BIOGEOGRAPHY OF MALAGASY MAYFLIES (INSECTA, EPHEMEROPTERA) PRELIMINARY RESULTS

Michel SARTORI 1, Jean-Luc GATTOLLIAT 1, Ranalison OLIARINONY 12

& Jean-Marc ELOUARD 2

ABSTRACT - Mayfles (Ephemeroptera) are among the oldest known flying insects. They are strictly freshwater inhabitants with weak dispersal abilities, thus an interesting group for biogeographical studies. At the beginning of the 1990s, only twenty species were known in Madagascar. Since then, extensive studies by the LRSAE at over 660 different localities (more than 850 sampling points) led to the identification of at least 200 species, all endemic, and belonging to more than 40 genera and 11 families. The distribution of the investigated families is discussed herein. One family, the Palingeniidae, is not present in continental Africa. The absence from Madagascar of some other families is also analysed. The generic endemism rate is about 50% and can be in part explained by radiations of some taxa after the breakoff with Gondwana. These adaptations were made possible by the lack of competitors in most of the running waters. Comparisons are made between African and Malagasy faunas. The main distribution patterns found in Malagasy mayflies are illustrated.

KEY-WORDS - Ephemeroptera, Mayflies, Madagascar, Biogeography

RESUME - Les Ephéméroptères constituent un ancien ordre d'insectes exclusivement dulçaquicoles, a pouvoir de dispersion restreint. De ce fait, ils constituent un groupe de choix pour des études de biogéographie. Jusqu'au début des années 1990, seule une vingtaine d'especes étaient connues de la Grande Île Depuis, les recherches menées par le LRSAE sur pres de 660 stations différentes, représentant plus de 850 points de prélèvements, ont permis la capture et l'identification d'au moins 200 espèces exclusivement endémiques appartenant à plus de 40 genres et à 11 familles. La distribution des familles rencontrées est discutee. Une seule d'entre elles (Palingeniidae) n'est pas présente en Afrique continentale. L'absence de certaines autres a Madagascar est également analysée. Le taux d'endémisme génerique s'elève a pres de 50% et peut être expliqué en partie par des adaptations postérieures à la séparation du Gondwana, rendues possible par l'absence de compétiteurs dans les milieux colonisés. Des comparaisons sont faites entre les genres endémiques et communs des faunes africaine et malgache. Les principaux types de distribution rencontrés chez les éphémeres malgaches sont illustrés par quelques exemples

MOTS-CLES - Ephemeroptera, Ephémères, Madagascar, Biogéographie

INTRODUCTION

Mayflies (Ephemeroptera) are the most primitive order of living winged insects Larvae colonise all types of freshwaters, from brooks and springs to large rivers, ponds and lakes. Although the adult stage is extremely short (generally less than one day), the larval growth may last from a few weeks until two or three years, mainly depending on water temperature and food availability (See Brittain 1982 for a review)

¹ Musee de Zoologie Palais de Rumine case postale 448, CH-1000 Lausanne 17 SUISSE

² IRD Laboratoire de Recherche sur les Systemes Aquatiques et leur Environnement (LRSAE) BP 434 101 Antananarivo MADAGASCAR

As a result of their short adult life, mayflies' dispersal power is generally rather weak, and they represent a good group for biogeographical analyses

The Madagascar mayfly fauna was almost unknown until the beginning of the 1990s Less than 20 species were recorded by different authors such as Latreille (1833), Navas (1926) or Demoulin (1973) The start of the program «Biodiversity and biotypology of Malagasy running waters» led to the creation of the Laboratoire de Recherche sur les Systemes Aquatiques et leur Environnement (LRSAE) in 1991, jointly between the French ORSTOM (now IRD) and the Malagasy CNRE, and gave a new boost to aquatic insect research on the island

Our actual knowledge of the Malagasy mayfly fauna, although quite incomplete at the specific level, allows us to present some preliminary results and answer the following questions. What are the affinities and originality of supraspecific taxa, and which other faunas are they linked to ?

MATERIAL AND METHODS

The results presented here are almost exclusively based on the numerous collections of the LRSAE and the Museum of Zoology in Lausanne From 1991 until 1999, more than 850 samplings, rearing of larvae and light traps, were performed, covering the main geographical areas (Fig. 1)

RESULTS

Our investigations led to the discovery of at least 200 species belonging to more than 40 genera (Tab I) Among the 28 actually recognised families worldwide, 11 are present in Madagascar

Leptophlebudae

This world-wide family is the most diversified on Madagascar Unfortunately, this is the one, at the moment, for which detailed data are still missing (work in progress by Prof W L Peters, Tallahassee, and Dr J -M Elouard, Montpellier) Anyway, it appears that all genera are endemic and present definite transantarctic relationships Based on Pescador and Peters (1980) and Peters (comm pers), the South America - Australia - New Zealand Hapsiphlebia / Atalophlebia, Penaphlebia, and Meridialaris / Atalophlebioides lineages occur on Madagascar Further, on the basis of on Towns and Peters (1996), the New Zealand Tepakia - Isothraulus lineage is also present

Baetıdae

This cosmopolite family is highly diversified with almost 20 genera, roughly half of those actually known (excluding the Leptophlebiidae). At least six of them are endemic Most of the genera present on Madagascar are also found exclusively on continental Africa. The case of *Cloeodes*, a pantropical genus (Fig. 2) is rather rare among mayflies (Waltz & McCafferty 1994, Lugo-Ortiz *et al.* 1999). The recent discovery of a single population of the genus *Afrobaetodes* was rather surprising (Gattolliat & Sartori 1999) but confirm the strong relationships between African and Malagasy Baetidae.

Heptagenudae

This widely distributed family is less diversified than in other parts of the World (North America, Asia, Europe) with 3 genera known also from Africa and Asia

Thalerosphyrus is widespread in Southeast Asia, whereas its presence in continental Africa (Soldan 1977) or even in the Near East (Jensen 1972) needs further investigations

Oligoneurudae

The related family Oligoneuriidae is represented by two genera *Elassoneuria* is widespread in Africa, as in Madagascar, and is represented by two subgenera Another undescribed genus seems to have a very restricted distribution, and has been found only in the Mangoro River

Polymitarcyidae

The single endemic genus *Proboscidoplocia* is present in Madagascar It includes among the largest species of mayflies of the world (Elouard & Sartori 1997)

Ephemeridae

One genus belongs to this family, *Eatonica* Common in Africa where it colonises large rivers (Fig. 3). This genus has on Madagascar a distribution restricted to the highlands brooks (Elouard *et al.* 1998).

Palingeniidae

A single endemic genus occurs on Madagascar, the flightless *Cheirogenesia* This is the only case of brachyptery ever found in mayflies, and the consequences of this unique phenomenon have been recently published (Ruffieux *et al* 1998) This family is the only one that is not present in continental Africa (Fig. 4), but possesses representatives throughout Asia and Europe

Ephemerellidae

This is the rarest family in Madagascar, with species restricted to the coldest watercourses in mountain areas. The same situation happens with representatives of the order Plecoptera. The two known genera, *Manohyphella* and an undescribed new genus, are endemic and closely related to the ancient Asiatic *Teloganella* lineage.

Tricorythidae

The study of this family brought a lot of surprises Previously, four genera were known, mainly in Africa, Southeast Asia and South America. Three additional new endemics *Madecassorythus*, *Spinirythus* and *Ranorythus* were identified on Madagascar, and represent the most plesiotypic forms of the family (Elouard & Oliarinony 1997, Oliarinony & Elouard 1998a, b) *Tricorythus* is present in Africa and Southeast Asia

Caenidae

This family is represented by three genera. Besides the cosmopolite *Caems*, the two others are endemic and also rather plesiotypic, *Madecocercus* and an undescribed new genus appear to belong to the old brachycercine rather than to the caenine lineage (Malzacher 1995, M. Sartori & J.-M. Elouard, unpubl. results)

Prosopistomatidae

This monogeneric family is one of the most evolved *Prosopistoma* has a broad distribution in the world, and as for other genera, its expansion seems to have been made possible through the drifting of the Indian plate (Fig. 5) with subsequent colonisation of southeast Asia and northern Australia

None of these families is endemic to Madagascar The Palingeniidae is the only one present in Madagascar but missing in Africa A striking feature is that representatives of the superfamily Siphlonuroidea are lacking in Africa and Madagascar though some southern Hemisphere families are known as transantarctic elements, such as Ameletopsidae, Nesameletidae or Onisigastridae (Kluge et al. 1995)

Among more than 40 genera actually known in Madagascar, half of them are endemic As seen previously, the proportion of endemism greatly fluctuates between families

DISCUSSION

There is a consensus now among scientists concerning the geological events that happened for the Malagasy plate First, the separation from Africa about 140 M y BP, then a subsequent breakoff from Antarctica-Australia 110 M y BP, and finally the separation from India 80 M y BP, leading to the colliding of the Dekkan plate with Asia 50 M y BP (Frohlich 1996)

Mayflies are the most primitive living winged insects. Their origin goes back to the Carboniferous Moreover, they exhibit a low vagility and the larvae are strictly associated with freshwaters, mainly running waters. These two features discriminate them from Odonata for instance, another old group of flying insects, that has good dispersal abilities and colonises mainly standing waters, and exhibits a lower proportion of endemism

The hypothesis that mayflies colonised landmasses such as Madagascar after the breakoff of Gondwana is unlikely. As a result of the actual presence of highly evolved genera in Madagascar, such as *Prosopistoma*, we can state that most of the actual mayfly lineages were already present before the Gondwana breakoff. A similar situation seems to happen with primitive flightless insects and other soil arthropods (Betsch & Cassagnau 1996).

The similarity between the African and Malagasy mayfly faunas is evident Oriental and Oceanian components are less prevailing. As stated by Paulian (1996), this situation seems in contradiction with the here above mentioned geomorphologic events. This is the case in different lineages such as the ephemerid *Eatomica*, the oligoneuriad *Elassoneuria* or the great majority of the baetid genera. Noteworthy is the fact that these taxa are found nowhere else in the world

The ancient connection of Madagascar with Australia, New Zealand and South America is attested by the actual presence of leptophlebiol lineages such as the *Atalophlebioides* The recent discovery of an *Atalophlebioides* precursor dated about 130 M y BP in Lebanon (McCafferty 1997) suggest that this lineage was also present in Africa, but later went extinct on that continent Whereas mayfly faunas of Australia, New Zealand and temperate South America are similar (Peters & Campbell 1991), only two genera are in common to Madagascar and South America, the pantropical *Cloeodes* and the cosmopolite *Caenis* No Siphlonuroidea, one of the early radiation of the order, are present in Madagascar, nor in Africa, Sri Lanka, and south India, whereas transantarctic lineages have spread through Australia, New Zealand and southern South America We agree with Edmunds (1972) suggesting that they become extinct, having no cool refuge for survival

The actual distribution of the Palingeniidae indicates that this family arose when Madagascar and India were still together, leading to an important radiation through Asia after the Dekkan plate collided with Asia. The fact that the Malagasy genus *Cheirogenesia* is the sister-group of all other palingeniid mayflies gives strong support to this hypothesis. In that sense, we do not agree with Edmunds (1975) suggesting that this dispersal dates back to the Pangea with extinction in Africa. Due to the peculiar habitat of the larvae (silt burrowers) we do not believe that extinction was the driving force in Africa (and also South America), where this kind of biotope is abundant, and where these insects had probably no competitors

Edmunds (1979) pointed out the significance of drifting India to the Oriental fauna and the subsequent spread to other parts of Eurasia Many examples are known now involving different lineages (Prosopistomatidae, Tricorythidae, and Heptageniidae for instance)

The long isolation of Madagascar led to the exclusively endemic species found nowadays. The lack of diversity in other lineages, such as carnivorous Plecoptera and fishes, allow quiet rapid speciation processes, as it has been shown with the flightless genus *Cheirogenesia* (Ruffieux *et al.* 1998). These factors also induced important shifts in feeding behaviour, leading to the unusual presence of at least three carnivorous baetid genera in Madagascar, whereas only five others are known from other areas of the world (Gattolliat & Sartori in press b).

Finally, if our starting hypothesis is correct, i.e. the actual distribution of mayflies reflects the situation prior to the Gondwana breakoff, we can only be much surprised by the strong relationships still existing between elements that were separated more than 120 My BP. This is the case for instance within baetid genera such as *Afroptilum*, *Afrobaetodes* or *Dabulamanzia*

Concerning the endemic genera, we are in need of phylogenetic analyses. No doubt that they will bring shed interesting light on this so peculiar mayfly fauna.

ACKNOWLEDGMENTS

We thank the whole team of the Laboratoire de Recherche sur les Systemes Aquatiques et leur Environnement (LRSAE) for logistical assistance and great help during field work in Madagascar. We are much indebted to Prof. W.L. Peters (Tallahassee) for providing some very useful unpublished data on Leptophlebiidae. This paper is « Aquatic Biodiversity in Madagascar » contribution n° 36

REFERENCES

- BETSCH J -M & P CASSAGNAU, 1996 Origine, différentiation locale et endémisme de quelques groupes de microarthropodes du sol et de la littère à Madagascar Pp 535-558, *In* W R Lourenço (Ed) Biogeographie de Madagascar ORSTOM, Paris
- BRITTAIN, JE, 1982 Biology of mayflies Ann Rev Entomol, 27 119-147
- DEMOULIN, G, 1973 Ephéméroptères de Madagascar Bull Inst R Sci Nat Belg, 49 1 20
- EDMUNDS, G F Jr, 1972 Biogeography and evolution of Ephemeroptera Ann Rev Entomol, 17 21-42
- EDMUNDS, G F Jr, 1975 Phylogenetic biogeography of mayflies Ann Missouri Bot Garden, 62 (2) 251-263
- EDMUNDS G F Jr, 1979 Biogeographical relationships of the Oriental and Ethiopian mayflies Pp 11-14, In K Pasternak & R Sowa (Eds), Proceedings of the Second International Conference on Ephemeroptera Polish Academy of Sciences, Krakow
- ELOUARD, J -M & R OLIARINONY, 1997 Biodiversité aquatique de Madagascar 6 Madecassorythus un nouveau genre de Tricorythidae définissant la nouvelle sous-famille des Madecassorythinae (Ephemeroptera, Pannota) Bull Soc ent Fr, 102 (3) 225-232
- ELOUARD, J-M & M SARTORI, 1997 *Proboscidoplocia*, a singular plural (Ephemeroptera, Polymitarcyidae) Pp 439-448, *In* P Landolt & M Sartori (Eds) Ephemeroptera and Plecoptera Biology, Ecology and Systematics MTL, Fribourg

- ELOUARD, J-M, R OLIARINONY & M SARTORI, 1998 Biodiversité aquatique de Madagascar 9 Le genre Eatonica Navás (Ephemeroptera, Ephemeridae) Mitt schweiz ent Ges, 71 1-9
- FRÖHLICH, F, 1996 La position de Madagascar dans le cadre de l'évolution géodynamique et de l'environnement de l'océan indien Pp 19-26, In WR Lourenço (Ed) Biogeographie de Madagascar ORSTOM, Paris
- GATTOLLIAT, J-L & M SARTORI, 1998 Two new Malagasy species of *Herbrossus* (Ephemeroptera Baetidae) with the first generic description of the adults Annls Limnol, Toulouse, 34 (3) 305-314
- GATTOLLIAT, J-L & M SARTORI, 1999a Revision of the Malagasy genus *Nesoptiloides* (Ephemeroptera Baetidae) Mitt schweiz ent Ges , 72 23-30
- GATTOLLIAT, J-L & M SARTORI, 1999b A new species of *Afrobaetodes* (Insecta Ephemeroptera) and first report of this genus from Madagascar Annls Limnol, Toulouse, 35(3) 179-184
- GATTOLLIAT, J-L & M SARTORI (in press-a) *Guloptiloides* an extraordinary new carnivorous genus of Baetidae (Insecta Ephemeroptera) Aquatic Insects
- GATTOLLIAT, J-L & M SARTORI (in press-b) Predaceous Baetidae in Madagascar an uncommon and unsuspected high diversity Proceedings of the IX Conference on Ephemeroptera
- GATTOLLIAT, J-L & M SARTORI (in press-c) Contribution to the systematic of the genus *Dabulamanzia* (Ephemeroptera, Baetidae) in Madagascar Revue suisse zool
- GATTOLLIAT, J-L, M SARTORI & J-M ELOUARD, 1999 Three new species of Baetidae (Ephemeroptera) from the Réserve Naturelle Intégrale d'Andohahela Pp 115-124, In S M Goodmann (Ed) A floral and faunal inventory of the Réserve Naturelle Intégrale d'Andohahela, Madagascar with reference to elevational variation Fieldiana Zoology (n s), 94
- JENSEN, S L , 1972 A generic revision of the Heptageniidae of the world (Ephemeroptera) Ph D thesis, University of Utah
- KLUGE, NJ, D, STUDEMANN, P LANDOLT & T GONSER, 1995 A reclassification of Siphlonuroidea (Ephemeroptera) Mitt schweiz ent Ges, 68 103-132
- LATREILLE, P A , 1833 Description d'un nouveau genre de crustaces Nouv Ann Mus Hist Nat , 2 23-34
- LUGO-ORTIZ, C R & W P McCAFFERTY, 1997a *Edmulmeatus grandus* an extraordinary new genus and species of Baetidae (Ephemeroptera) Annls Limnol, 33 (3) 191-195
- LUGO-ORTIZ, C R & W P McCAFFERTY, 1997b New Afrotropical genus of Baetidae (Insecta Ephemeroptera) with bladelike mandibles Bull Soc Hist Nat Toulouse, 133 41-46
- LUGO-ORTIZ, C R & W P McCAFFERTY, 1997c New species and first reports of the genera Cheleocloeon, Dabulamanzia and Mutelocloeon (Insecta Ephemeroptera) from Madagascar Bull Soc Hist Nat Toulouse, 133 47-53
- LUGO-ORTIZ, C R & W P MCCAFFERTY, 1997d *Labiobaetis* (Ephemeroptera Baetidae) from the Afrotropical region Afr Entomol , 5 241-260
- LUGO-ORTIZ, C R & W P MCCAFFERTY, 1998 The *Centroptiloides* Complex of Afrotropical small minnow mayflies (Ephemroptera Baetidae) Ann Entomol Soc Am , 911 1-26
- LUGO ORTIZ, C R, W P MCCAFFERTY & J-L GATTOLLIAT, 1999 The small minnow mayfly genus Cloeodes (Ephemeroptera Baetidae) in Madagascar Proc Entomol Soc Wash, 1011 208-211
- MCCAFFERTY, WP, 1997 Discovery and analysis of the oldest mayflies (Insecta, Ephemeroptera) known from Amber Bull Soc Hist Nat Toulouse 133 77-82
- MALZACHER, P, 1995 Caenidae from Madagascar (Insecta, Ephemeroptera) Stuttgarter Beitr Naturk, Ser A, 530 1-12

- NAVAS, L., 1926 Algunos insectos del Museo de Paris (3a seria) Broteria Zool., 23 95-115
- OLIARINONY, R & J-M ELOUARD, 1998a Biodiversité aquatique de Madagascar 7 Ranorythus un nouveau genre de Tricorythidae définissant la nouvelle sous-famille des Ranorythinae (Ephemeroptera, Pannota) Bull Soc ent Fr, 102 (5) 439-447
- OLIARINONY, R & J-M ELOUARD, 1998b Biodiversité aquatique de Madagascar 8 Spinirythus un nouveau genre de Tricorythidae (Ephemeroptera, Pannota) Bull Soc ent Fr, 103 (3) 237-244
- OLIARINONY, R, J-M ELOUARD & N RABERIAKA, 1998 Biodiversité aquatique de Madagascar 19 Neuf nouvelles especes de *Tricorythus* Eaton (Ephemeroptera, Pannota, tricorythidae) Revue fr Ent (NS), 20 (3) 73-90
- PAULIAN, R, 1996 Réflexions sur la zoogeographie de Madagascar Pp 219-230, In WR Lourenço (Ed.) Biogéographie de Madagascar ORSTOM, Paris
- PESCADOR, M L & W L PETERS, 1980 Phylogenetic relationships and zoogeography of cool-adapted Leptophlebiidae (Ephemeroptera) Pp 43-56, In J F Flannagan & K E Marshall (Eds), Advances in Ephemeroptera Biology Plenum Press, New York
- PETERS, W.L. & I.C. CAMPBELL, 1991 Ephemeroptera Pp. 279-293, In I. D. Naumann et al. (Eds.), The Insects of Australia, vol. 1. CSIRO, Melbourne
- RUFFIEUX, L, J-M ELOUARD & M SARTORI, 1998 Flightlessness in Mayflies and its relevance to hypotheses on the origin of insect flight Proc Royal Society, London, Ser B, 265 2135-2140
- SARTORI, M & J-M ELOUARD, 1997 Heptageniidae (Insecta, Ephemeroptera) of the Réserve Naturelle Intégrale d'Andringitra, Madagascar Pp 121-130, In S M Goodman (Ed) A floral and faunal survey of the Eastern slopes of the Réserve Naturelle Intégrale d'Andringitra, Madagascar with reference to elevational variation Fieldiana Zoology (n s), 85
- SARTORI, M & J-M ELOUARD, 1999 Biodiversité aquatique de Madagascar 30 le genre *Cheirogenesia* (Ephemeroptera, Palingeniidae) Revue suisse Zool, 106 325-337
- SOLDAN, T, 1977 Three new species of mayflies (Ephemeroptera) from the mist oasis of Erkwit, Sudan Acta ent bohemoslov, 74 289-294
- TOWNS, D R & W L PETERS, 1996 Leptophlebiidae (Insecta Ephemeroptera) Fauna of New Zealand 36 1-143
- WALTZ, R D & W P McCAFFERTY, 1994 Cloeodes (Ephemeroptera, Baetidae) in Africa Aquatic Insects, 16 (3) 165-169

Table I List of the families and genera actually recorded on Madagascar

FAMILIES & Genera 1	Distribution 2	References 3
LEPTOPHLEBIIDAE 4	C	
Nesophlebia Peters & Edmunds, 1964	М	Demoulin, 1973
Petersophlebia Demoulin 1973	M	Demoulin 1973
Polythelais Demoulin, 1973	M	Demoulin, 1973
BAETIDAE	c	Bomoumi, 1973
Afrobaetodes Demoulin 1970	Af	Gattolliat & Sartori, 1999b
Afroptiloides Gillies, 1990	Af	Gattolliat unpubl results
Afroptilum Gillies, 1990	Af	Gattolliat et al 1999
Bugilliesia Lugo Ortiz & McCafferty 1998	Af	Gattolliat, unpubl results
Cheleocloeon Wuillot, 1993	Af	Lugo Ortiz & McCafferty 1997c
Cloeodes Traver, 1938		Lugo Ortiz et al., 1999
Cloeon Leach 1815	SA, NA, Af, As	,
	Af, Eu, As Aus Af	Gattolliat unpubl results
Dabulamanzia Lugo Ortiz & McCafferty, 1996		Gattolliat & Sartori in press c
Dicentroptilum Wuillot & Gillies, 1994	Af	Lugo Ortiz & McCafferty 1998
Edmulmeatus Lugo Ortiz & McCafferty 1997	M	Lugo Ortiz & McCafferty 1997a
Guloptiloides Gattolliat & Sartori in press	M	Gattolliat & Sartori in press a
Herbrossus McCafferty & Lugo Ortiz 1998	M	Gattolliat & Sartori 1998
Labiobaetis Novikova & Kluge 1987	Af Eu NA	Lugo-Ortiz & McCafferty, 1997d
Mutelocloeon Gillies & Elouard 1990	Af	Lugo Ortiz & McCafferty, 1997c
Nesoptiloides Demoulin 1973	M	Gattolliat & Sartori, 1999a
Pseudopannota Waltz & McCafferty 1987	Af	Demoulin 1973
Xyrodromeus Lugo Ortiz & McCafferty, 1997	Af	Lugo Ortiz & McCafferty 1997b
Gen nov 1	M	Gattolliat, unpubl results
Gen nov 2	M	Gattolliat, unpubl results
HEPTAGENIIDAE	C except Aus	
Afronurus Lestage 1924	Af, As	Sartori & Elouard, 1996
Compsoneuria Eaton 1881	Af As	Sartori, unpubl results
Thalerosphyrus Eaton 1881	Af As	Sartori & Elouard 1996
OLIGONEURIIDAE	C	
Elassoneuria Eaton 1881	Af	Elouard unpubl results
Gen nov	M	Elouard unpubl results
EPHEMERIDAE	C except Aus	
Eatonica Navas 1913	Af	Elouard et al 1998
POLYMITARCYIDAE	C except Aus	
Proboscidoplocia Demoulin 1966	M	Elouard & Sartori 1997
PALINGENIIDAE	As Eu	
Cheirogenesia Demoulin 1952	M	Sartori & Elouard, 1999
EPHEMERELLIDAE	C	
Manohyphella Allen 1973	M	Elouard unpubl results
Gen nov	M	Elouard unpubl results
TRICORYTHIDAE	Af As SA	
Madecassorythus Elouard & Oliarinony 1997	M	Elouard & Oliarinony 1997
Ranorythus Oliarinony & Elouard 1998	M	Oliarinony & Elouard, 1998a
Spinirythus Oliarinony & Elouard, 1998	M	Oliarinony & Elouard, 1998b
Tricorythus Eaton 1868	Af As	Oliarinony et al 1998
CAENIDAE	С	
Caenis Stephens 1835	С	Malzacher 1995
Madecocercus Malzacher 1995	M	Malzacher 1995
Gen nov	M	Sartori unpubl results
PROSOPISTOMATIDAE	Af As, Aus, Eu	
Prosopistoma Latreille 1833	Af, As Aus Eu	Elouard unpubl results
Prosopistoma Latrellie 1833	Ai, As Aus Eu	Elouard unpubl results

¹ Endemic genera are in bold
2 Following abbreviations are used M endemic to Madagascar, Af Africa As Asia Aus Australia, C Cosmopolite Eu Europe NA North America SA South America
3 Only for the genera account
4 But see text for further comments

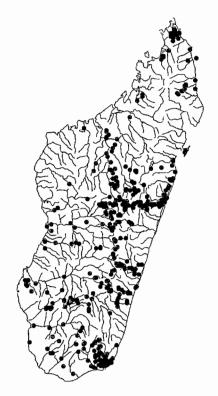


Fig 1 Map of the sampling stations in Madagascar

Fig 2 Distribution of the pantropical baetid genus *Cloeodes* Traver Actual records are in black, potential distribution in grey

Fig 3 Distribution of the Ethiopian ephemererid genus Eatonica Navas



Fig 4 Distribution of the family Palingeniidae

Fig 5 Distribution of the family Prosopistomatidae

Sartori M., Gattolliat J.L., Oliarinony R., Elouard Jean-Marc. (2000).

Biogeography of Malagasy mayflies (Insecta, Ephemeroptera): preliminary results.

In : Lourenço W.R. (ed.), Goodman S.M. (ed.). Diversité et endémisme à Madagascar = Diversity and endemism in Madagascar.

Paris : Société de Biogéographie, p. 307-317.

(Mémoires de la Société de Biogéographie). Colloque International Biogéographie de Madagascar, 2., Paris (FRA), 1999/08/30. ISBN 2-903700-04-4.