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Abstract 

Predatory fishes, such as tunas, billfishes, and sharks, coexist in pelagic regions of the tropical oceans. In situ 
experiments have revealed horizontal and vertical movement patterns for different pelagic species, but the influence 
of the biotic environment on movement behaviour has not been studied. In this paper, we propose a simple model 
in which the movement behaviour of these fishes is driven entirely by the biotic environment, without implementing 
physiological constraints. We explore this concept via computer simulations based on the Latent Energy Environ- 
ments model ‘[Menczér, F., Belew, R.K., 1996a. From complex environments to complex behaviors. Adapt. Behav. 
4(3/4), 3 17-63]. In our model, multiple behaviours for artificial fishes evolve in a three-dimensional environment 
where spatial and temporal distributions of prey are patterned after hydroacoustic data taken during ultrasonic 
telemetry experiments on tunas‘in the open ocean in French Polynesia. Interactions among individuals are modeled 
through their shared prey resources. Movement patterns of the adapted individuals are analyzed to: (i) compare 
artificial individuals with real fishes (three species of tuna, three species of billfishes, and one species of shark) 
observed by ultrasonic telemetry; and (ii) examine how the artificial fishes exploit their environment. Most of the 
individuals evolved vertical patterns virtually identical to those exhibited by fishes in the wild. The agreement between 
our simple model and the ethological data validates the use of computational models for studies of the characteristics 
of multiple species inhabiting a common ecosystem. O 2000 Elsevier Science B.V. All rights reserved. 
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nomic importance, there is a great body of knowl- 
edge about them from fishery activities. However, 
before the development of ultrasonic telemetry 
techniques, little was known of their fine-scale 
movements. By attaching sonic transmitters to the 
animals and listening to the echoes produced by 
these devices, it became possible to describe the 
vertical and horizontal movement patterns of 
these fishes in their natural habitats (see Yuen, 
1970 for one of the first experiments). In most 
cases, these studies showed diverse movement pat- 
terns for different species (Carey and Olson, 1982; 
Carey and Robison, 1981; Cayré and Chabanne, 
1986; Carey, 1990; Carey and Scharold, 1990; 
Holland et al., 1990a,b; Cayré, 1991; Brill et al., 
1993; Block et al., 1997; Bach et al., 1998; Josse et 
al., 1998; Brill et al., 1999; Dagorn et al., 2000). 
,The next challengf: is to understand why these 
species evolved such different movement 
behaviours. 

There are large temperature differences between 
warm upper layers of the ocean and the cold 

waters. By moving a few hundred meters 
ally, an animal may encounter a greater 
erature change than it experiences seasonally 

le moving thousands of miles horizontally 
(Carey, 1992). Most fish species are stenotherms, 
but large fishes like billfishes are able to partially 
control their body temperatures because thermal 
diffusion through a large mass is a slow process, 
and convective heat transfer is reduced in parts of 
the body by a modified circulatory system 
(Stevens and Neill, 1978). Moreover, tunas and 
lamnid sharks are able to maintain their body 
temperatures warmer than the ambient water tem- 
perature by means of countercurrent heat ex- 
changers in the circulatory system between the 
gills and muscle tissues. The vertical movements 
of some oceanic fishes, observed by ultrasonic 
telemetry, have been interpreted in relation to the 
vertical structure of the abiotic environment, 
mainly water temperature and dissolved oxygen 
concentration (Holland et al., 1990a, 1992; Cayré 
and Marsac, 1993; Block et al., 1997; Brill et al., 

Tunas, billfishes, and sharks require large 
amounts of energy (Olson and Boggs, 1986; Boggs 
and Kitchell, 1991; Brill, 1996; Cortés, 1997), and 
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1999). 

they must be efficient predators to survive. Prey 
distribution may, therefore, have an important 
influence on the movement patterns of these spe- 
cies. Due to the difficulties in observing these 
predators and their prey in their habitat, little 
effort has been devoted until recently to study the 
role of the biotic environment in explaining their 
movements. During the ECOTAP' program in 
French Polynesia, experiments were developed to 
collect simultaneously ultrasonic telemetry data 
for yellowfin (Thunnus nlbacares) and bigeye (T. 
obesus) tunas and acoustic data on their prey 
(Josse et al., 1998; Dagorn et al., 2000). These 
data show that the three-dimensional distribution 
of the prey can account for an important part of 
the small-scale movement patterns of the tunas, 
but more studies are clearly needed. 

Tunas, billfishes, and sharks have evolved dif- 
ferent strategies to exploit the same environment. 
Are different movement behaviours the result of 
different physiological mechanisms in these ani- 
mals, or is it possible to explain the movement 
patterns by the dynamics of the prey, without 
considering their physiological limits? Menczer 
and Belew (1994), Sims (1994), Terzopoulos et al. 
(1994) have addressed the evolution of morphol- 
ogy in artificial life organisms. Menczer and 
Belew (1996a) showed theoretically that both abi- 
otic and biotic environmental structure can play a 
key role in shaping the evolution of behaviours. 
In this study, we explore the structure of the prey 
environment in shaping the evolution of be- 
haviour patterns, without considering physiology. 
Such studies can help us understand the role of 
the biotic environment in behavioural adaptations 
and how multiple behaviours can emerge in a 
common ecosystem. 

The purpose of this study is to develop a com- 
putational model of the movements observed in 
multiple predator species sharing the pelagic 
oceanic environment. Our approach is to abstract 
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ECOTAP (studies of tuna behaviour using acoustic and 
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away from the physiological details of the differ- 
ent species and focus on an individual based 
model with minimal assumptions about prey dis- 
tribution and dynamics. The objective is to simu- 
late a Co-evolutionary process and analyze the 
different behaviours emerging in a realistic prey 
environment. We assess the predictive power of 
the model in accounting for the heterogeneous set 
of behaviours displayed by several tropical preda- 
tory fishes. We are not interested in modelling a 
specific behaviour, but rather in studying the 
range of behaviours that can result from co-adap- 
tation in a shared biotic environment with given 
characteristics. Such a model can be applied to 
different environments where the same species 
occur (e.g. the eastern Pacific Ocean), which 
would be impossible if it were encumbered with 
area-specific details. 

In Section 2, we outline the three components 
of the model: the shared prey environment, the 
artificial fishes, and the evolutionary algorithm 
used to adapt their behaviours, In Section 3, the 
behaviours that evolved from the model are com- 
pared against our knowledge of actual species 
from ultrasonic telemetry experiments. We also 
analyze the emergent patterns in relation to the 
artificial environment, and consider the sensitivity 
of our model with respect to its assumptions. In 
Section 4, we discuss our main findings, and 
Section 5 concludes with a look at future work. 

2. Model 

We employ an agent-based model to simulate 
the evolutionary process of a population of fish 
situated in a dynamic environment, and analyze 
the diverse set of adaptive behaviours that are 
generated by the model. 

Our model is based on the latent energy envi- 
ronments (LEE) framework (Menczer and Belew, 
1996a,b). The agents share a three-dimensional 
biotic environment, gathering resources to sur- 
vive. The resources are replenished independently 
of the behaviours of the agents, determining the 
carrying capacity of the artificial ocean. Selection 
for survival is based on a localized and endoge- 
nous form of density-dependent fitness, because 

competition is limited to the spatially-distributed 
resources. Individuals with behaviours that allow 
them to make good use of the resources, survive 
and reproduce. Individuals that exploit indepen- 
dent resources do not interact. 

Artificial life models based on individuals (Jud- 
son, 1994), such as LEE, are appropriate to test 
hypotheses like the one suggested in this paper 
because they allow modelers to easily generate 
heterogeneous populations and to explore the re- 
lationships between co-evolving species and envi- 
ronmental resources. For example Echo, a 
computational framework that shares many fea- 
tures with LEE, was used by Hraber and Milne 
(1997) to study how environmental and biotic 
factors regulate species abundance and the com- 
position of ecological communities. The absence 
of centralized control‘and global selection in LEE 
allows for many efficient behaviours to coexist, 
without the bias of an optimization process that 
would push toward a single solution. This ap- 
proach is similar to the ‘animats’ model of Krebs 
and Bosse1 (1997), while it differs from models 
such as dynamic programming, where the objec- 
tive is to find optimal solutions (e.g. Baker, 1996). 

Other modeling efforts have focused on the 
responses of population and community structure 
and behaviour governed by species interactions 
and prey environments (Dodds and Henebry, 
1995; Matsumoto and Seno, 1995; Kawata, 1997; 
Spencer, 1997). Because our objective is to gener- 
ate behaviours based on assumptions about the 
biotic environment, as opposed to testing different 
models of animal decisions, the proposed ap- 
proach also differs from ecological models in 
which the rules governing the behaviour of indi- 
viduals are pre-programmed (e.g. Downing and 
Reed, 1996; Letcher and Rice, 1997; Beecham and 
Farnsworth, 1998; Lorek and Sonnenschein, 1998; 
Ziv, 1998). We follow the suggestion of Beecham 
and Farnsworth (1 998), that individual-based 
models that refer to pre-programmed rules should 
be extended to use evolutionary methods, where 
each individual would evolve an individual-spe- 
cific algorithm, in order to gain insight into the 
evolutionary origins of alternative behaviours. 
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2.1. Biotic environment 

To model the biotic environment, we use gen- 
era1,knowledge about the prey fauna of the open 
ocean in French Polynesia and specific acoustic 
observations made in French Polynesia during the 
ECOTAP program. These data have not yet been 
fully analyzed. In the absence of precise details on 
prey characteristics, we model only two types of 
prey. Type 1 prey are low in energy, typical of 
those inhabiting the deep scattering layer (DSL), 
and composed mainly of crustaceans, small fishes, 
and jellies. It is well-known that, during the night- 
time, the organisms of the DSL ascend to the 
surface layer (Longhurst, 1976). At sunrise, the 
community descends to deep waters, where it 
spends the daytime. The DSL structure might be 
characterized as very large and dispersed patches. 
Prey of type 2 are more energetic and are found in 
smaller, denser patches composed mostly of small 
pelagic fishes and squids. They do not migrate as 
deep as type 1 prey; they usually live in an inter- 
mediate layer during the day, and also occupy 
surface waters at night. 

The vertical distributions of the two types of 
prey during day and night are used to define the 
vertical environment of the model. The artificial 
ocean of our predatory fishes is modeled vertically 
by three depth layers: a surface layer, an interme- 
diate layer, and a deep layer, corresponding to the 
waters occupied by the two types of prey at night 
and day. In French Polynesia, for example, the 
lower boundaries of these layers are found at 
approximately 150, 350 and 500 meters (the latter 

Surface layer 

lntennedlate layer 

Deep layer 

Night Dawn Day Dusk 

Fig. 1. Model of the vertical dynamics of the biotic pelagic 
environment. All the prey (types 1 and 2) are in the surface 
layer during nighttime and in the intermediate layer during 
dawn and dusk. At daytime, prey of type 1 are in the deep 
layer while prey of type 2 are in the intermediate layer. Prey 
types are described in the text. 

depth is the vertical limit of the acoustic observa- 
tions in the ECOTAP program). Horizontally, 
each of these layers is modeled by a grid of 400 by 
400 cells, representing an area of 40 by 40 n.mi. 
( - 75 by 75 km), and opposite sides are joined to 
avoid edge effects and to form a torus. 

A schematic representation of the biotic envi- 
ronment assumed for this model is presented in 
Fig. 1. This is admittedly a very simplified model 
of a prey community. For example, it disregards 
the amount of time that it takes for different prey 
taxa to move between depth layers. More impor- 
tantly, it assumes that no prey are present in the 
surface layer during the daytime, although it is 
known that predatory fishes feed in the surface 
layer of the ocean, especially in areas where the 
surface layer is thin. However, during 2000 h of 
acoustic surveys between O and 500 m in the 
exclusive economic zone (EEZ) of French Polyne- 
sia, we did not find abundant prey in the surface 
layer during the daytime. Therefore, our sim- 
plified model is generally consistent with those 
field observations. 

The energy density of type-2 prey is set at five 
times that of type-1 prey in our simulations. We 
set the number of prey to 150 items within a circle 
of 8 n.mi. ( - 15 km) radius for patches of type-1 
prey and 50 items within a circle of 1 n.mi. ( N 2. 
km) radius for patches of type-2 prey. One prey 
item in our model does not represent one prey 
item in the wild, but rather a combination of 
several prey items. A more realistic representation 
of the numbers of real prey (which is not known) 
would have forced the model to consider millions 
of prey items. To simplify the computation of 
prey items in our model, we used the concept of 
‘super-individuals’ proposed by Scheffer et al. 
(1995). The prey population is then represented 
by a smaller number of units. The super-individu- 
als are classes of individuals for which parameters 
are identical in the model (e.g. same energy con- 
tent). Because we do not know the exact spatial 
dimensions of these patches in the ocean, the radii 
and spatial distributions of the patches are some- 
what arbitrary, but consistent with our observa- 
tions in French Polynesia. 

Following the LEE approach, we adopt a con- 
stant prey replenishment rate: four patches of 
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Fig. 2. Architecture of the neural networks used to model fish 
behaviours. 

type-1 and two patches of type-2 prey regularly 
appear at random positions every half day. This 
replenishment rate is independent of prey con- 
sumption. As in actual environments, competition 
occurs only among individuals who share prey 
resources. Other features that discriminate be- 
tween prey types, such as size, palatability, and 
ease of capture (i.e. swim speed), are either ne- 
glected in the model or accounted for indirectly 
through the energy content. 

One time step is defined as 15 min. Therefore, 
the duration of the Il-h day and night periods is 
44 time steps each, while the l-h dawn and dusk 
periods correspond to four steps each (Fig. 1). A 
24-h cycle is represented by 96 time steps. Each 
type of prey has a vertical distribution pattern 
that depends on the period of the day (day, night, 
dawn, and dusk), as observed in the wild (Fig. 1). 
We simplify the computation of the model by 
ignoring horizontal movements of prey, which is 
reasonable when comparing the relative sizes 
(1OO:l) and relative mobility of pelagic predators 
and prey. 

2.2. Fish belzaviour 

The behaviour of the artificial predatory fishes 
that we consider in this model is tliree-dimen- 
sional movement. Movements by an organism 
causes its view of the surrounding habitat and its 
spatial relationships with respect to the habitat to 

~~ 
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change. In our experiment, we represent the map- 
ping from sensory states to motor actions using 
the well-known computational model of feed-for- 
ward neural networks (Rumelhart and McClel- 
land, 1986). Generally speaking, these networks 
are collections of simple units connected by 
weighted links, which can compute arbitrary non- 
linear functions. The organization of the individ- 
ual networks used to model each artificial oceanic 
predator is described in Fig. 2. 

The artificial neural network is comprised of 
two layers of units and connections. The be- 
haviour of an artificial fish is characterized by the 
weights of the connections. In our case, each 
connection weight is represented by a floating- 
point number. Because feed-forward networks 
have no recursive connections, the behaviours of 
the simulated fishes are strictly reactive. Although 
interactions between different forms of learning 
and evolution have been explored in the artificial 
life community, and even in the LEE framework 
(Menczer and Belew, 1994; Cecconi et al., 1996), 
our present model neglects any effect of individual 
learning for the sake of simplicity; we first want to 
focus our attention on the behaviours that can 
emerge by way of evolution. 

The neural network inputs represent internal 
and external information provided by five sensors 
(Fig. 2). The presence of a prey item can be 
detected when (i) the prey item and the fish are 
located in the same depth layer, and (ii) the prey 
item is within a circle of a specified radius around 
the predator. The distance at which a tuna or 
billfish responds to a prey, by odor or vision, is 
not known. Studies on Atlantic cod (Gadus 
nzorhua) have shown that fish positioned as far as 
700 m upstream of fishing gear can sense baited 
hooks (Bjordal and Lokkeborg, 1996). Although 
baited hooks are not the same as free-swimming 
prey, and Atlantic cods are not the same as 
tropical tunas or billfishes, we adopt this order of 
magnitude and set the detection distance to five 
cells ( - 900 m). 

The ‘prey-distance’ sensor indicates the Eu- 
clidean distance between the predator and the 
closest prey item, and has continuous values be- 
tween O and l.  The value is l for distances greater 
than the detection distance. The ‘prey-angle’ sen- 
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sor indicates the angle between the direction the 
predator is facing and ' that of the closest prey 
item. It also has continuous values between O and 
1, corresponding to the range [ - n, + n] (the 
discontinuity occurs behind the predator). If no 
prey item is detected, the value is random. The 
'wait-time' sensor counts the number of time steps 
(up to 20, or 5 h) since the last prey item was 
eaten. The actual value is normalized to the inter- 
val [O, 11. 

The two 'period-of-day' sensors have boolean 
values that are combined to indicate the period of 
the 24-h cycle, night, dawn, day, or dusk. Day 
and night are not necessarily synonymous with 
light and dark in aquatic environments, as light 
depends on depth, brightness at the surface, tur- 
bidity, and other factors. (Helfman, 1993). There- 
fore, our time sensors could be viewed as sensory 
perceptions combining information about light 
intensity, depth, and internal-clock mechanisms. 

Finally, because real sensory systems are noisy, 
we include a random noise source as an additional 
input. By omitting sensors that provide informa- 
tion such as prey size or speed, we make the 
simplifying assumption that predators do not se- 
lect for specific prey in the model. All predators 
exploit the same prey fauna. Considering that 

initialize fish population 
repeat until behaviour distribution is stable { 

for each alive fish i { 
sense world 
propagate network activations 
perform action a 
energy(i) += benefits (a) - costs (a) 
if (energy(i) > THETA) { 

i' := mutate (clone (i) ) 
energy(i) /= 2; 
energy (i ' ) := energy (i) 

1 
elsif (energy(if < 01 ( 

1 
update prey resources 

kill(i) 

1 
replenish prey resources 

Fig. 3. Pseudo-code of the LEE evolutionary algorithm at the 
basis of the proposed model. Note that energy is always 
conserved; it enters the system through the replenishment of 
prey resources and leaves the system in the form of work costs 
for performed actions. Also note that the reproduction con- 
stant, THETA, is independent of population size. Therefore 
the size of the population quickly converges to the carrying 
capacity of the environment, determined by the prey replenish- 
ment rate. 

tunas and other pelagic fishes are widely believed 
to be opportunistic predators (Alverson, 1963; 
Roger, 1994), this seems a reasonable assumption. 

The network has one hidden layer with six units 
and an output layer of three units. The first 
output unit produces a change in direction of the 
horizontal movement relative to the current head- 
ing. The second output unit indicates the swim- 
ming speed, between 2 and 10 cells per time step, 
or between 0.4 and 2.2 m/s, consistent with ranges 
of swimming speeds measured during field obser- 
vations (Olson and Boggs, 1986; Brill et al., 1993). 
The third output unit determines the depth layer 
where the fishes swims: surface, intermediate, or 
deep. The fact that the network outputs of all 
artificial fishes correspond to identical ranges in 
movement behaviours, mirrors our simplifying as- 
sumption of identical physiological abilities across 
the modeled population of predators. 

2.3. Evolution 

As stated above, our use of the LEE model is 
justified, in part, by o u  goal to study the evolu- 
tion of a heterogeneous range of behaviours, 
rather than the convergence to a single optimal 
behaviour. While the latter would be appropriate 
in a single-species model, we want to account for 
the realistic situation whereby several species of 
predators co-evolve different behaviours while 
sharing a common habitat. LEE models allow 
co-adaptation by an evolutionary algorithm based 
on an endogenous fitness measure (Menczer and 
Belew, 1996a,b). The model does not select di- 
rectly on the behaviour evolved by a predator, but 
on its resulting efficiency (net energy intake rate) 
in the shared environment. To illustrate these 
aspects of our model, our LEE evolutionary al- 
gorithm is outlined in Fig. 3. The evolved set of 
behaviours resulting from this co-adaptive process 
represents the model's prediction of movement 
behaviours, which we compare with real data. 

We now illustrate, in further detail, the evolu- 
tionary algorithm of Fig. 3. To begin a simula- 
tion, we created 200 fishes, each with different 
random weights uniformly distributed between 
- 0.5 and , + 0.5. All fishes are initialized with 
2000 units of energy. The internal energy state of 



p- - 

L. Dagorii et al. /Ecological Modelling 134 (2000) 325-341 331 

Table 1 
Categories used to characterize vertical movement patterns 

Category Vertical pattern 

A 

B 

C 

D 

E 

F 
G 

More than 90% of the time in the surface 
layer 
More than 90% of the time in the 
intermediate layer 
More than 90% of the time in the deep 
layer 
Movements between the deep and 
intermediate layers 
Movements between the surface and 
intermediate layers 
Movements between all three layers 
Movements between the surface and deep 
layers 

a fish can vary between O and 4000 units. The 
fishes gain energy when they eat a prey item: 30 
units for type 1 prey, and 150 units for type 2 
prey. The fishes lose 1 unit of energy per cell 
moved; i.e. the energy cost of swimming is pro- 
portional to the distance. 

When a fish depletes its energy stores, it is 
eliminated from the population. When a fish‘s 
internal energy reaches 4000 units, it reproduces 
one offspring asexually. The parent divides its 
energy with its progeny; i.e. each offspring starts 
with 2000 units of energy. At birth, offspring and 
parent are located at the same location. The evo- 
lution of behaviours depends only on random 
mutations because there is no sexual recombina- 
tion or cross-over. The offspring inherits its par- 
ent’s weights. Then, -2% of the weights are 
randomly selected and mutated by adding random 
noise drawn from a uniform distribution between 
- 1 and + 1. All weights are bounded to the 
interval [ - 5, + 51. 

3. Results 

Ten runs of 150 O00 time steps each resulted in 
a total of 2489 artificial fishes. Each individual 
was analyzed to characterize its vertical and hori- 
zontal movements. Next, we report on the move- 
ments exhibited during nighttime and daytime to 
classify general movement patterns and to com- 

pare them to behaviours of real predatory fishes 
in the wild. Then, we evaluate the evolved artifi- 
cial individuals in relation to the way they exploit 
their environment. Finally, we analyze the sensi- 
tivity of the results. 

3.1. ArtiJicial versus rzatural movement patterns 

To analyze movement behaviours, we fed the 
sensors of the evolved individuals with a ran- 
domly generated input sequence. The sequence 
corresponds to a succession of 30 model night 
periods and 30 model day periods (2640 steps), 
and it models a situation in which individuals do 
not detect prey and have not eaten for a long 
period of time (i.e. the ‘prey-distance’ and ‘wait- 
time’ sensors are set to 1). Then, we analyzed their 
searching behaviours while the fishes looked for 
prey. 

3.1.1. Vertical movements 
Our objective was to classify the vertical be- 

haviours emergent from the ten runs into groups 
which exhibited similar vertical patterns during 
the various periods of the day. Each individual 
was classified according to its swimming depth, 
i.e. by its output when submitted to the pre-deter- 
mined inputs outlined above. Seven categories of 
vertical behaviours were considered, each cate- 
gory corresponding to the ocean layers where the 
fishes swam most of the time (Table 1). Layers in 
which a fish spent less than 10% of the time were 
disregarded. The 10% threshold is arbitrary, but 
helpful in visually classifying real species. We 
considered different criteria (thresholds between O 
and loyo), and the classification was effectively the 
same. Each individual was classified by one letter 
corresponding to a vertical pattern category for 
the daytime and another letter for the nighttime. 
We first focus on nighttime and daytime patterns. 

For each run, we computed the frequencies of 
the 49 possible combinations (7 x 7 categories) of 
vertical patterns during nighttime and daytime. 
Because there was large variability across runs (cf. 
Section 3.3), we ranked the behaviours by fre- 
quency of occurrence in each run, and used the 
median of the rank distributions to classify the 
results of the ten runs (Table 2). Only 19 of the 49 
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classes of possible patterns were represented in the 
ten final artificial populations. The five most fre- 
quent classes are highlighted in Table 3, and the 
typical vertical movements in these five classes are 
shown in Fig. 4. All five top classes include the A 
pattern during the nighttime, which corresponds 
to movements within the surface layer. The five 
possible vertical patterns during the daytime, 
combined with the surface nighttime pattern, cor- 
respond to the most frequent classes. The emer- 
gence of behaviours D and E (alternative 
movements between different layers) is interesting 
because it suggests a precise adjustment of the 
weights of a neural network, and is discussed 
further in Section 4. 

We compared the behaviours that evolved in 
these simulations with ultrasonic telemetry data 
on movements of real fishes from experiments 
conducted in French Polynesia or Hawaii. These 
experiments provide us with accurate depth data. 
In cases where ultrasonic telemetry data from the 
tropical Pacific Ocean were not available, we used 
data from other areas. We considered seven dif- 

Table 2 
Vertical movement behaviours of the artificial individuals dur- 
ing nighttime and daytime, respectively, ranked by frequency 
across ten simulations" 

Class Rank distribution median 

EB 
cc 
EC 
AF 
BB 
EA 
EE 
BC 
BD 
EF 
BE 
DC 
FF 

1.25 
9.5 

13 
18 
27.15 
28.15 , 

28.15 , 

29.5 
29.5 I 

29.5 
30 
30 
30 

a The five most frequent classes are bold. 

Table 3 
Classification of seven oceanic predator species according to 
their vertical movement patterns during the daytime and night- 
time, respectively" 

Species Class Reference 

Skipjack tuna 

Yellowfin tuna 

Bigeye tuna 

Swordfish 

Striped marlin 

Pacific blue 
marlin 

Blue shark 

AA French Polynesia, Pacific Ocean 
(Cayf and Chabanne, 1986) 

AE French Polynesia, Pacific Ocean 
(Bach et al., 1998) 
Hawaii, Pacific Ocean (Holland 
et al., 199Oa) 
Eastern Pacific Ocean (Carey 
and Olson, 1982) 

AC French Polynesia, Pacific Ocean 
(Dagorn et al., 2000) 
Hawaii, Pacific Ocean (Holland 
et al., 199Oa) 

AC Off Cape Hatteras, Atlantic 
Ocean (Carey and Robison, 
1981) 

AA Hawaii, Pacific Ocean (Brill et 
al., 1993) 

AA Hawaii, Pacific Ocean (Holland 
et al., 1990b) 

AD Between George's Bank and 
Cape Hattera, Atlantic Ocean 
(Carey and Scharold, 1990) 

a Behaviour categories are as defined in Table 1. The classifi- 
cation criteria are the same used for the artificial fishes (cf. 
Table 2), and are based on data from the references shown. 

ferent species known to be predators in this envi- 
ronment. They include three tuna species: 
skipjack (Katsuwonus pelamis), yellowfin (T. al- 
bacares) and bigeye tunas (T. obeszu); three 
billfish species: swordfish (Xiphias glndius), striped 
marlin (Tetrapturus audaax) and pacific blue mar- 
lin (Makaira nigricans); and one shark species, 
blue shark (Prionace glauca). 

It is difficult to generalize a regular vertical 
pattern for individuals of any particular species 
because individual behaviour is not rigid, but 
rather composed of adaptive actions. Neverthe- 
less, we used published data to classify the vertical 
patterns of the above species according to the 
criteria used for our artificial fishes (Table 3). The 
behaviours that emerged in our simulations are 
consistent with the behaviours exhibited in nature; 
the seven species considered were categorized in 
the top five classes of the artificial population. 
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Fig. 4. Typical vertical movements of artificial individuals in the five most represented classes (from top to bottom: AB, AA, AE, 
AD and AC). The horizontal axis corresponds to time (the 24-h period, from 18:OO to 18:OO h), with the four periods of the day 
marked by the background levels of gray. The vertical axis corresponds to the depth layer. 
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The only behaviour predicted by our model but 
not observed in the real fishes by ultrasonic 
telemetry is AB. However, longline catch data 
suggest that albacore tuna utilize the AB pattern 
(see Section 4). 

3.1.2. Horizontal movements 
To perform quantitative analysis of horizontal 

movement patterns, we measured two statistics 
for each individual and for each l l -h  period (day 
or night): 
o path length L, the linear distance covered along 

the horizontal trajectory (proportional to the 
average swimming speed); 

o diffusion distance D, the Euclidean distance 
between the two extreme points of the horizon- 
tal trajectory. 
The distributions of these measures, obtained 

by combining all 2489 individuals from the final 
populations of the ten runs, are shown Fig. 5. The 
respective distributions of daytime and nighttime 
individual path lengths have the same mode (88 
cells), which corresponds to an average swimming 
speed of two cells per time step (the lowest swim- 
ming speed in our simulations). Nevertheless, noc- 
turnal movements were usually more extensive 
than diurnal ones. During the daytime, individu- 
als did not cover long distances (maximum value 
of L is 180 cells) and 76% of the individuals had 
a path length L of 88 cells. During the nighttime, 
this path length value (88 cells) is only observed in 
15% of the individuals and L values range up to 
320 cells. 

From this data we conclude that the model 
selected for animals with low horizontal speeds. 
Several tracking studies found that, in general, 
fishes do not adopt high speeds for their move- 
ments (Carey and Robison, 1981; Carey and 01- 
son, 1982; Cayré and Chabanne, 1986; Carey, 
1990; Carey and Scharold, 1990; Holland et al., 
1990a,b, 1992; Cayré, 1991; Brill et al., 1993, 
1999; Block et al., 1997; Bach et al., 1998; Josse et 
al., 1998; Dagorn et al., 2000). Although it is 
known that fishes can move rapidly when attack- 
ing prey or avoiding danger (Walters and Fier- 
stine, 1964), there is probably little routine use for 
high speeds, as suggested by Carey (1992). This 
suggests that the convergence toward low speed is 
consistent with reality. 

The diffusion distance D was longer during the 
nighttime than during the daytime (Fig. 5). Dur- 
ing the daytime, 75% of the individuals have a 
diffusion distance less than or equal to 10 cells. 
During the nighttime, however, 80% of the indi- 
viduals have a diffusion distance greater than 10 
cells. This suggests high sinuosity and exploitative 
behaviours (Benhamou, 1992) during the daytime, 
as opposed to more extended, exploratory be- 
haviours during the nighttime. 

No conclusive data about the horizontal move- 
ment patterns of actual oceanic predatory species 
are yet available to assess the validity of the 
predictions of diffusion distance. While some 
sonic tagging experiments with yellowfin and 
bigeye tunas in Hawaii (Holland et al., 1990a) and 
with yellowfin tuna in the Indian Ocean (Cayré, 
1991) seem consistent with our model, these data 
are for coastal areas. A few tracking experiments 
with large bigeye tuna in the open ocean (Dagorn 
et al., 2000) suggest the need for further experi- 
ments on predators in the open ocean. 

, 

3.2. Analysis of evolved strategies 

To examine the vertical behaviours exhibited by 
the artificial individuals during a complete 24-h 
cycle, we consider the depth of predators during 
night, day, dawn, and dusk. Individuals were 
subjected to an input sequence representing 30 
24-h cycles. We used the codes in Table 1 for the 
vertical patterns during all four periods. For the 
analysis, one individual is characterized by four 
letters, one for each period of the day in the 
above order. The classification of the final popula- 
tions in the ten runs includes 70 out of 2401 
possible classes. These are ranked by frequency of 
occurrence, and the median of the rank distribu- 
tions for the ten runs is shown in Table 4 for the 
top ten classes. 

The most frequently observed 24-h movement 
class is AAAA, which corresponds to individuals 
swimming in the surface layer most of the time. 
The artificial fishes exhibiting this behaviour for- 
age efficiently only during the night period, be- 
cause in our artificial ocean no prey are present in 
the surface layer during the day, dawn, or dusk. 
We conclude that, while this strategy is the sim- 
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Fig. 5. Distributions of path length L (top) and diffusion distance D (bottom), characterizing the population's horizontal 
movements. 

plest possible with respect to vertical movements, 
it provides individuals with sufficient energy for 
survival from prey caught during the nighttime 
alone. This exclusively nocturnal activity pattern 

might correspond to primitive predator species 
(Helfman, 1993). 

The top eight classes include the A pattern at 
night, indicating that the fishes are active during 



336 L. Dagorri et al. /Ecological Modelling 134 (2000) 325-341 

I .  . the nighttime. All patterns except AAAA indicate 
that the predators forage during the daytime as 
well. Such diurnal foraging capabilities corre- 
spond to more advanced species (Helfman, 1993). 

The dawn and dusk patterns are the same for 
each of the top ten classes, reflecting the same 
environmental conditions in spite of different in- 
puts from the time-of-day sensors. Six of the top 
ten patterns indicate that the fishes are active 
during the twilight periods as well as during night 
and day. Helfman (1993) points out that such 
activity patterns represent opportunistic be- 
haviours, which characterize many fishes, particu- 
larly predatory ones. Our model agrees with 
Helfman's conclusion that the activity patterns of 
fishes in the wild may be strongly determined by 
the activity patterns of their prey. 

Table 4 
Classified vertical movement behaviours of the artificial indi- 
viduals during the four periods of the day (night-daydawn- 
dusk), ranked by frequency across ten simulations" 

Class Rank distribution median 

AAAA 
ABAA 
AEAA 
ABEE 
AEEE 
ADBB 
ADEE 
ABBB 
EBBB 
cccc 

1.5 
3 
4 
5.75 
6.25 
8.25 
8.75 

11 
12.5 
20.75 

a Only the ten most frequent classes are shown. The median 
of the frequency rank distribution drops below 610 from the 
11th class. 

Table 5 
Values of the prey distribution parameters held constant dur- 
ing the original simulations, as well as the four sensitivity 
analysis runs 

Prey type Npatches ' , Et,, 

1 w a y  36 000/day 
2 . -  w a y  30 OOO/day 

3.3. Sensitivity analysis 

Using an individual based model, such as LEE, 
to represent a population' of artificial individuals 
and their environment entails a number of as- 
sumptions. The purpose of some of the assump- 
tions is to keep the model simple, while others are 
required by seiera1 aspects of the model. There- 
fore, it is critical to determine how sensitive the 
model predictions are to the assumptions. 

Ideally, one would repeat the simulations sev- 
eral times while varying each parameter by some 
amount, and assess the variability of the results 
with respect to the assumption denoted by that 
parameter. Because such a full-scale sensitivity 
analysis is computationally prohibitive2, we de- 
cided to focus our analysis in a couple of ways. 
First, we looked at the population dynamics from 
the original runs to determine the number of time 
steps necessary for the population size to stabilize 
around the carrying capacity of the environment. 
We concluded that 'after 10 O00 time steps the 
fluctuations in population size were essentially 
reduced to noise. Second, we focused on the two 
critical parameters whose initial values were as- 
signed with less confidence than the others in the 
original runs: (i) the relative amounts of energy in 
the two prey types, and (ii) the detection distance. 
In the original simulations, the ratio of energy 
between the two types of prey was E2/E, = 5. The 
formula that correlates the energy of an item of a 
given prey type with the total replenishment en- 
ergy per unit time, the number of patches, and the 
number of prey items per patch of the same prey 
type is given by: 

where XE{& 2) is the'prey type. The number of 
patches (Npatches) and total energy (Etot) were fixed 
at their original values (Table 5). Thus, we used 
the energy values of the prey (E,) as independent 
variables, which determined the ratio, and derived 
the numbers of prey items per patch (NpreylPatch) as 
dependent variables. We ran four additional simu- 

2 A  single 150 000-step run of our C +  f simulation code 
required -40 CPU h on a 400 MHz P2 Linux workstation, 
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Fig. 6. Size of the artificial population in the four sensitivity- 
analysis runs for various ratios of energy between the two prey 
types (upper graph), and the three sensitivity-analysis runs for 
various detection distances of prey (lower graph). 

lations with energy ratios E,/E,E{I, 3, 5, 7). In 
the original runs, the prey detection distance was 
5 cells, i.e. 900 m. We also ran three additidnal 
simulations with prey detection distance at 4, 5 
and 6 cells, i.e. 720, 900 and 1080 m. All the seven 
sensitivity runs were stopped after 10 O00 steps 
(see Fig. 6). 

An important observation from our simulations 
is that few of the individuals in a starting popula- 
tion happen to be initialized with a random be- 
haviour that is efficient enough to allow them to 
survive (Fig. 6). All the individuals at the end of a 
run are descendants of these few ancestors, an 

effect that we call ‘ancestor bottleneck.’ Conse- 
quently, genetic drift causes a large variability in 
the behaviours evolved by the populations across 
different runs (Menczer and Belew, 1994). This is 
why we focused on rank when analyzing vertical 
movement behaviours (cf. Section 3.1.1). For the 
same reason, we used the Spearman correlation 
coefficient, R ,  to see whether the results of the 
four additional runs were consistent with those of 
the ten original runs. The rank correlation was 
calculated between (i) the vertical movement be- 
haviours emerged at the end of the seven sensitiv- 
ity runs (percentages), and (ii) the medians of 
rank distributions across the original ten runs. 
Table 6 shows that all rank correlation values are 
highly significant. Therefore, our model is not 
sensitive to variations in the energy ratio of the 
prey types nor to the distance at which a fish 
responds to a prey item. 

4. Discussion 

Most large oceanic predators live in all of the 
oceans, in different oceanographic conditions. 
Usually, habitats of these species are defined in 
relation to the physical and chemical structure of 
the ocean, rarely as a function of the biotic envi- 
ronment (see Longhurst, 1998 for large-scale 
oceanic provinces defined from hydrology and 
phytoplankton distribution). Acoustic data have 

Table 6 
Spearman rank correlation coefficients, R,, between the rank 
of the median of the ranks of the behaviour frequencies in the 
original ten runs, and the rank of the behaviour frequencies in 
each of the seven sensitivity analysis runsa 

Run . R, Probability 

Ez=El 0.67 >0.9999 
E2 = 3E1 0.55 0.9999 
E2 = 5E, 0.69 >0.9999 
E2 = 7E,  0.78 >0.9999 
Prey detection distance = 4 cells 0.64 > 0.9999 
Prey detection distance = 5 cells 0.52 0.9998 
Prey detection distance = 6 cells 0.49 0.9997 

a The control runs with E2 = 5E1 and prey detection dis- 
tance = 5 cells have identical conditions to the ten original 
runs (except for the seed of the random number generator). 
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traditionally been used for stock assessment or 
direct observations of animal behaviour, but have 
largely been ignored in ecological modelling 
(Brandt and Mason, 1994). The biotic environ- 
ment of the present model was inspired by the 
results of acoustic experiments conducted in 
French Polynesia under the ECOTAP program, 
which was designed specifically to study the ecol- 
ogy and behaviour of tropical tunas. The aim of 
the present study was not to represent exclusively 
the ocean in French Polynesia, but to draw from 
real observations a realistic model of the environ- 
ment in which different pelagic predatory fishes 
live. The various tropical oceanic zones have dif- 
ferent abiotic factors, such as temperature and 
dissolvèd oxygen, which influence the depths 
reached by different types of prey. Our model can 
be applied to different biotic environments that 
have similar prey macro-structure even if the mi- 
cro-scale details (e.g. the depths of the layers) vary 
between environments. This explains our prefer- 
ence for general terms (‘surface7, ‘intermediate’, 
and ‘deep’) to model the depth layers rather than 
specific values in meters. 

We used tracking results for only few individu- 
als per species to define one pattern per species, 
but these data clearly indicate the existence of 
behavioural variability across individuals of the 
same species, as well as within a single individual 
depending upon the variability of the environ- 
ment. We focus our discussion only on the inter- 
specific variability observed in the wild, but our 
modelling approach also provides a means to 
study intra-specific and intra-individual 
variability. 

Physiology is generally considered the key de- 
terminant of the vertical movement patterns of 
fishes. For example, skipjack and yellowfin tunas 
occupy shallower depths than bigeye tuna during 
the daytime (Cayré and Chabanne, 1986; Holland 
et al., 1990a; Cayré, 1991; Dagorn et al., 2000). 
Bigeye tuna have the ability to physiologically 
and behaviourally thermoregulate (Holland et al., 
1992), allowing them to expand their niche into 
deep, cold water below the thermocline (Dagorn 
et al., 2000). During the daytime, bigeye tuna 
make frequent, regular upward excursions to 
warm up, as indicated by the ultrasonic telemetry 

experiments of Holland et al. (1992). Because of 
different physiological capabilities, different spe- 
cies are not able to exploit the same vertical 
habitats. 

The modelling work presented here, on the 
other hand, indicates that predator adaptations to 
prey dynamics can also lead to the same vertical 
movement dynamics, without any physiological 
constraints. Our simulations suggest that diverse 
behaviours can emerge due to adaptation to the 
prey environment alone. All the artificial fishes 
had the opportunity to develop movements in 
deep and cold waters (the intermediate and deep 
layers). The structure and the dynamics of the 
biotic environment alone were responsible for the 
simultaneous differentiation of several strategies 
for survival in the artificial ocean. The model 
suggests the possibility that behaviours evolved 
first, creating progressive selective pressure for 
changes in physiological capabilities, or, at least, 
that behaviours and physiology might have co- 
evolved simultaneously. 

The absence of tracking data corresponding to 
the most frequently observed vertical behaviour 
pattern predicted by our model may seem discour- 
aging. However, there is evidence that the alba- 
core tuna (T. alalunga) fits this category. Albacore 
is the most abundant tuna species in French Poly- 
nesia. However, no published tracking data for 
this species in a tropical area yet exist. Therefore, 
we examined experimental longline fishing data, 
with quasi-uniform vertical distribution of hooks, 
to assess the vertical movement behaviour of alba- 
core tuna. Based on this data, albacore tuna in 
tropical waters utilize mostly the intermediate 
layer during the daytime, i.e. the AB pattern (Fig. 
7). Thus, all five behaviours most frequently pre- 
dicted by our model are found in nature. 

Behaviours D and E (rapid changes between 
depth layers) deserve special attention. The emer- 
gence of these behaviours requires a very precise 
adjustment of the synaptic weights, which sug- 
gests that these behaviours are especially adaptive 
to the structure of the environment. The ability to 
make rapid, frequent changes in depth is a special 
adaptation in some pelagic fishes. Special sonic- 
tracking experiments were developed to study why 
these animals exhibit these striking vertical move- 
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Fig. 7. Depth distribution of albacore tuna catches (black 
bars) and fishing effort (shaded bars) based on 53 daytime 
fishing experiments (281 individuals captured). The experi- 
ments used an instrumented longline, with a total of 27 750 
hooks set between 9 and 14" south in the French Polynesian 
EEZ. 

ments. Thermoregulation was demonstrated for 
bigeye tuna, for example (Holland et al., 1992). 
Carey and Scharold (1990) proposed that sharks 
moved vertically to search for food using olfac- 
tion. A combination of factors may be involved in 
explaining frequent, rapid vertical movements, 
and these factors may differ from species to spe- 
cies. Our model indicates that this particular verti- 
cal behaviour could have evolved to efficiently 
exploit the biotic environment. 

f 

5. Conclusions 
L 

We presented a minimal computational model 
to explore the hypothesis that the biotic environ- 
ment may have played a major role in the evolu- 
tion of movement behaviours of tropical oceanic 
predatory fishes. The model illustrated that realis- 
tic vertical movement patterns can evolve based 
on simple, yet robust assumptions about prey 
distributions. The success of this approach confi- 
rms the promise of individual-based artificial life 
models for this kind of study (Judson, 1994), and 
particularly the use of approaches like LEE to 
study co-evolution of animals living in a same 
environment (Menczer and Belew, 1996b). 

A second objective of this work was to deter- 
mine whether the biotic environment could induce 
the emergence of several co-adapted behaviours. 
Our results suggest that the variety of behaviours 
exhibited by individuals or species corresponds to 
different solutions for exploiting the saine envi- 
ronment. While it remains important to study the 
physiological limits of predatory species, our 
modelling suggests the need for more research to 
characterize the biotic environment of tropical 
oceanic fishes and its relationship with behaviour. 

This minimal model lends itself to numerous 
refinements and extensions. Incorporating addi- 
tional data about the French Polynesia EEZ 
would benefit the model. For example, data on 
the depth distributions of additional predatory 
species is becoming available from fishing experi- 
ments. Predator diet data will also be available 
soon from stomach content analyses. The model 
of the prey environment could be made more 
precise using information on horizontal and verti- 
cal prey distributions and dynamics, which is cur- 
rently being analyzed from underwater acoustics 
surveys combined with trawl sampling. This kind 
of data will allow a more accurate, continuous 
three-dimensional model of the environment, and 
consequently a more refined model of fish move- 
ment behaviour. 

Another direction for future work is to apply 
this modelling approach to different environ- 
ments. This would not be possible if the model 
was specific to a particular area. Our assumptions 
about the biotic environment could easily be ad- 
justed to reflect conditions more realistic in other 
areas. For example, in this paper we assumed that 
no prey are found in the surface layer during the 
daytime while the opposite is true in the eastern 
Pacific Ocean. Yellowfin tuna feed on epipelagic 
prey throughout the daylight hours in the eastern 
Pacific (Olson and Boggs, 1986). By simulating 
biotic environments corresponding to alternative 
areas and comparing the emergent behaviours 
with the known movement patterns of actual 
fishes in those areas, we can test the generalization 
power of the model. 

Finally, the model could be extended to include 
factors such as predator size, prey selection, and 
physiological constraints corresponding to differ- 
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ènt individuals and species. We chose to disregard 
predator size and prey selection in our model as a 
simplifying assumption, albeit somewhat unrealis- 
tic. One way to address these problems would be 
to include some adaptive physiological capabili- 
ties into the genotypic model, and study the rela- 
tionship between the evolutions of behaviour and 
physiology in heterogeneous populations. This 
modelling approach might also be appropriate to 
tease apart the variability observed in diet data 
for different predatory species and different indi- 
viduals of the same species in different environ- 
ments. In this sense, our approach would be a 
precursor for models that assume given trophic 
relationships to study ecosystem dynamics (Pauly 
et al., 1998). 
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