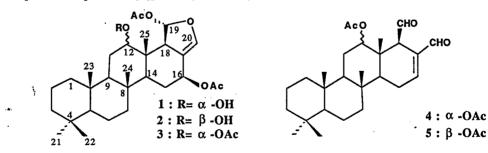
Tetrahedron Letters, Vol. 35, No. 1, pp. 109-110, 1994 Printed in Great Britain 0040-4039/94 \$6.00 + .00 Pergamon Press Ltd 50

12-epi-Heteronemin : New Sesterterpene From The Marine Sponge Hyrtios erecta

M.L. Bourguet-Kondracki*, M.T. Martin*, C. Debitus** and M. Guyot*.

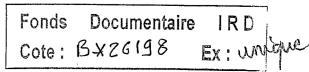
*Laboratoire de Chimie, associé au CNRS, Muséum National d'Histoire Naturelle, 63 rue Buffon, 75231-PARIS Cedex 05 (France).


** Laboratoire de Pharmacologie, ORSTOM, B.P. A5, Noumea, New Caledonia.

Abstract: 12-epi-heteronemin, a novel tetracarbocyclic sesterterpene was isolated from the marine sponge Hyrtios erecta and its structure has been established through spectral studies.

Sponges of the order of Dictyoceratida are known as a source of sesterterpenes, an otherwise rare group of terpenoids. Tetracyclic sesterterpenes of the scalarane type have been frequently reported from sponges of the genus *Hyrtios*. A study on the methanolic extract of the sponge *Hyrtios erecta*, collected in New Caledonia in 1988, has now led to the isolation of a new member of this class of sesterterpenes: 12-epi-heteronemin 1 and to the previously described heteronemin 2^1 and 12-epi-heteronemin acetate 3^2 .

The methanol extract (4.7 g) of lyophilized *Hyrtios erecta* (500 g), was fractionated by silicagel chromatography using a gradient of MeOH in CH₂Cl₂. The fraction eluted with 5% MeOH/CH₂Cl₂ (1.3 g) was a crystallized mixture of two major compounds, further separated on silica gel (hex/AE 8:2), Sephadex LH-20 (CHCl₃/MeOH 4:6) column chromatography and preparative tlc (CH₂Cl₂/Acetone 95:5), thus affording two crystallized pure compounds. The minor one (0.1% animal dry weight), heteronemin **2**, was easily identified by its accordance with the spectral data given in the literature³, m.p: 182°C, $[\alpha]_D = -37$ (c 0.009, Chf).


We shall here discuss the structure elucidation of the major (0.5% animal dry weight) and less polar compound 1, m.p: 175°C, $[\alpha]_D$ = - 35 (c 0.01, Chf).

The spectral data in the ¹H NMR spectrum of 1 were almost identical with those of heteronemin 2, with the exception of the proton H-12, which appeared at δ 3.84 ppm as a typical broad triplet (*J*= 2.7 Hz) for an equatorial proton, whereas the ¹H NMR of heteronemin 2 indicated the presence of an axial proton at δ 3.44 ppm (*J*= 3.9, 11.3 Hz). This was confirmed by comparison of the ¹³C NMR data, by the shielded signal at δ 71.52 ppm (δ 80.51 ppm for 2) and the deshielded signal at δ 56.86 ppm (δ 64.18 ppm for 2), respectively

Fonds Documentaire IRD

109

Table 1	: ¹ H-(300 MHz	t) and ¹³ C-(75 MHz) NM	AR data of hetero	nemin 2 and 12-epi-heteronemin 1 (CDCl3)	
	heteron	emin 2	1	12-epi-heteronemin 1	
n ^o í1	¹³ C	$^{1}\mathrm{H}$	¹³ C	1 _H	
<u>'1</u>	39.91		39.61	1.61 m	
2	18.17 ^a		18.14 ^a	1.58 m	
2 3	42.03		41.96	1.04 ax and 1.34 eq	
4	33.21 ^b		33.24 ^b		
5	56.51		56.30		
6	18.56 ^a		18.52 ^a	1.36 m	
7	41.82		41.76	0.98 ax and 1.72 eq	
8	37.41		38.05		
9	58.75		50.92	1.38 ax	
10	38.06		36.85		
11	27,20		24.75	1.64 m	
12	80.51	3.44 <i>J</i> =3.8, 11.3	71.52	3.84 brt J=2.7, 2.7	
13	42.70		41.60		
14	54.67		49.90	1.37 ax	
15	27.99	•	28.29	1.34 ax and 2.04 eq	
16	69.33	5.34	69.15	5.34 dddd J=10.1, 6.2, 2.1, 1.2	
17	114.41		115.38		
18	64.17	2.40	56.86	3.02 d <i>J</i> = 1.3	
19	101.63	6.74 d <i>J</i> =1.3	100.35	6.27 d <i>J</i> = 1.3	
20	135.34	6.14 t <i>J</i> =2	134.48	6.11 t J = 2	
21 .	33.23 ^b	0.87	33.19 ^b	0.80 eq	
22	21.34	0.77	21.26	0.76 ax	
23	16.31	0.79	16.24	0.78 ax	
24	17.31	0.81	16.81	0.81 ax	
25	8.75	0.81	14.61	0.81 ax	
OAc	21.24	2.07	21.36	2.05	
OAc	21.03	2.07	20.99	2.06	
CO	171.30	 * 1 	171.81		
CO	170.06		169.96		

attributed to the C-12 and C-18 carbons (Table 1). Thus, compound 1 was identified as 12-epi-heteronemin. U.V., I.R. and MS data, supported this structural assignment⁴.

Assignments were determined by ¹H-¹H COSY, ¹H-¹³C correlations via HMQC and HMBC NMR experiments, J values are expressed in Hz, a-b: Assignments may be reversed.

Hyrtios erecta from Australian Barrier Reef and Red Sea localities have already yielded a variety of sesterterpenes of which heteronemin is the dominant metabolite. Thus, it is surprising that in the New Caledonia sample, 12-epi-heteronemin 1 is the major compound (0.5%) and has not been isolated to-date. Marine sponges can biosynthesize several isomers of tetracarbocyclic sesterterpenes such as scalaradial 4, 12-epi-scalaradial 5 and 12-18-diepi-scalaradial, which were isolated from Spongia nitens⁵ and Cacospongia mollior⁶, all of which are PLA2 inhibitors⁷. Similarly, 12-epi-heteronemin acetate and 12-epi-scalaradial 5 have been reported from Hyrtios erecta². Hence, 12-epi-heteronemin can be considered as the missing piece of this series. Further studies on the chemical behaviour and on the biological activities of 1 and derivatives are in progress.

References

- Kazlauskas, R.; Murphy, P.T.; Quinn, R.J.; Wells, R.J. Tetrahedron Lett., 1976,30, 2631-2634. Crews, P.; Besansca, P. J. Nat. Prod., 1986, 49, 1041-1052. 1.
- 2.
- 3. Kashman, Y.; and Rudi, A. Tetrahedron, 1977, 33, 2997-2998.
- 4. UV (MeOH) 210 (ɛ, 13859), IR (film) 3545 (alcohol), 1732, 1748 and 1237 (acetate) cm⁻¹; MS: m/e 470 (17%), 428 (30%), 386 (17%), 368 (100%), 350 (30%), 191 (47%).
- Cimino, G.; De Stefano, S.; Di Luccia, A. Experientia, 1979, 35, 1277-1278. Cimino, G.; De Stefano, S.; Minale, L. Experientia, 1973, 29, 934-935. 5.
- 6. 7.
- Potts, B.C.M.; Faulkner, D.J. J. Nat. Prod., 1992, 55, 1701-1717.

(Received in France 20 September 1993; accepted 2 November 1993)