

4.

• Tetrahedron Letters, Vol. 36, No. 48, pp. 8853-8856, 1995 Elovier Scients Lid Printed in Great British 0040-403993 \$9-304-0.0

0040-4039(95)01837-9

Caledonin, a Natural Peptide Bolaphile with Zn^{II} and Cu^I Complexing Properties from the Tunicate *Didemnun rodriguesi*

María Jesús Vázquez¹, Emilio Quiñoá¹ and Ricardo Riguera¹*

Anuncia Ocumpo² and Teresa Iglesias²

Cécilo Debitus²

¹Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago, 15706 Suntiago do Composteta, Spain, Tel/PAX 34-81-391091

²Facultad de Ciencias, Universidad de Vigo, Vigo, Spain...

³Centro ORSTOM, B. P. A5, Noumes Cedex, New Calcdonia

Abstract: Caledonin (1) is a modified poptide isolated from the marine tunicate Didenman reality as $C_{\rm play}$ in the marine tunicate $C_{\rm play}$ is a cartail L-phenylabather residue connected via its amine group to (5)-3-amine 3-mercaptopentancie acid (a new sulfur-containing β -amine acid), and by its carboxyl group to a six membered cyclogosantidine moisty, bearing in n-cetyl chain. Caledonin is a natural belaphile which strongly binds $Z_{\rm play}$ and $C_{\rm play}$ ions,

In the last decades, tunientes have been subjected to very close scrutiny and as a result, a large number of bioactive nitrogenous metabolites with significant biological activity have been described. They include acyclic and cyclic peptides and depsipeptides with novel and complex structures and also compounds of physiological importance characterized by the presence of cyclic guantidine groups. As part of our work on pharmacologically active metabolites from marine organisms, we now report the structure of caledonin (1), a novel modified peptide, which was isolated from the tunicate $Didemnun\ rodriguesi$. Caledonin, among other televant structural features, possesses a new β -amino acid residue, a cycloguanidine group and presents strong metal-complexing properties.

Didemnus rodriguesi (Tunicam, Didemnidae),⁴ an encrusting ascidian of a deep pink, red or yellow colour, was collected from the Baic des Citrons, Nouméa (New Caledonia). We isolated⁵ pure caledonia (1) [48 mg; mp= 170-172°C; $[\alpha I_D^{20}] = +24$ (MeOH, c=1.45 mg/mL)] from the methylene chloride soluble material that showed in vitro cytotoxicity against Kb cells (85% inhibition at 10 µg/mL). The IR spectrum⁶ showed characteristic absorption bands due to amide groups [(KBr) 1656, 1630 cm⁻¹] and the UV indicated the presence of a phonyl chromophore [(MeOH) λ_{max} 234 (e 2816), 280 (c 666; sh) nm], its (+) FABMS (glycerol) spectrum showed a peak corresponding to the molecular ion at m/z 489 ([M]⁺), confirmed when NaCl was added to the

Fonds Documentaire IRD

Fonds

Documentaire

IRD

Cote: 6 x 26 203

Ex: Unique

matrix (m/z 511, [Na(M-H)]⁺). Its EIMS showed the [M-H]⁺ ion at m/z 488 and so did the HREIMS (m/z 488.30650, $\Delta = +1.2$ ppm, corresponding to C26H42N5O2S, 8 unsaturations).

One- (¹H, ¹³C, DEPT) and two-dimensional (DQF-COSY, TOCSY, HMQC) NMR analysis revealed the presence of four main substructures generating independent ¹H spin systems, and linked by one C-N and two peptido bonds. Those fragments were: 1) a new β-amino acid (3-amino-5-mercaptopentanoic acid; 2) phenylalanine; 3) a guanidine group with two nitrogens linked by a -CH₂CH₂-chain and forming a six membered ring and 4) an n-octyl chain. These substructures satisfy the unsaturation requirements (6 double bonds and 2 rings) suggested by the molecular formula.

Diagnostic ¹³C and ¹H shifts (Table 1) showed the nature of the different heteroatoms and functional groups present in the molecule: one primary amine bound to a methine (δ 61.8, δ 3.24, 3-CH) with 7 heteroatom substituents, one guanidine group (δ 160.2, 11-C), two amide groups (δ 171.3, 5-C; δ 166.0, 7-C) and finally, the characteristic shifts of 1-CH₂ (δ 26.9, δ 1.10) indicate a thiol group attached to that position. Exchangeable 1H NMR spectra (CDCl₃/D₂O) confirmed that the broad singlets at δ 4.8 (4H) and δ 6.0 (1H) were originated by hydrogens attached to heteroatoms; and ¹H-¹⁵N HMQC and COSY experiments identified the signal at δ 6.0 as the NH attached to the 10-CH₂.

Figure 1. a. Selected HMBC (²J_{CH} and ³J_{CH}) correlations, b. Selected (+) FABMS fragmentations,

The precise connectivities between the substructures were established by HMBC and corroborated by ROESY experiments. Selected correlations are shown in Figure 1a. Among them, those between 5-CO and 6-CH; 7-CO and 8-CH2; and 11-C and the CH2 groups at positions 8, 10 and 12, were the most useful. Caledonin was thus shown to comprise a central phenylalanine residue flanked by a 3-amino-5-mercaptopentanole acid and the cycloguanidine moiety, with the n-octyl chain bound to the exe-nitrogen. Furthermore, the observed (+) FABMS fragmentation patterns are in good agreement with that structure (Figure 1b).

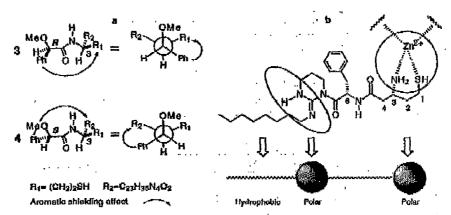
Several chemical transformations were carried out to confirm the structure of calculum, Acid hydrolysis of 1 (6N HCl; 12h at 110°C) yielded three products identified (¹H-NMR, MS) as phenylalumine, 3-antino-5-mercaptopentancic acid and the substituted guanidine 2. Derivatization (1. n-BnOH; 110°C, 2. TPAA; 150°C) followed by chiral GC-MS analysis (Chirasii Val III; He at 1 ml/min; 120 to 200°C) indicated that the phenylalumine belonged to the L-series (S absolute configuration). Derivatization of calculum with (R)- and (S)-methoxyphenylacetic acid (MPA), afforded after HPLC separation, the MPA amides 3 and 4. Analysis of their ¹H-NMR spectral indicated the absolute configuration at 3-C to be S (Figure 2s).8

Tunicates are known to produce metal complexing metabolites, such as the tunichroms. Some features of calcidonin, and in particular the hydrophobic chain at one end and the penicillamine-like β -amino acid 10 at the other, suggest that this metabolite is a natural bolaphile 11 which may be involved in ion transport across membranes.

To test this hypothesis, a solution of caledonin in CD₃OD was fitrated with ZnCl₂ and monitored by ¹H-NMR spectroscopy. The 2:1 caledonin/ZnCl₂ adduct was isolated and characterized by (+) FABMS (m/z 552, [Zn(M-H)]*) and NMR spectroscopy (¹H, ¹³C, COSY, TOCSY and HMQC experiments).

Table 1. ¹H and ¹³C NMR data for caledonin (1) ²

At. no.	¹³ C (δ)	¹ Η (δ),m, J(Hz)	At. no.	¹³ C (8)	¹H (δ),m, J(Hz)
1	26.9	1.10, dd (7.1, 13.1)	12	40.6	2.68, m
2	31.7	1.55	13	31.0	1.75, dd (7.5, 15.1)
	l	1.42	}	!	
3	61.8	3.24, m	14-17	29.3-29.6	1.38-1.55
4	39.0	3,16, t (12.1)	18	22.7	1.38
		2.12, dd (8.1, 14.1)		I	
5	171.3		19	14.1	0.89, t (6.6)
6	66.3	4.50, t (1.0)	20	35.6	3.39, dd (4.4, 13.6)
l	ì		[4	3.20, dd (2.0, 13.5)
7	166.0		21	134.8	
8	32.4	3.53, d (17.0)	22/26	130.5	7.16-7.26
	l	2,79, m	,		
9	27.4	1,55	23/25	128.6	7.16-7.26
0.1	38.9	3.75, m	24	127.7	7.16-7.26
	l	2.75, d (17.0)	11-NH	1	6.00, 8
11	160.2		VH(4H)		4.80, bs


A NMR spectra were recorded on a Bruker AMX-500 spectrometer in CDCl3 at 298 K.

Comparison of the ¹H-NMR data of 1 and its Zn^R complex (Table 2) showed that the thiol and amino groups are involved in complex formation with the Zn^R ion in a tetrahedral environment, as shown in Figure 2b.

Very similar ¹H-NMR spectrum was obtained when 1 was nitrated with CuCl, suggesting formation of a similarly bonded adduct, but the chelated Cu^I ion was rapidly oxidized to Cu^{II}, hampering isolation and precise structure determination.

Table 2. Selected NMR data for calculonin (1) and for calculonin-Zn^{II} complex in CD₃OD.

	1		1-Zn ^{II} _complex	
At. no.	¹ Η (δ)	¹³ C (δ)	¹ Η (δ)	13 _C (8)
1	1.10	27.55	1.18	29.72
2	1.61/1.52	35.75	1.65/1.33	35.51
3	3,24	49.00	4,37	51.85
4	3.16/2.12	40.48	2,41/2.22	41.88

a. Perspective and elongated Newman projections for 3 and 4 showing the magnetic shielding Figure 2. effect8 based on Ref. 7. b. Caledonin-ZnII complex, showing its belaphile characteristics.

Acknowledgements

This work was financially supported by the CICYT (SAF 92-1023) and the Xunta de Galicia (XUGA 20907B/93 and XUGA 20907B/94).

REFERENCES AND NOTES

- Ireland, C. M.; Molinski, T. F.; Roll, D. M.; Zabriskie, T. M.; Mokec, T. C.; Swersey, J. C.; Foster, M. P.; in Bloorganic Marine Chemistry, vol 3, Schouer, P.J. Ed., Springer-Verlag, Berlin Heidelberg,
- 1989, pp. 1-46, Ohtani, I.; Kusumi, T.; Kakisawa, H.; Kashman, Y.; and Hirsh, S. J. Am. Chem. Soc., 1992, 114, 2,
- Ohtani, I.; and Mooro, R.; J. Am. Chem. Soc., 1992, 114, 7941
- Da Rocha, R.M.; and Monniot, F. Ann. Inst. Oceanogr., Paris, 1993, 69, 261-265.
- Freshly collected tunicate was frozen on site, transferred over dry ice and then lyophilized. 1 Kg of lyophilizate was homogenized in MeOH and extracted at r.t. for four days (4 x 2 1.). The MeOH was evaporated in vacuo and the residue was partitioned between water and CH₂Cl₂. 5 g of the CH₂Cl₂-soluble material were successively chromatographed on silicage! (CH₂Cl₂-MeOH) and Sephadex LH-20 (MeOH) columns, and then on reversed-phase HPLC (µ-Bondapack C18 column; McOH:H2O 95:5; flow: 4 mL/min; retention time 12 min; RI detector), to afford 48 mg of pure caledonin (1),
- IR (KBr) 2922, 2852, 1656, 1630, 1548, 1457 cm-1.
- Latypov. S. K.; Soco. J. M.; Quiñoá, E.; and Riguera, R. J. Org. Chem., 1995, 60, 1538.
- For instance, characteristic shifts for the pair of derivatives 3(4) were 8 4.93(4.65) and 2.21(2.18) for
- 9.
- 6-H and 4-H respectively.

 a) Smith, M. J.; Kim, D.; Horenstein, B.; and Nakanishi, K. Acc. Chem. Res., 1991, 24, 117.

 b) Michael, J. P.; and Pattenden, G. Angew. Chem. Int. Ed. Engl., 1993, 32, 1.

 Penicillamine is a well known antirhournatic and chelating agent for copper in Wilson's disease: Morek Index, 11th Edition, Merck&Co., Inc. Rahnay, N.J., U.S.A., 1989, p. 7029 and references therein. Caledonin also resembles the antihypertensive captopril, Merck Index, 11th Edition, Merck&Co., Inc. Rahnay, N.J., U.S.A., 1989, p. 1773 and references therein.
- a) Fuhrhop, J.-H.; and Fritsch, D. Acc. Chem. Res., 1986, 19, 130, and references therein. b) Escamilla, G. H.; and Newkome, G. R. Angew. Chem. Im. Ed. Engl., 1994, 33, 1937, and references therein.