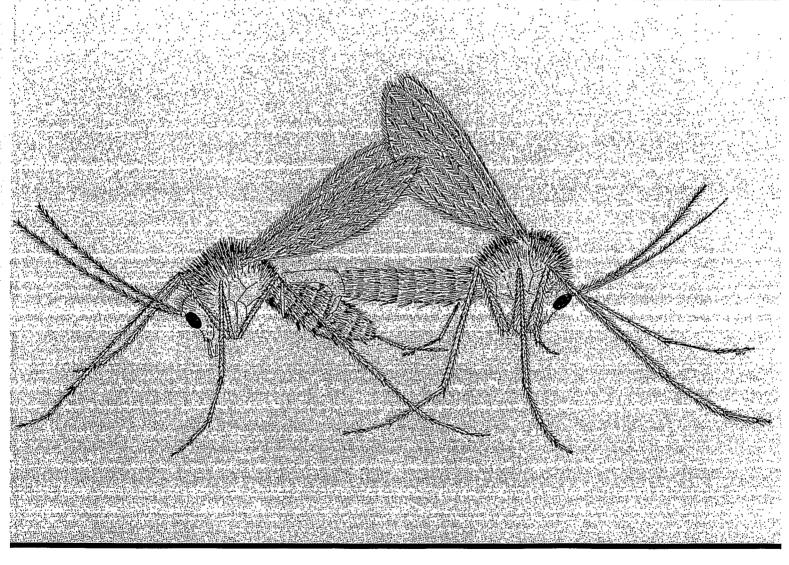
Acknowledgements

This work was supported by grants from CELECTO, Tours, France. We thank A. Person and J. P. Cheneveau, Service communal d'Hygiène de Santé et d'Environnement, Mairie de Tours, for their technical help. We are grateful to the Laboratoire de lutte contre les insectes nuisibles, Office de la Recherche Scientifique et Technique Outre-Mer (LIN/ORSTOM, now IRD) for supplying the standard strain of P. humanus.

References

- Alliot, A. & Combre, A. (1977) Les poux. Les Actualités Pharmaceutiques, 139, 41–46.
- Alpatov, V.V. (1942) The louse of man, its development and survival at different temperature. Advances in Modern Biology, 15, 190-207.
- Beach, R.F. & Cordon-Rosales, C. (1989) Detoxifying esterases may limit the use of pyrethroids for malaria vector control in the Americas. *Parasitology Today*, 5, 326-327.
- Ben-Yakir, D., Mumcuoglu, K.Y., Manor, O., Ochanda, J.O. & Galun, R. (1994) Immunization of rabbits with a midgut extract of the human body louse *Pediculus humanus*: the effect of induced resistance on the louse population. *Medical and Veterinary Entomology*, 8, 114-118.
- Bertholet, R. (1976) Les poux. Moniteur des Pharmacies et des Laboratoires, 1241, 2595-2598.
- Brogdon, W.G. (1989) Biochemical resistance detection. An alternative bioassay. *Parasitology Today*, **5**, 56-60.
- Busvine, J.R. (1978) Current problems in the control of mosquitoes. *Nature*, 273, 604-607.
- Buxton, P.A. (1947) The Louse. Edward Arnold. London.
- Chosidow, O., Chastang, C., Brue, C., Bouvet, E., Izri, M., Monteney, N., Bastuji-Garin, S., Rousset, J.-J. & Revuz, J. (1994) Controlled study of malathion and d-phenothrin lotions for *Pediculus humanus* var. *capitis*-infested schoolchildren. *Lancet*, 344, 1724–1727.

- Clarck, P.H. & Cole, M. (1967) Resistance of body lice to carbaryl. Journal of Economical Entomology, 60, 398-400.
- Coats, S., Brown, J.K. & Hendrix, D.L. (1994) Biochemical characterization of biotype specific esterases in the whitefly Bemisia tabaci Genn (Homoptera: aleyrodidae). Insect Biochemistry and Molecular Biology, 24, 723–728.
- Culpepper, G.H. (1948) Rearing and maintaining a laboratory colony of body lice on rabbits. American Journal of Tropical Medicine, 28, 499-504.
- Downs, A.M.R., Stafford, K.A. & Coles, G.C. (2000) Susceptibility of British head lice, *Pediculus capitis*, to imidacloprid and fipronil. *Medical and Veterinary Entomology*, 14, 105-107.
- Flemings, M.B. & Ludwig, D. (1964) Effect of temperature and parental age on the life cycle of the body louse, *Pediculus humanus humanus*. Annals of Entomological Society of America, 57, 560-563.
- Fontan, I., Malleville, J. & Taieb, A. (1984) Les pédiculoses. Concours Médical, 106, 4104–4112.
- Gentilini, M. (1993) Nuisances: Ectoparasites, myases, sangsues. Médecine Tropicale 5th edn, pp. 705-717. Flammarion-Médecine-Sciences, Paris.
- Gilot, P. & Andre, P. (1995) Characterization of fine esterases from Listeria monocytogenes and use of their electrophoretic polymorphism for strain typing. Applied and Environmental Microbiology, 61, 1661-1665.
- Gratz, N.G. (1997) Human Lice. Their prevalence, control and resistance to insecticides. A Review 1985–97. Document WHO/ CTD/WHOPES/97.8. World Health Organization, Geneva.
- Hemingway, J., Miller, J. & Mumcuoglu, K.Y. (1999) Pyrethroid resistance mechanisms in the head louse *Pediculus capitis* from Israel: implications for control. *Medical and Veterinary Entomology*, 13, 89–96.
- Hurlbut, H.S., Atman, R.M. & Nibley, C. (1952) DDT resistance in Korean body lice. *Science*, 115, 11-12.
- Kitaoka, M. (1952) DDT resistance lice in Tokyo. Japanese Journal of Medicine and Science Biology, 5, 75-88.
- Lamizana, T. & Mouchet, J. (1976) La pédiculose en milieu scolaire dans la région parisienne (tests de résistance au DDT). Médecine et Maladie Inféctieuses, 6, 48-52.
- Maunder, J.W. (1991) Strategic aspects of insecticide resistance in head lice. *Journal of the Royal Society of Health*, 111, 24-26.
- Miller, R.N., Wisseman, C.L., Sweeney, G.W., Verschueren, A. & Fabrikant, I.B. (1972) First report of resistance of human body lice to malathion. Transactions of the Royal Society of Tropical Medicine and Hygiene, 66, 372-374.
- Moores, G.D., Devine, G.J. & Devonshire, A.L. (1994) Insecticide insensitive acetylcholinesterase can enhance esterase-based resistance in *Myzus persicae* and *Myzus nicotianae*. *Pesticide Biochemistry and Physiology*, **49**, 114-120.
- Mumcuoglu, K.Y., Hemingway, J., Miller, J., Ioffe-Uspensky, I., Klaus, S., Ben-Ishai, F. & Galun, R. (1995) Permethrin resistance in the head louse *Pediculus capitis* from Israel. *Medical and Veterinary Entomology*, 9, 427-432.
- Mutero, A., Pralavorio, M., Bride, J.M., et al. (1994) Resistanceassociated point mutations in insecticide-insensitive acetylcholinesterase. Proceedings of the National Academy of Sciences of the United States of America, 91, 5922-5926.
- Ochanda, J.O., Mumcuoglu, K.Y., Ben-Yakir, D., Okuru, J.K., Oduol, V.O. & Galun, R. (1996) Characterization of body louse midgut proteins recognized by resistant hosts. *Medical and Veterinary Entomology*, **10**, 35–38.
- Pasteur, N., Pasteur, G., Bonhomme, F. et al. (1987) Les manipula-


- tions. Manuel Technique de Génétique par Électrophorèse des Protéines, pp. 53-77, Lavoisier, Paris.
- Poirié, M. & Pasteur, N. (1991) La résistance des insectes aux insecticides. La Recherche. 22, 874-882.
- Rathaur, S., Anwar, N. & Saxena, J.K. (1982) Setaria cervi. Enzymes in microfilariae and in vitro action of antifilarials. Zeitschrift für Parazitenkunde, 68, 331-338.
- Robert, P. (1985) Epidémiologie. Dermopharmacologie Clinique, pp. 111-119, Maloine, S.A., Paris.
- Roberts, D.R. & Andre, R.G. (1994) Insecticide resistance issues in vector borne disease control. American Journal of Tropical Medicine and Hygiene, 50, 21-34.
- Schmidt, W.G. (1938) Propriétés physiques et chimiques de la sécrétion fixatrice des œufs de Pediculus capitis. Zeitschrift für Parazitenkunde, 10, 728.
- Schmidt, W.G. (1939) Ueber physikalishe und chemische eigenschaften deo sekretes, mit dem Pediculus capitis seine eier ankittet. Zeitschrift für Parazitenkunde, 10, 729-736.
- Second, G. & Trouslot, P. (1980) Electrophorèse d'enzymes de riz: technique d'électrophorèse en gel d'amidon appliquée à l'étude du polymorphisme de 14 enzymes du riz (Oriza sp.). Editions de L'ORSTOM. Collection Travaux et Documents, Paris, France, 120,
- Selander, R.K., Caugant, D.A., Ochman, H., et al. (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology, 51,
- Siegfried, B.D. & Zera, A.J. (1994) Partial purification and characterization of a greenbug (Homoptera: Aphididae) esterase

- associated with resistance to parathion. Pesticides Biochemistry and Physiology, 49, 132-137.
- Sutherland, E.W. (1949) Activation of PGM by metal binding agents. Journal of Biological Chemistry, 180, 1279-1284.
- Valade, M. (1986) Le pou de l'homme, Pediculus humanus Linné, 1758. Observations biologiques. Evaluation de l'activité de différents insecticides. Editions de L'ORSTOM, Collection Travaux et Documents, Paris, France, 194, 1-267.
- Vaughan, A., Rodriguez, M. & Hemingway, J. (1995) The independent gene amplification of electrophoretically indistinguishable B esterases from the insecticide-resistant mosquito Culex quinquefasciatus. Biochemistry Journal, 305, 651-658.
- White, G.B. & Walker, A.R. (1995) Editorial commentary on pyrethroid resistance in and specific status of Pediculus capitis. Medical and Veterinary Entomology, 9, 432 & 447.
- WHO (1998) Techniques to Detect Insecticide Resistance Mechanisms (Field and Laboratory Manual). Document WHO/CDS/CPC/MAL/ 98.6. World Health Organization, Geneva.
- Whyard, S., Downe, A.E.R. & Walker, V.K. (1994) Isolation of an esterase conferring insecticide resistance in the mosquito Culex tarsalis. Insect Biochemistry and Molecular Biology, 24, 819-827.
- Wright, J.W. & Pal, R. (1965) Insecticide resistance in body lice. 1958-63. Bulletin of the World Health Organization, 33, 485-
- Zeichner, B.C. (1999) Baseline susceptibility of a laboratory strain of pediculus humanus humanus (Anoplura: Pediculidae) using a modified World Health Organization testing protocol. Journal of Medical Entomology, 36, 903-905.

Accepted 10 April 2000

Medical and Veterinary Entomology

Editors: G. B. White (Medical) and R. Wall (Veterinary)

Published for the Royal Entomological Society

PM 278

Blackwel Science