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Analyzing change in climatic time series requires a more 
complete understanding of the different way that time series 
can Vary over time, and the different kinds of 'trends' and 
'pseudo-trends' that can occur. Time series can Vary in the 
mean in either a deterministic or stochastic manner, they can 
Vary in the seasonal component in either a deterministic or 
stochastic manner, and the underlying 'innovations variance' 
can also Vary with time. Each of these types of changes in a 
series can produce similar kinds of behavior over a short period 
of observation, but are driven by very differing processes. 
Multiple time series, particularly those that are spatially 
distributed, may exhibit these types of behavior in a seemingly 
unrelated manner, yet can be shown to be driven by common 
underlying components. These types of dynamics will be vet? 
different from those that would be estimated by EOF's or other 
techniques based on principal component analysis. I re  discuss 
recent advances in time series analysis and econometrics that 
allow us to more fully explore how time series may vary and to 
test for and to estimate the underlying components of change. 



Pour analyser les changements dans une série climatique, il ne suffit pas 
de « repérer )) les différentes sortes de « tendances )) ou « pseudo-tendances )) 
qui peuvent apparaître. Sous peine de profondes erreurs de compréhension, 
il est nécessaire de pouvoir caractériser correctement les différents processus 
d'évolution dans le temps. Une série temporelle peut évoluer de  façon 
déterministe ou stochastique dans sa composante moyenne et/ou dans sa 
composante saisonnière. Les processus résiduels peuvent également avoir 
une variance qui évolue dans le temps. Ces différents processus d'évolution 
ont des propriétés très différentes et la caractérisation que l'on peut faire des 
changements temporels en dépend grandement. Malheureusement, sur de 
courtes périodes de  temps, ces différents processus apparaissent très 
semblables. Il est donc primordial de pouvoir distinguer correctement les 
différentes composantes d'une série temporelle pour en caractériser les 
propriétés. Lorsqu'on examine conjointement un groupe d e  séries 
temporelles, par exemple des séries d e  température distribuées sur 
différentes latitudes adjacentes, il est possible de mettre en évidence des 
processus d'évolution sous-jacents qui leur sont communs. Ce type de 
dynamique est très différent de  celui qui pourrait être estimé'par des 
modèles EOF ou autres méthodes basées sur l'analyse en composante 
principale. Des avancées récentes en analyse des séries temporelles et en 
économétrie permettant d'explorer le type d'évolution d 'une  série 
temporelle, de tester et d'estimer les composantes sous-jacentes de  ces 
changements temporels sont présentées. 

The earth's climate has been changing over the centuries, and coupled with these changes have been change in the 
ocean environment and in marine resources. Over the last several decades, concern has risen that anthropogenic effects, 
particularly in the atmosphere, may be altering or accelerating the natural pattern of climate change. However, the 
observed anthropogenic changes in the atmosphere are not necessarily producing concomitant changes in the ocean, or 
may be producing changes that are more complex than those observed in the atmosphere. Even without human influence, 
this natural progression of climate could have profound effects on the ocean and its resources. Understanding how the 
ocean has been changing, how the resources in the ocean have been changing, and detecting anthropogenic effects in 
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eithcr, are difficult problems that require careful thinking about what we mean by change, about the ways change can 
occur in the data we analyze, and whether even a global process of change could produce varying effects in different 
regions of the world. The types of dynamics we are presently witnessing in the ocean and the atmosphere raise questions 
that typically can not be answered by the usual methods of analysis. The term 'climate change' has been used loosely in 
the oceanographic literature, referring to almost any variation in the ocean environment. What is meant by 'climate 
change' must be more precisely defined if we want to characterize it properly. 

Changes in the ocean environment can be transitory or relatively permanent. Even such large shocks as major El Ninos can 
be transitory in nature when analyzed properly over a longer time-scale. Roy and Mendelssohn (this vol.) have shown that 
the major El Ninos of 1972 and 1982 in the Humbolt Current, though large, were short-lived in their effects while the 1956-57 
El Nirio had long-lasting effects on the California Current system. ENS0 events may be part and parce1 of the long-term 
trend in the ocean, or they may be relatively frequent shocks to the ocean that in fact obscure the long-term signal. The 
upwelling regions of the world are of particular interest because of their high productivity. The upwelling process, which is 
local in scale, rnay be influenced by changes more global in scope. Bakun (1990), for example, has hypothesized that global 
warming would increase upwelling, making the upwelling regions cooler during the upwelling months, and perhaps 
affecting the oxygen content and other properties of the local ocean waters important to fish stocks. These changes, 
however, would not be reflected in the ocean as a whole. A change obsemed in the ocean environment at a particular area 
can be unique to that area, or part of a process obsemed over an entire region, or part of a process occurring over the 
entire globe. Moreover, there could be regional or global processes that are causing the obsemed change in the local 
environment, but with a different manifestation depending on the site it is occurring. It is then necessary to analyze 
vari~.bility at different spatial scales. Separating out common trends or common seasonal components from local trends 
and season is important to handle this type of question. Changes in the upwelling process can occur not only in the 
intensity of the upwelling, but also in the timing of crucial events such as the seasonal cycle, the onset of the spring 
transition in the California Current system for example. Identifying the proper source of these changes needs to be able to 
separate what pertains to a trend and what pertains to some cycle around this trend. 

To properly deal with these types of problems requires precise definitions of the types of changes that might be observed 
and carehl thinking about how change can be manifested in the data we analyze. Similar problems arose in economics 
wht:re highlighting common features among variables, isolating source and timing of changes among any of numerous and 
a1w;iys moving explicative factors, separating out a proper trend from some cycle and distinguishing a shifting trend from 
0thr.r cyclical fluctuations are crucial questions. Great advances have been made in econometrics and time series analysis 
to handle such a challenge. These new statistical techniques, which at least begin to deal with some of these issues, must 
be iised also to analyze changes in oceanographic data, or else the results could be misleading. The aim of tl-iis paper is to 
describe some of these concepts and techniques; examples of their use are also presented. 

From the previous section, it is clear that change, particularly in the context of climate change, can be very complex in 
nature. Yet, when the term 'change' is mentioned, it is firstly as opposed to some sort of relatively stable state and change 
is therefore associated with some sort of non-stationary state. Climate change is often used in contexts such as 'global 
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warming', meaning that the weather worldwide is progressively becoming warmer. In other words, the worldwide mean 
temperature has a positive time trend in the long-term. In this sense, 'change' and 'trend' in a series are almost 
synonymous. This is a limited view of what constitutes a 'change', particularly in regards to the climatic changes in the 
ocean. Only some of the examples presented in the Introduction correspond to this notion of change. Models that focus 
on the long-term change in the mean will not lend insight to the other problems discussed. 

Even restricting ourselves to 'trends' in the data, the problem of defning the trend is more complex than finding the change in 
the overall mean. If a large region is being examined, this assumes that the entire region is changing in a homogeneous, 
uniform manner. In the ocean, due to the complex interactions txtween circulation processes and atmospheric forcing, the 
obselved changes in different areas could be in different directions even if the underlying process is global in scope. Aggregate 
methods, or even disaggregate methods that assume a uniform trend wil be misleading in identifying the change. Shifting 
trends are also changes that are very dificult to put to the fore if the trends are not correctly measured. 'Trend' can occur in 
the mean, the usual way people think of trend, but 'trend' can also occur in the seasonal component, and in the variance of the 
series. Properly identifying a trend will help to better characterize a change. More formally, a time series random variable is said 
to be stationary if its distribution does not depend on time. A time series is said to be weakiv stationay if the mean and 
variance of the senes do not depend on t'me. A tirne senes is non-stationary, or has a 'trend', if either the mean or the variance 
of the time series (or both) are functions of time. Changes in the mean and the variance of a series can come about in several 
ways, for example, changes can be either deterministic or stochastic. Changes at intermediate frequencies can occur due to 
changes in the seasonal component. For non-stationary series, a senes that has a trend in the mean has different properties 
than a series that has a trend in the variance. Wule over the shon run the dynamics can appear similar, this difference has 
imponant consequences both for mode1 building and for our understanding of the behavior of the process. 

1 .l . Deterministic and stochastic trends 

The common understanding of trend is a changing mean level that varies deterministically. Let y, be an observed tirne 
series, then a deterministic trend in the series y,would be given for example by: 

y  =,u+m+E where~ , -+N(O,c r~)  
t t (1) 

The mean or expected value of this series is E @J = p + a t. This mean evolves with time while the variance is constant, 
VarCyJ = a2. Such a series is said to have a deterministic trend or to be "trend stationary" since a simple regression on 
time will detrend or stationarize the series, the resulting detrended series will have a constant mean p. The mean level of a 
deterministic trended series increases by some f ~ e d  amount every period (Fig.1~). 

However, a time series can behave in the short-run as if it has a deterministic trend in the mean, yet be generated bv a 
different mechanism. The simplest case of such a series is the so-called "random walk" which is of the form: 

Y I  = YI-1 +El (2) 
where the E,  are independent, identically distributed random variables with mean of zero and variance a2 (Fig.lb). Tlie 
series y, can be rewritten as: 
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Such a series has a constant rnean, ECyJ = yO, and a variance which increases towards infinity over tirne: Val-@,) = cs2t 

If the E, are zero rnean stationary but autocorrelated, the senes y, is no longer a pure random walk but the trend of the y, 
series will still behave as a random walk. These types of trends are called stochastic trends. In the econornetric literature, 
thel are also referred to as 'unit root', since the random walk model is equivalent to an autoregressive model with a root of 
moilulus one in the autoregressive polynornial (Le. roots of q(B) = O in a series such as: NB)jI = $(B)E~), see Hatanaka 
(1996) for details. In the above example (Eq. 2), it can be noticed that the coefficient in lag term is equal to 1. Differencing 
the series will remove the stochastic trend, leaving the series stationary. Processes that becorne stationary when 
diffcrenced are called 'integrated' or 'difference stationary'. Let the backshift operator B be defined as: 

Then differencing a series can be expressed as Ay, = (1 - B)y,. Sometimes a series needs to be differenced d times to 
become stationary. It will be then necessary to calculate ddy, = (1 - B ) ~ ~ , .  These series are said to be 'integrated of order 
d', (lenoted by I(d). A random walk process is a very simple case. Generally, observed series exhibit more complex 
behlvior than that of a pure random walk. A randorn \valk with drift process can be given by: 

where E, is given as in Equation 2. Rewriting yt as: 

t=o  

we see that this series has both a deterministic trend (i.e. a trend in mean given by ECyJ = v o  + w) and a stochastic 
trend (Le. a trend in variance given by VarCyt) = o2t). Since differencing will cancel out both trends, ECy, - yb1)=p and 
Val,?, - = o 2, such a series with both a deterministic and a stochastic trend is also an integrated series (Fig.ld). A 
randorn walk with drift will change in each period by some f ~ e d  amount on average. The change in each period will be by 
a predictable arnount p, which is called the drift, plus an unpredictable random amount. For this reason it is referred to as 
a 'stochastic trend'. 

Thi. different behaviors produced by these types of time series can be understood by examining artificial time series 
gen'rrated from closely related equations (Fig. la,b,c,d). The SST series at 36-38"N was whitened and the resulting 
residuals were used as the innovations (errors) in each of the simulations. The first series (Fig.la) is a stationary 
autoregressive series with one lag and an autoregressive parameter equal to 0.5. The series has a constant mean and a 
constant variance. When the autoregressive parameter is set to 1, a unit root is introduced in the series. The randorn walk 
natiire of the series is evident (Fig.lb). Adding a deterministic trend to the stationary series (Fig.1~) and adding an 
intttrcept to the random walk series, which becomes a random walk with drift (Fig.ld), highlights the problem of 
differentiating between deterministic and stochastic trend. The behavior of the two last series is ve? sirnilar yet generated 
by rwo very different processes. Most people would say that the random walk with drift has a deterministic trend and 
wo~ld wrongly detrend this series by a regression on time. 

In the case of a Trend Stationary senes, it is only the mean of the series which will bring information on the long-tem evolution 
of the process. The variance of forecast errors is finite, the uncertainty attached to these forecast is then bounded. It is indeed 
not the case for a Dfference Stationary senes since the variance of a senes with a unit root is infinite. The best forecast of the 
future value of an integrated senes we can make is its present value since the prediction error is going to infinity with time. The 
important dfference between these two classes of non-stationanty lies on the fact that a 'shock' at any given penod on a trend 
stationary process wili only have a transitory effect while it will have a lasting effect on a difference stationaly process. integrated 
series are 'long memory' processes since any short-lived event wili influence definitively the future level of such senes. 



a: Stationary Series AR(1) b: Random Walk Series 

c: Trend Stationary Series d: Difference Stationary Series 

-10 1950 5 1955 1960 1965 1970 1975 1960 1985 1990 

Year 

-10 1950 5 1955 1960 1965 1970 1975 1960 1985 1 

Year 

Fig. 1: Four artificial series generated {rom the same white noise q (t is the time term trend). 
a : Stationary : Xt = 0.5Xt_1 + q 
b : Random walk : Xt = Xtm1 + q 
c : Trend Stationary : Xt = 0.1 T + 0.5Xt_1 +q 
d : Difference Stationary : Xt = 0.2 + Xt-? +q 

1.2. Stationary and non-stationary seasonal component 

Oceanographic data, particularly series such as SST, are cliaracterized by their strong seasonality. In the oceanographic 
literature, seasonal components are ~~sually estimated by t~king monthly means or by fitting one or several Iiarmonics ro 
the data. Another method, more recently adrocated, to deseasonalize montlily oceanographic time series is to transform 
the series to 12th-differences (Bskun, 1996, p. 165). Eacli of these tnro deseasonalizing metliods suppose very different 
seasonal processes. The first one assumes that the season21 component i3 deterministic and stationary, while the second 
one assumes a stochastic and non stationsry sexonal component. To use n method in an inappropriate case will lead to 
spurious results. Prior to any deseasonaliza~ion or to any study of the seasonal pattern, it is then impoilant to be able to 

50 Change in  Oceanographic Time Series 



decide which seasonal process is suitable for the observed time series. Some testing procedures have been recently 
developed for that purpose. 

The concept of seasonaiity is, unless we have a precise and formal definition, as vague as that of a trend. Yet finding a precise 
definition for seasonality is not as simple as it appears. Despite a long history in analyzing seasonality, there is no geneelly 
agreed upon definition, nor is there a widely accepted view about how seasonality should be treated in empirical work. The 
maiil definitions offered by the literature (see for example Hyleberg et al., 1990; Franses, 1996) are: 
- A detert?zinistic seasonulpmcess : This seasonal process is stationary with a mean that varies by season. It is modeled by 

a regression on seasonal dummy variables such as the following quarterly series : Yt = mo + mlSlt + m2SZt + nz3S3t + E~ 

where E~ is stationary. Seasonal dummy models imply a regular and non-changing seasonal pattern which can be 
perfectly forecast though some changes in phase and amplitude may appear in raw series due to the error process and 
to the existence of an autoregressive structure. 

- A stationary stochastic seasonal process is a process generated by an equation such as : cp (B) yt = E~ where E~ are 
iridependent and identically distributed with al1 the roots of cp (8)= O lying outside the unit circle and with peaks in its 
spectrum at seasonal frequencies, as for example: Yt = pYt, + E~ with Ipl<l. The mean of such series does not differ 
across seasons; however, if the initial values are seasonally different and the degree of serial correlation is high, such 
series may become very similar to the previous one. In such cases, a practical way to remove seasonality in stationary 
seasonal time series is to regress the series on seasonal dummy variables. 

- A non-stationary stochastic (or integrated) seasonalprocess is generated by an autoregressive process like cp(B)yt = 

with one or several unit roots at some seasonal frequencies and E/ stationary. As for example: Yt = + E~ for a 
quarterly time series seasonally integrated at one cycle per year. Such process describes changing seasonal patterns 
nhere sometimes 'spring' becomes 'summer'. The means in each season are not welldefined, they are an accumulation 
of al1 the past random shocks. These shocks which last forever may change permanently the seasonal pattern. 

- Aperiodicprocess is generated by an autoregressive process such as: 

where p, and <pi, are parameters that may vary across the seasons and E~ are independent and identically distributed. 
These processes with periodically varying parameters describe a time series which has different properties in different 
seasons. A periodic process is non-stationary since the autocovariance function is not constant over time. Unit roots can 
also be present in a periodic process which nests the integrated seasonal mode1 mentioned above. 

Th]:; classification into deterministic and non-stationary stochastic seasonality parallels the trend classification already 
prr.iented. The seasonal counterpart to treat with deterministic or integrated process will be to regress the series on 
seasonal dummy variables if the seasonality is assumed to be deterministic and/or stationary; and to difference the series 
with the appropriate (1 - B? operator, where s is the number of seasons, if the seasonality is assumed to be integrated. 
The dynamics of the seasonal component, however, is more complex than that of a trend component. If we assume we 
have quarterly data (s=4), and examine the appropriate differencing operator, it can be factored into a product of 
backshift operators at smaller time lags as: 

The term (1 - B) removes the longer-run trend while S(B) = (1 + B + B~ + @) removes the seasonal structure. This 
operator has four roots with modulus one, (1, -1, i, -i), which correspond respectively to zero frequency ("long-run" or non 



seasonal), 112 cycle per quarter or 2 cycles per year (II) and 114 cycle or 314 cycle per quarter or one cycle per year (IIn) 
for the pair of conjugate cornplex roots which cannot be distinguished. When monthly data are involved, the factored 
backshift operator (1  BI^) contains many more roots than does Equation 7. 

When modelling seasonality in empirical work, the key question is therefore to firstly establish if the data exhibit more 
evidence of seasonal dumrnies or seasonal unit roots. However, the choice of the proper model is not so direct and 
requires further care. The seasonal differencing operator removes unit roots at al1 frequencies althougli unit roots may 
exist only at some of the seasonal frequencies. In this case, the As differencing filter induces an over-differencing which 
further introduces unit roots in the rnoving average part of the series. In observed non-stationary time series deterministic 
and stochastic components are often both present. The seasonal pattern can be a combination of stationary deterministic 
part (seasonal durnrnies) and of non-stationary stochastic part (seasonal unit roots). All these configurations have to be 
taken in account when testing for seasonal roots, leading to many possible combinations of tests. 

Deterministic, periodic and stochastic seasonal processes genente very different seasonal behaviors but, as witli the trend 
component, over a relatively short tirne period, they can look very similar when examined visually (Fig. 2). 
- The Fig. 2a series is a deterministic seasonal time series governed by four (in this case of quarterly data) alternating linear 

trends with identical slopes. The 'average' seasonal pattern remains constant. This series has been generated from a 
white noise and a very slight trend in the mean has been also added. The fluctuations that can be noted in this series are 
due to the perturbations of the error process. 

- The Fig. 2b series is a periodic series where the trends Vary with the season producing a changing seasonal pattern. 
- The Fig. 2c series is an integrated seasonal series which yields four circularly merged random walks with identical drift, 

implying persistent and unpredictable changes in the seasonal pattern. 
- The Fig. 2d series is the observed SST time series off the Canary Current at 30-32"N reduced to quarterly data. 

Comparing this last SST series to the three previous seasonal models highlights the difficulties that exists in attributing 
the observed changes to any type of seasonal process and to disentangle seasonal changes from trend changes wlien 
these changes are slow. 

Although they can appear similar on srnall sample, deterministic, periodic and integrated seasonal processes have 
fundamentally different statistical properties which have to be taken in account when detecting and interpreting seasonal 
changes. A deterministic seasonal process is a stationary process. Some shifts or fluctuations due to exogenous shocks can 
appear but these changes will not persist in the seasonal pattern. When a seasonal tirne series is proven to be seasonally 
deterministic, each observed change in the seasonal component can be attributed to an exogenous cause that can 
therefore be investigated. The changing seasonal patterns in periodic processes are more difficult to interpret. The 
observed changes in the seasonal pattern of a periodic series are endogenous but may also be caused by some external 
sources. An integrated seasonal process allows a very changing seasonal pattern. The existence of a unit root in the 
seasonal component, as in the non-seasonal component, implies that a short-lived shock will perturbate definitivelv the 
pattern of season and the best prediction we can make of its future shape is always its present one. 

For mathernatical convenience, most analytical methods assume that the seasonal component is deterministic and 
unchanging, except for relatively small independent errors around the mean seasonal cycle. Our experience with the 
ocean is othenvise. Timing of events, such as the spring transition, in upwelling periods, shift over decades in a non- 
random manner. The intensity of upweiling may increase or decrease over quite a few years, without a corresponding 
change during the non-upwelling period. This 'trend' which is only during spring (or winter, or summer, etc.) is actuall!~ a 
change in the seasonal component. I t  seems then that the seasonal pattern in oceanographic variables is not constant over 
time and also that seasonal and non-seasonal variations are not independent. 
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a. Deterrninistic b. Periodic 

c' Seasonal Unit Roots d: Observed SST 30-32"N ('C) quarterly 1960-1990 

Year ~ e a r  

Flg. 2 : Deterrninistic, periodic ancl integrated seasonal time series gencrated from the same white noise E, ancl the 
o b s e ~ e d  SST series off the Canary Current at 30-32"N CT is the time terrn trend). 
a : Deterministic : ,Y, =2D1 -3- -D;  +3D, +0001T + E ,  

b :Periodic : X, =2Dl-3D2 -D,+3D, + ( ( 0 0 1 + 0 0 0 1 T ) D , + ( 0 0 5 t 0 0 0 5 ~ D 2 - ( 0 l + 0 0 0 6 T ) D , + ( 0 0 4 + 0 0 0 7 ~ ) ~ , ) ~ , ~ , + ~ ,  

c : integrated : ,y =-.y,_, -XI_? - .Y,_, + E ,  

1.3. Change in the variance of a series 

.4 random walk (see Section 1.1) is :i lime series ~l!liose variance is a function of rime, in tliat case a simple linear 
function of time. There are otlier cases \\ll:ere the underlying varinnce evolves \vit11 rime in a non-linear fasliion. Foi. 
example, tlie varisnce can be a step Funciion of rime, it clianges at a $en time period and remains at its new level o\Ier a 
period of time. It is important when analjzing clnnges in a time series, and parriciilarly when studying clim,itic clianges, to 
be .~b le  to mode1 the evolution pi-ocess of t!!e variability of the series. These type of non-linear time series processes witli 
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changing variance in the residuals are referred to as autoregressive conditional heteroscedastic process (ARCH) in the 
econometric literature (see Engle, 1982 and Bollerslev, 1986 for the first models), and as red noise in physics (see Steele, 
1981 and Bakun, 1996, for reference in oceanography). ARCH or red noise process means that the conditional variance of a 
series is a Function of time. It seems that these non-linear dynamics are frequent in the oceans where waters masses inertia 
produce endogeneous cycles. In fish catch time series it is often noted that the variability increases with the mean. This is 
also a conditional heteroscedasticity phenomenon which has to be represented with the appropriate models. More 
generally when a time senes does not follow normal laws, the usual ARMA linear models are not suitable and it is necessary 
when forecasting or simulating such a series to refer to a class of non-linear time series models. A red noise process can be 
expressed as: 

K =&,Y,&, Where E, + N ( 0 , 0 2 )  (8 
E ( I ; )  = O  E ( K  1  K - , )  = O  - 
V ( I ; )  = 3 0 6  v(i; 1  y-,) = oz&,'!, - 

y,.1 define the set of al1 the past values of Y,. This process is stationary since the marginal mean and variance are constant 
and so do not depend upon time but the conditional variance is function of the history of the series. 

Along with conditional heteroscedasticity, a time series can also contain deterministic trends or unit roots at some 
frequencies. Al1 these features can be combined in more complex classes of ARCH models. Bollerslev and Ghysels (1996) 
have recently proposed a seasonal ARCH mode1 with a periodic structure. A simple example of ARCH(1) process may be 
given by : 

2 112 X = ( a O + a l K - , )  &, Where E, + N(0, I )  (9 ) 
E ( I ; )  = O  E( i ;  1  Y,-,) = 0  - 
V ( I ; ) =  a 0  l u - ( 3 )  V ( I ; / K - , )  - = a,+ qt;'2, 

Two examples of such ARCH(1) time series are shown in Figure 3. These are SST times series off the Canary Current at 28- 
30 and 30-32"N (Fig. 3a and Fig. 3d). They have been decomposed into trend, seasonal and residual components by the 
STL algonthm (Cleveland et al., 1990). I t  can be noticed, both on the original series and on the residual senes, that once 
the trend and the seasonality have been removed, the variability of the senes is much greater before 1962 and after 1979 
for the first 28-30°N SST senes and greater before 1962 for the 30-32"N SST series. 

These changes, which do not pertain to the trend nor to the seasonal component, have to be taken into account. 
Interpreting an observed change in a time series requires to be able to disentangle correctly the different components of 
the series if we want to attribute correctly which part comes from a change in the global mean (trend), in the seasonal 
cycle or from the behavior of the variance. 

2. DETECTING AND MODELING CHANGES 

Oceanographical data are generally considered as stationary or having a deterministic trend although it is a question 
whether freak events such as El Ninos do not have lasting effect on the dynamics of the ocean. I t  is then important to be 
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a: Observed SST and trend estimated by STL d: Observed SST and trend estimated by STL 

26 

24 

1946 1951 1956 1961 1966 1971 1976 1981 1986 
1946 1951 1956 1961 1966 1971 1976 1981 1986 

b: Seasonal component e: Seasonal wmponent 

c: lrregular wmponent f: lrregular wmponent 
4 - 

4 

3 3 - 

3 ~ 

5 - 
-4 i 6 7 

1946 1951 1956 1961 1966 1971 1976 1981 1986 
1946 1951 1956 1961 1966 1971 1976 1961 1966 

Year Year 

Fig. 3: Decomposition trough STL of two SST observed series off Canary Current at 28-30 (left panels) and 30- 
32"N (right panels). 
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able to identify what sort of non-stationarity, deterministic or stochastic, is operating in a series. There is no single method 
that will correctly model al1 of these possibilities for non-stationary behavior in a time series. However, several methods 
have been developed over the last decade that begin to deal with some of these issues, and thereby extend Our ability to 
analyze the past behavior of oceanographic and biological time series. In the next sections, we discuss two possible 
approaches. Random walk, unit root, integrated series are al1 terms referring to stochastic trends. An integrated series is a 
series which has a unit root at some frequency in its autoregressive part. Analyzing the non-stationarity of a series will be 
then testing for unit root at any of its seasonal or non-seasonal frequencies. An other approach, allowing to avoid a delicate 
testing procedure, is to decompose a series in its unobservable components using a structural class of models developetl 
by Harvey (1989). These models which treat seasonality as an unobserved component and separate non-seasonal from 
seasonal factors, are panicularly adapted for series with a slowly changing seasonal pattern. 

2.1 . Testing for unit roots 

Searching for unit roots at the zero frequency consists of testing the nuIl hypothesis Ho: p = l  in a regression equation 
such as: 

= PT-, + E, (10) 

where E, are independent and distributed as ~ ( 0 , o ~ ) .  In order to whiten the residuals, autoregressive terms have to be 
added. The usual test regression is: 

The nul1 hypothesis is now Ho: cp = O, since ~ 4 t h  t!le transformation to first difference, 9 = 1-p. If th? series has 
atlditional deterministic components, such as a deterministic trend for example, they have to be added to the regression 
test (a + Pt), along s i th  the autoregressive structure -$,,At 

,=I 

When q=0,  the problem examined is no more in a stationary framework. The ordinary least square (OLS) estimates of <p 

are not tlistributed as the usual regression test statistics. Instead, the appropriate t-statistics of <p are functions of Bro\vnilin 
motions. The asvmptotic distributions of the test statistics will then depend on the different parameters included 
(constant, linear or quadratic trends). Because the statistical tests change depending on the model, testing for unit root 
must be done with care. \Vilarever may be [!le regression test, the nuIl hvpotliesis is always the same. A procedure that 
sequenrially tests reduced models is then highly recommended. These tests do not discriminate well between trend 
stationary and difference stationary series. This is still an open question and new tests are under discussion (see Cochrane, 
1988, 1991; Hwang and Schmidt, 1996; Kwiatl:omiski et al., 1992; Leybourne and McCabe, 1991; Perron, 1989; Schmidt and 
I'hillips, 1992). Critical values for the iest st?!isrics can be found in Fuller (1976) and Dickey and Fuller (1981) or in the 
above-cited lirerature for modified tests. Resu!!s of tliese tests mayvary nritli ihe number of hgs inclutleci in ~ h e  model. To 
avoid tliis problem, Phillips and Perron (1938) 111s proposet1 a non-pnrnmetric test n4ere the E, may be autocorrelatetl. 
Unit root tests have been revised bv Km mrl Sc!lmidt (1993) i!i the case of condition11 heteroscedastic erl-01-S. 

Searching for unit roots p t  seasonnl f~.equencies is 2 little more complicared antl will tlepend on the periodicity of the series, 
either quarterly or monthly. As noted earlier a qux-terly seasonal integrated process may have four unit roots (1, -1, i, -i) at 
the frequencies 0, 1/4, 1/2, 3/4. (see Section 1.2). A monthly seasonal integrated process may have 12 unit roots. The 
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tesiing procedure for unit roots in the seasonal component at their different frequencies has been established for quarterly 
dat.3 by Hylleberg et al. (1990) and for monthly data by Beaulieu and Miron (1993). These authors have proven that tlie 
autriregressive polynomial of a quarterly seasonal series cp(B)y, = ct can be decomposed as: 

cp(B)= -n,B(l+B+ B2+B3) - - ( -BXl -B+ BZ -B3) - (n ,+n ,~) ( -B) ( l -  ~ ~ ) + c p * ( B ) ( l -  B ~ )  

Then the deseasonalized yt series can be decomposed as: 

V* ( B ) ~ 4 1  = npl~- ,  +n2y2,-i + n3/"t-2 +n$3/-l + 

yl, == ( 1  + B + B~ = S(B) yt removes the seasonal unit roots at the frequency 1/4, l n ,  3/4, while keeping the unit 
root at the zero frequency 
y2, := (1 - B + ~2 + @)yt removes the seasonal frequencies 0, 1/4, 3/4, while maintaining the unit root at tlie semi-annual 
freq Jency. 
y3, == (1 - B ~ J ~  rernoves the seasonal unit roots at the frequency 0, 1/2, while maintaining the annual frequency. 
y ,  ~t == (1 -B$, is the deseasonalized series. 

Uncler the nuii hypothesis of stochastic seasonality, al1 the ni are zero. Testing that the autoregressive polynomial has a 
root of 1 is equivalent to testing n1 = O, testing that it has a unit root at tlie semi-annual frequency, root -1, is equivalent 
to t::sting n2 = O and a joint test n3 = nq = O will test for a unit root at the annual frequency. Intercept, trend and 
seasonal dummies have to be added to the regression equation (12), giving tlie model deterministic as well as stochastic 
coniponents. This allows the possibility to discriminate between deterministic and stochastic trend model. 
Autoregressive terms must be added if the errors are not accepted as being a white noise process. As we are no more in a 
stationary framework, the test statistics do not follow anymore the usual laws. For different configurations of tlie test 
regression, critical values are provided by Hylleberg et al. (1990) for quarterly data and by Miron and Beaulieu (1993) for 
monthly data (see Frances and Hobijn (1994) for a detailed revue of critical values). Testing for seasonal unit root is more 
delicate than testing for the long-term unit root. Discussions of this test procedure and alternative are proposed by 
Can~:)va and Hansen (1995), Franses (1996), Ghysels et al. (1994)) Hrirvey and Scott (1994), Hylleberg (199 j), bar the lem^^ 
and Lubrano (1996), Osborn et al. (1988). Franses (1994) has proposed a test for periodic integration wliich nests the 
usu;il seasonal unit root tests. 

2.2. Decomposition of a time series 

A simple starting point for modeling an observed time secies Y, such that the series can exhibit some of the more 
complex behavior of the previous section is to assume that the observed secies is additively composed of independent 
components: 

y, = + SI + 1, + e, t=l,T (13) 

where Tt is the unobserved rime-dependent mean-level (trend) at time t, S, is the seasonal component at rime t, 1, is the 
irregdar term (stationary but autocorrelated) at time t, and et  is the stationriry, uncorrelated component at tirne t ,  which 
here can be viewed as 'observation' or 'measurement' error. 
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The model (Eq. 13) States mathematically the assumed form of the observed time series, but leaves open the question of 
the form of each component and how to estimate the component series from the observed data. Tne components could 
be modeled parametrically - the trend by a polynomial of a given order, the seasonal by harmonics, for example, but this 
approach is very limited in handling series with the types ofdynamics discussed above. Ideally the components would be 
defined as flexibly as possible while allowing the model to be estimated. One way to achieve this is to put a constnint on 
the 'smoothness' (in this case through time) of the component. In the case of continuous functions of time, this implies 
constraining the derivatives of the function to be estimated. When time is discrete, the equivalent would be to put a 
smoothness constraint on the differences of the components, or other relevant linear combinations through time. 

The use of such piecewise continuous 'smoothing splines' to estimate unobsemed components dates back to Thiele 
(1880), see Lauritzen (1981), and in the more modern era to a paper by Whittaker (1923). Shiller (1973) modeled the 
distributed lag (impulse response) relationship between the input and output of a time series under difference equation 
'smoothness' constraints on the distributed lags. He termed these constraints 'smoothness priors', but did not offer an 
objective method of choosing the smoothing parameter. Akaike (1979) developed a Bayesian interpretation of the model 
and used maximum likelihood to estimate the smoothness parameter. Brotlierton and Gersch (1981) showed how the 
Kalman filter and maximum likelihood could be used to solve the smoothing problem. Kitagawa and Gersch (1984, 198j, 
1988), in a series of papers, extended the Kalman filter-maximum likelihood approach to a varietv of nonstationary 
problems, and Harvey (1989) developed similar models under the title « structural time series models ». 

2.3. Smoothness priors and the trend component 

How a smoothness constraint can allow for both a flexible and for a well-defined model can be most clearly understood 
in terms of estimating a 'smooth' but unknown function which has been observed with 'noise', that is data of the form: 

YI =f1 +e,  (14) 
where the yt are the observed data, f, is an unknown smooth function and e, are independent gaussian errols. In this 
model there is no seasonal component and no autoregressive component. Whittaker (1923) suggested that the solution 
should balance fidelity to the data with fidelity to constraint on the smoothness of the unknown function f,: 

Equation 1 j is equivalent to solving the least-squares problem subject to a constraint on the differences of the unknown 
function, using Lagrangean multipliers. The first term in Equation 1 j is the usual sum-of-squares criterion, while the 
second term constrains the k-th order finite differences of the unknown function (the discrete equivalent of splines where 
the k-th order derivatives are constrained). The two parts are balanced by the 'srnoothness parameter' y. As y goes to 
zero, the smoothness constraint disappears, and the estimate of the unknown function exactly interpolates the data. As y 
approaches infinity, the sum-of-squares term becomes negligible, and the solution is the appropriate k-th order 
polynomial of time (e.g., linear for k=l, quadratic for k=2, etc.) 

Equation 15 leaves unanswered the crucial question of how to estimate the smoothness parameter y. Akaike (1979) gave 
the problem a Bayesian interpretation. He viewed the constnint as a stochastic, zero mean difference equation, that is: 
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s - 1  
z ~ ( t - i ) + ~ ( o , o ~ ~ )  t=l,T (19) 

i = O 
1f 02, is zero, then the result is a deterministic seasonal cycle, in hct the mean for that season, while if 02, goes to infinity, 
then the seasonal component interpolates the data. In between, the estimate of the seasonal component is a smoothing 
spline, a linear smoother of the obsemed seasonal time series. 

The smoothness constraint of Equation 18 explicitly smoothes the s-differenced time series and thereby implicitly smooths 
the s-period running sum. Similarly, the smoothness prior of Equation 18 explicitly smoothes the s period sums and 
thereby implicitly smoothes the time trends. 

2.5. Combining trend and seasonal components 

The previous examples have considered series that are composed of either a trend component plus noise or a 
seasonal component plus noise. Most oceanographic and biological time series are likely to have both components 
present, so the problem arises of simultaneously estimating the trend and the seasonal component. (The discussion that 
follows is not the algorithm actually used, which is given in Appendix A and which estimates al1 components 
simultaneously. However, the backfitting type algorithm descnbed here could be used, and makes the ideas clearer). Start 
with initial estimates of the trend and seasonal components, Say the mean of the series and the monthly means of the 
demeaned series. Then define the partial residuals as: 

where S,, Tt are respectively the present estimates of the seasonal component and of the trend. Each partial residual series 
is simply the obsemed series less the present estimate of the other component. Then iteratively, to get a new estimate for 
the trend, we calculate yl,, and use the approach of Section 2.3 to estimate the trend term for the partial residual series. 
The estimated trend in the partial residual senes is then used as the new estimate of the trend component T. This new 
value of T is then used to calculate the partial residual y2,, and the methods of Section 2.4 are used to estimate the 
seasonal component for this partial residual series. The estimated seasonal component is then used as the new estirnate of 
S and the process is iterated until convergence. 

The algorithm can be viewed as iteratively fitting smoothing splines to the partial residuals of the series until convergence 
is achieved. In the examples (Section 4) we examine the original series and the partial residual series with the components 
to help understand output of the algorithm. This type of algorithm is not limited to using smoothing splines as the 
smoother. Cleveland et al. (1990) use a similar procedure and the LOWESS smoother in the STL algorithm for time series 
decornposition. If an autoregressive component (Le., 1,) is also included in the model, then three partial residuals could be 
defined, and at each iteration a maximum likelihood estimate of the autoregression parameters would be estimated. 

The actual algorithm used (Appendix A) sets up the entire model in state-space form and uses a combination of the 
Kalman filter and the EM algorithm (Dempster et al., 1977) to calculate the maximum likelihood estimates of the 
parameters. Given the final estimates of the parameters, the Kalman smoother gives the minimum mean-square error 
estimates of the different components. 
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3. MUL-~IVARIATE ANALYSIS: COI NTEGRATION 

3.1 . Cointegration 

The existence of unit roots in a tirne senes is not only important in understandmg which type of trends is affecting the 
behavior of the series and its pattern of seasonality, but also has interestig consequences when several time senes are modeled 
joirdtly (Granger, 1986, 1988a,, 1988b). For a general survey see Hatanaka (1996), Lütkepohl(1991) and Dolado et al. (1990). 

Al1 linear combinations of zero order integrated series will also be integrated of zero order. Likewise a linear combination 
of 3 group of I(d) series will generally be an I(d) series also. But sometimes it is possible to find a particular linear 
conibination of non-stationary series which produces a new series which is integrated of lower order and which can be 
stationary. This particular linear combination of the series removes some or al1 the trends from some or al1 the series. 
These series are said to have 'common trends' or to be cointegrated. Ignoring cointegration in a group of series can lead to 
misspecified models. Since co-movements among time series indicate the existence of common components, this implies 
a more parsimonious and informative structure in a joint mode1 (Engle and Yoo, 1987; Johansen, 1988). 

Thc term 'integrated series' refers explicitly to unit roots or stochastic trends in a series and 'cointegration' to the 
existence of common trends in a group of integrated series. These ideas have been extended to a more general framework 
that tests for the presence of some 'feature' in a time series and whether this feature is common to a group of series. 
'Feitures' are data properties such as serial correlation, trends, seasonality, heterocedasticity, autoregressive conditional 
heteroscedasticity and excess kurtosis. The idea is the same, if a linear combination of featured variables does not possess 
the feature any more, the featured variables will be said to have a 'common feature' (Engle and Kozicki, 1993; Vahid and 
Engle, 1993; Escribano and Pena, 1994). 

For notational and presentational convenience, we will only present the case of order-1 integrated series. Let Y, denote a 
n-v::ctor of I(1) variables whose first difference is autoregressive. 

@(B)AT = O(B)&, (2 1) 
where A=(]-B) and E, is white noise. The stationary process AY, has a moving average representation and can be 
rewritten as: 

A y = 0-](B)O(B)E, = H(B)&, (22)  

H(B) is a polynomial matrix in B, and may be decomposed as H(B) = H(1) + (1 - B) H* (B) (see Engle and Granger, 1987). 
Integrating (taking the integrand of) both sides of equation 22 to solve for AY, yields : 

which shows that an I(1) process is a sum of a random walk and a stationary process. Similarly, an I(d) process crin be 
decomposed as a sum of d-1 random walks of order dl d-1, d-2, ... 1, plus a stationary process. 

If we can Find a n-vector ai such that atiH(l) = O, meaning that the matrix H(1) is not of full rank. Pre-multiplying Y, by a', 
will cancel-out the random walk part of Yt and aIiY, = cx'iH"B)~, will be stationary. In that case, the multivariate process Y, 
is said integrated order 1, cointegrated order 1, denoted C(1,1), and q is a cointegration vector stationarizing the process. 
Thece can exist r (r<n), linearly independent cointegration vectors, meaning that r different subsets of the variables in the 



multivariate process Yt are linked in stationary fashion. The collection of al1 linearly independent cointegration vectors form 
the (n,r) matrix cc where a'Y, is I(0). The existence of cointegration vectors implies that the rank of H(l) is n-r, so that testing 
for cointegration is equivalent to testing the nnk of the matrix of H(1). This test is known as yohansen's test' (see for details 
Johansen and Juselius, 17%; Johansen, 1991; Phiiiips and Ouliaris, 1990 and Stock and Watson, 1988, for similar approach). 
Procedure and critical value are available in most of the econometric packages like E-Views, PC-Give or RATS. 

Engie and Granger (1787) have presented several equivalent representations of cointegrated series. The most interesting 
one is the 'error-correction representation': 

A(B)AF = -yz,-, +d(B)&,  ( 2 4 )  

where zEl = a'Y,-l and d(B) is a scalar polynomial in B. The series z, is a random stationary process that measures the 
deviations or errors around the so called 'equilibrium relationship' defined by a'Y,-l which is assumed to be nuIl when 
realised. Stationarity in a linear combination of variables can be intuitively associated with the static notion of a long-term 
equilibrium relationship between these variables. This error-correction representation shows clearly a system directed by a 
'long-term relationship' around with short-term variations adjust for the deviations at the equilibrium which have occurred 
at the previous period. Non-stationary series when cointegrated can never diverge far from each other over time. They are 
linked by a steady-state relationship that keeps them close in the long-term. 

The presence of both deterministic and stochastic trends in a time series changes the distributional propenies of the 
cointegration test as well as the form of the error-correction model. The appropriate modified procedures must be used in 
this instance. 

The model considered here is linear and with time-invariant parameters. It can be generalized by allowing for time-varying 
parameters (see for example Granger,l986). The concept of cointegrated system has also been extended to the cases of 
seasonally integrated series by Hylleberg et al. (1990). 

3.2. Seasonai cointegration 

Seasonal cointegration occurs when a group of time series with changing seasonal pattern exhibit a 'parallel 
movement' in their seasonal component. 

Assume that Y, is an n-vector of zero mean quarterly variables which are al1 I(1) at the frequencies @=O, 1/4, 1/2, 3/4. The 
autoregressive-moving average representation of Y, is: 

( 1  - B 4 ) y  = C(B)&, ( 2 5 )  

where the E, are independant random n-vectors identically distributed as NID(0,Q) and C(B) is an (n,n) matrix of lag 
polynomials. As in the previous univariate case (Section 1.4), the polynomial matrix C(B) can be expanded as: 

c( 1) c ( - l )  ~ e [ C ( i ) ]  ~ m [ ~ ( i ) ]  where Y, = -,Y2 = - 
4 4 , y 3  = 2 "Y,= 2 
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To laamine a group of series for seasonal cointegration requires analyzing the properties of the model: 

( 1 -  B")a'q = afC(B)&, (27) 
Se;isonal cointegration exists when : 
- The existence of an (n,rl) matrix al, with rl<n, such that all YI = all C(l) = O implies cointegration at the zero 

frequency. 
- l i e  existence of an (n,r2) matrix a2, with r2<n, such that al2 Y2 = al2 C(-1) = O implies cointegration at the 112 

kequency. 
- The existence of an (n,r3) matrix a, r3<n, such that a ' ( Y 3  + Y 4  B) = a' C(i) = O. Implies cointegration at the 114 and 

214 frequencies without being distinguishable. 

The columns in al and a2 form the cointegrating vectors at the zero and 112 frequencies. Columns in a will be called 
"piilynomial cointegrating vectors" since they are of the form a(B)= a3 + a4B. 

There is an error correction representation for seasonal cointegration which varies with the number and frequencies of 
unit roots which are canceled out by the cointegrating vectors a ' s  (see example in Hylleberg et al., 1990). 

Testing for seasonal cointegration is still in an early age of development. The critical values for seasonal cointegration 
based on unit root test are already available for quarterly data (Engle et al., 1993) but not for monthly data. Furthermore, 
the only procedure presently available for estimating the cointegration vectors and error correction representation is the 
two-step procedure similar to that of Engle and Granger (198T) and developed by Engle et al. (1993). Unfortunately this 
procedure works only in the bivariate case. A new method has been recently developed by Franses (1994) in order to test 
for seasonal unit roots. This method consists of a multivariate decomposition of a univariate time series into its different 
serisonal components allowing to use the Johansen's test procedure. This approach could be fruitfully extended in order to 
test for seasonal cointegration but will necessitate huge sample sizes. 

Deseasonalizing time series by using a seasonal difference operator, which a priori assumes a changing seasonal pattern, 
has been increasingly preferred to diseasonalizing the series by a regression on seasonal dummy variables which assumes a 
deterministic seasonality. However, if the time series are seasonaly integrated and cointegrated at some frequencies, then 
both methods would lead to incorrect results. The appropriate method would be to use seasonally unadjusted data and 
jointly model the series. 

4.1. lnterpretation of cointegration in oceanography 

Cointegration models have a meaningful economic interpretation explaining why such an approach is burgeoning in 
economics. Economic theory postulates that economic variables will eventually reach an 'equilibrium relationship'. These 
'target equilibnum' are generally not observed but there is strong belief that these variables should not diverge from 
equilibrium by too great an extent. Most of the time an economy is in disequilibrium, but market mechanisms and other 
eo~nomic forces bring about a dynamic adjustment of the variables towards their equilibrium. 
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Considered in a spatial context, theses new techniques in time series analysis could be usefully applied to oceanographic 
data. Identifying and estimating trends in oceanographic time series which are common to an entire region (global 
change) and separating these from stationary cyclical swings or non-stationary components which are unique to a local 
area (local dynamics) is an important problem in the studies of climatic change in oceanography. For example, if we can 
show that SST series at different adjacent latitudes are both integrated (i.e., non-stationary) either in their seasonal 
component or  in the mean, as well as cointegrated either in their trend or seasonal component, then the estimated 
common trends can be viewed as 'global changes' since they affect al1 the SST series in the same manner over the region. 
The remaining variations of each individual SST series around these common trends can be viewed as 'local changes'. 
Identifying over a large region which group of SST series enter or do not enter in cointegration relationships, can also 
allow to better determine and characterize transition zones in the ocean's dynamic. 

Since seasonality is dnven by broad processes in the ocean, and if seasonal integration explain the varying and changing 
structure of seasonal pattern in oceanographical data, then seasonal coinregration should not be uncornmon. 

4.2. Decomposition of time series: exampies 

To illustrate the consequencies of misusing the different detrending and deseasonalizing methods previously exposed, 
they have been applied to the SST time series off the Canary Current at 22-24"N. Results obtained can be compared on 
Figure 4. This series have been tested for unit roots at long-term and seasonal frequencies. When deterministic term are 
included in the regression equation, the secies appears to be deterministic although the results seem ambiguous for the 
zero frequency. To accept the hypothesis of a deterministic series (absence of unit roots at al1 frequencies) implies that the 
12-difference operator must not be used to deseasonalize the series. A deterministic trend and season have been therefore 
estimated (Fig. 4d and 4e). Trend, although small, is significantly negative. Most of variations remain in the errors process. 
The error process is non-stationary which testify for a wrong decomposition of the series (Fig. 44. 

Decomposing the series through the STL algorithm, the behavior of the trend appears quite different, decreasing from 
19.92"C in 1946 to 19.26"C in 1972 and increasing regularly again after this date (Fig. 4a). Without having seasonal unit 
roots, the seasonal pattern appear quite changing. This senes has time varying parameters in the season (Fig. 4b). The 
irregular term is stationary yet proved to be conditionally heteroscedastic after being tested. This time series is non linear 
~vith time va~ying parameters and it could be modeled by a periodic conditio~aily heteroscedastic model. 

Changes in the senes, both in the trend (inter-year changes) and in the season (intra-year changes) can be easily seen and 
interpreted with the results issued of the STL decomposition of the series. Although this series can be accepted as 
deterministic, it is in fact non linear and to estimate a deterministic trend and season will lead to spurious results and to 
the incapacity to really detect changes. 

Two other examples wil help to clarify some of these ideas. We calculate the decomposition for SST and the north-south 
component of the wind stress at 36-38"N, an area off the California cmst between Monterey and San Francisco. SST in this 
region displays relatively little variation as compared to the mean level. If the overall series mean is removed from the SST 
senes, then the residuals over the entire time period are less than three degrees in absolute value, compared to a mean level 
of roughly 14 degrees. So the trend likely to dominate any other component SST in this region is also highly seasonal and 
strongly autocorrelated. The seasonal component may vaql to a degree, but winters are colder than summers etc. so that the 
basic pattern will be fairly deterministic. Wind stress, in contrast, is highly variable, with the variability around the overaU mean 
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d: Observed SST and deterrninistic trend 
a: Observed SST and trend estimated by STL 

24 1 7  

b: Season estirnated by STL e: Deterministic season 

c: lrregular from STL estimation f: lrregular from deterministic estimation 

l -2 
1946 1951 1956 1961 1966 1971 1976 1981 1986 1946 1951 1956 1961 1966 1971 1976 1981 1986 

Year Year 

Fig. 4 :  SST time series off the Canary Current at 22-24"N. Decomposition in trend, season and irregular 
components through the STL algorithm (a,b,c), estimation of a deterrninistic trend (d), a deterrninistic seasonal 
(el, and irregular (0. 
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larger than the mean itself. Wind stress is not highly seasonal and with a low degree of autocorrelation, particularly when 
compared to SST. Areasonable procedure should at minimum reproduce these features of the ocean in this region. 

The raw SST series and the estimated components (Fig. ja-e) have the desired characteristics. The seasonal component is 
nearly deterministic and only varies by 3 degrees. The autoregressive term is nearly as large as the seasonal component, 
while the noise component is very small, less than 0.25 degree Celsius in absolute value. 

When the estimated trend is plotted against the raw series (Fig. Ga), some of the features of the trend term are apparent in 
the taw time seties, but others are more obscure. When the estimated seasonal component is removed (Fig. bb), the 
estimated trend is clear in the partial residual series, and it is evident that the trend component is a smoother of the partial 
residual. When both the seasonal and the AR components are removed (Fig. Gc), the estimated trend differs from the 
partial residual series only by the relatively small noise series. 

The estimated SST seasonal component (Fig. 7a) is a mean zero series (as desired, so that the trend component has at least 
one desired property), and when compared to the detrended series dlffers from it by roughly the AR component. The SST 
component can be seen to smooth the resulting partial residual series. The basic features of the series are deterministic, but 
the component series does Vary, such as in the timing of the occurrence of the spring transition and other secondary 
maximum and minimum. Variations in the timing of such events can have significant implications for fish stocks, and would 
not be as easily identified if a purely deterministic mode1 were used. Note that if the AR and trend components are removed, 
then the seasonal component differs from the partial residual series only by the amount of the noise series. 

When both the estimated SST trend and seasonal components are removed, the resulting series is highly autocorrelated 
(Fig. 8a) and very close to the estimated AR component. The interplay of the three components and how each smoothes 
the appropriate partial residual series can be seen clearly in this example. 

if we look at a similar sequence of graphs for north-south pseudo-stress in thi  region (Fig. 9,10, Il), the seasonal component 
is closer to the trend in absolute value, whie the AR component is very smail and the uncorrelated noise series is as large in 
value as any of the other components. The trend is not as obvious from the data and the seasonal component is more vanable. 

These examples demonsuate the consistency of the procedure, how the different components interact in forming the estimates 
of the other components. h o ,  this example illustrates that the decomposition can estimate components that are consistent 
with what was known a priori, and which have very different dynamics. 
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Fig. 6: California Current SST ("C) time serieç at 36-38"N : calculation of the trend from the partial residuals . 
The top panel shows the trend versus the original serieç; the middle panel the trend verçus the original series 
minus the estimated seasonal cornponent; the bottom panel the trend versus the original series minus both the 
estimated seasonal and the autoregressive components. 
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SST, trend removed 

3 1  
SST, trend and AR rernoved 

31 
SST, estimated seasonal cornponent 

Fig. 7: California Current SST time series at 36-38ON: calculation of the seasonal component (AT; OC) from the 
partial residual series. The upper panel shows the detrended series; the middle panel shows the original series 
minus the trend and autoregressive components; the bottom panel shows the estimated seasonal component 
versus the original series, with the trend and AR components removed. 
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3~ 1 SST, trend and seasonal component removed 

SST, estimated AR 

SST, trend and seasonal component removed, vs. SST-estimated AR 

i 

Year 

Fig. 8: California Current SST time series at 36-38"N: calculation of the AR component frorn the partial residual 
series (AT; OC). The upper panel shows the original series with the trend and seasonal component rernoved; the 
middle panel shows the estimated AR components; and the bottom panel shows the estirnated AR cornponent 
versus the original series with the trend and seasonal component rernoved. 
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1 N-S Stress. seasonal component removed, vs. estimated trend 

Y ear 

6-38"N: calculation of the trend from the partial 
nus the estimated seasonal component. 

1 I N-S Stress, trend and AR removed, vs. estimated seasonal component 

Year 

s at 36-38"N: calculation of the seasonal component 
ows the estimated seasonal component versus the original series, 



I N-S Stress, trend and seasonal component removed, vs. AR component 

Year 

APPENDIX A: STATE-SPACE DECOMPOSITION OF TlME SERIES 

The linear state-space mode1 that is amenable to the Kalman Filter takes the form: 

where the observation equution (Eq. 28a) has y, a 9x1-vector of the observed data (in this case q=l ) ,  A, is a qxp matrix 
which relates the data to the unobserved components x,, which is a vector of dimension pxl,  and v, is a qxl-vector of 
independent, identically distributed gaussian random vanables with Ev, =O and noise covariance matrix: 

- 
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The cvolution of the unobserved components or States x, is governed by the initial value xg and the state equation (Eq. 2%). 
The niatrix 0 is apxp transition rnatrix and thepxl-vector o, is another independent, identically distributed gaussian 
random variable with E(oJ = O and: 

Q = E(o,o;) (30) 

The specification of the model is completed by assuming that )(o is also gaussian with E(xo) = p and: 

See Shumway (1988, Section 3.4) for further details on the state-space model. Kitagawa and Gersch (1984) show how to 
put t:ie smoothness pnors assumptions of Equations 17-19 into state-space form. The model for k=l, and with a first order 
autor.1-gression wil be given. The model for other values follows analogously. The vector y, is a scalar, the observed value 
of thc time series at time t .  The state vector x, is of dimension 13 and is of the form: 

and the transition matrii 0 is given by 

whert: 4 is the autoregressive parameter which is to be estimated. ï'he observation matrix (from Eq. 13) is given by : 

The specification is complete by setting the observation error covariance matrix equal to R = 02, and by setting the state 
noise covariance matrix equal to: 
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For given values of the vector of parameters O =($, 02T, 02S, 021, 02,), the minimum mean-square-error estimates of 
each of the components of the state vector can be estimated using the Kalman filter and smoother. A particularly efficient 
form of the algorithm was developed independently by Ansley and Kohn (1985,1990), Kohn and Ansley (1987) and De 
Jong (1989, 1990, 1991). Both algorithms include the case where C+m, a diffuse or noninformative prior (see above 
references) . 

Let X, 1, denote the expected value of the state vector given the data up to and including time z ,  let P, 1, denote the 
covariance matrix of the state vector conditional on the data up to and including time z .  Let r, be a vector of dimensionp, 
and R, apxp matrix. Then the fiiter and smoothing steps proceed as follows: 

FILTERING: 
Initialize: 

Iterate for t=l,T: 

SMOOTHING 
Initialize: 

Iterate for t=T-1,O: 

The log-likelihood L N O )  given al1 the data Y and the parameter vector O is given by (see for example Shumway, 1988, 
page 178): 
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In clrder to use the EM algorithm (Dempster et al., 1977) it is necessary to derive the complete data likelihood; here the 
corr~ponents x, are viewed as unobserved or "missing. After some manipulation, th can be shown to be (Shumway 1988, page 179): 

1 
- -tr b-l [SI ( O )  - S,(l)@' - os, (11,  + o s / - l o 4 f l  

2 

where the terms S,(O), S,(l), and Skl(0) are defined as: 

A recursion for Pt,t-l 1 T is given in Shumway and Stoffer (1982) and De Jong (1990). The complete data likelihood is 
maximized by setting: 

= s/ ( l ) [ ~ / - ,  ( 0 1 7 ~  

Q = T-' [SI ( O )  -s/ (l)@' - @S,(l)' + (o)oq] (44) 

In i.he mode1 of this paper, since most of is fied, the new estimate of 0 is the (13,13) element of <P, and since most of 
Q is fixed to zero, the new estimates of Q are the (1,1), (2,2) and (13,13) elements of the above matrix, with al1 other 
elements set to zero. Here Ris a scalar. The complete algorithm then consists to 

1 .  Choose initial values for xo, C and a; 
2. Calculate the Kalman filter and smoother for the given parameter values; 
3. Update the parameters by Equations 42; 
4. Iterate until convergence. 

The Kalman smoothers, calculated at the final parameter estimates, produce the component time series. 



Akaike H. 1980. Likelihood and the Bayes procedure. ln: J.M. 
Bernardo, M.H. DeGroot, D.V. Lindley and A.F.M. Smith (eds.), 
Bavesian statistics. Univ. Press, Valencia: 143-166. 

Ansley C.F. and R. Kohn.1985. Estimation, filtering and smoo- 
thing in state space models with incompletely specified initial 
conditions.Ann. Stat., 13:1286-1316. 

Ansley C.F. and R. Kohn. 1990. Filtering and smoothing in state 
space modelswith partially diffuse initial conditions. TirneSuies 
Anal., 11275-293. 

Bakun A. 1990. Global climate change and intensification of coas- 
ta1 ocean upwelling. Science, 247: 198-201. 

Bakun A. 1996. Patterns in the Ocean: oceanprocesses and 
nzannepopulation &narnics. Sea Grant College Syst., Univ of 
Calif., La Jolla, 323p. 

Barthelemy F. and M. Lubrano. 1996. Unit root tests and SARIMA 
models. Econ. Lett., 50: 147-154. 

Beau1ieuJ.J. andJ.A. Miron. 1993. Seasonal unit roots in aggre- 
gate U.S. data. J. Econornetncs, 55: 305-328. 

Bollerslev T. 1986. Generalized autoregressive conditional hete- 
roscedasticity. J. Econometrics, 31:307-327. 

BollerslevT. and E. Ghysels. 1996. Periodic autoregressivecondi- 
tional heteroscedasticity. J. Bus, Econ. Stat., 14 (2): 139-151. 

Brotherton T. and W. Gersch. 1981. Adata analytic approach to 
the smoothing problem and some of its variations. Proc.of the 
2Gh ~EEE conference on Decision and Control: 1061-1069. 

Canova F. and B.E. Hansen. 1995. Are seasonal patterns constant 
over time? a test for seasonal stabi1ity.J Bus. ECOII. Stat., 13(3): 
237-252. 

Cleveland R.B., W.S. Cleveland, J.E. McRae and I.J. Terpenning. 
1990. STL: Aseasonal trend decomposition procedure based on 
L0ess.J. OfSicial Stat., 6:3-73. 

Cochrane J.H. 1988. How big is the random walk in GNP?J Polit. 
Econ.. 95 :893-920. 

C0chraneJ.H. 1991. A critique of the application of unit root 
1ests.J Econ. Q n .  Contr., 15 :275-284. 

DeJong P. 1989. Smoothing and interpolation with the state- 
space model. J. Anz. Stat. Assoc., 84: 1085-1088. 

De Jong P. 1990. Stablealgorithms for the state space model.,l. 
TinzeSeries Anal., 12:143-1 57. 

De Jong P. 1991. The diffuse Kalman filter. Ann. Stat., 19:1073- 
1083. 

DenipsterA.P., N.M. Laird and D.B. Rubin. 1977. Maximum like- 
lihood froin incomplete data via the EM algorithm. J. Roy. Stat. 
Soc., Ser.B., 39:l-38. 

Dickey D.A. and W.A. Fuller. 1981. Likelihood ratio statistics for 
autoregressive tinie series with a unit root., Econonzetrica, 49: 
1057-1072. 

DoladoJ.j., T. Jenkinson and S. Sosvilla-Riveros.1990. Cointe- 
gration and unit roots. J. Econ. Survqs, 4: 249-273. 

Engle R.F. and C.W.J. Granger. 1987. Cointegration and error 
correction representation, estimation and testing. Econotiie- 
ttica, 55: 251-276. 

Engle R.F. and B.S. Yoo. 1987. Forecasting and testing in coin- 
tegrated systems. J. Econometrics, 35: 143-159. 

Engle R.F. and S. Kozicki. 1993. Testing for common features. J. 
Bus. Econ. Stat., 11: 369-39 5. 

Engle R.F., C.W.J. Granger, S. Hylleberg and H.S. Lee. 1993. Sea- 
sonal cointegration, theJapanese consumption functi0n.J. Eco- 
nometncs, 5 5: 27 5-298. 

Escribano A. and D. Pena. 1994. Cointegration and common fac- 
t0rs.J Tirne Sen'es Anal., 15: 577-586. 

Fnnses P.H. 1994. A niultivariate approach to modelling univa- 
riate seasonal time series.J Econometncs, 63: 133-1 51. 

Franses P.H. and B. Hobijn. 1334. Critical valuesfor unit voot tests 
inseasonaltimesenenes, Erasmus Univ. Rotterdam, Rep. 9462/4 2 jp. 

Fnnses P.H, 1996. Recent advances in mode\\ing seasonahty.J. 
Econ. Survq, lO(3): 299-344. 

Fuller \VA 1976. Intmduction to statistical time suies. W~ley,New- 
york. 

76 Change in Oceanographic Time Series 





Stee1eJ.H. 1984. Kinds of variability and uncerminty affecting 
fisheries. In: R.M. May (ed.). Exploitation of m a ~ n e  commu- 
nities. Dahlem Konferenzen, Springer-Verlag: 245-263. 

StockJ.H. and M.W. Watson. 1988. Testing for common trends. 
J. Am. Stat. Assoc., 83: 1097-1107. 

Thiele T.N.1880. Om Anvedelse af Mindste Kvadraters Methode 
i Nogle Tilfaelde, Hvor en Komlikation afVisse Slags Uensarte- 
de Tilfaeldige Fejlkilder Giver Fejlene en 'Systematisk' Karakter, 
Vidensk. Selsk. (French Translation: Sur la compensation de 

quelques erreurs quasisystématiques par la méthode des moindres 
carrés. Kobenhaven: Rietzel, 1880. Vidensk. Selsk. Skr. 5 .  rk., 
Naturvid og Mat. Afd, 12: 381408.). 

Valiid F. and RF. Engle. 1993. Common trends and common 
cycles. J. App1. Econom., 8: 341-360. 

WeckerW.E. and C.R Ansley. 1983. The signal extraction approach 
to nonlinear regression and spline smoothing,J Anz. Stat. Assoc., 
7831-89. 

Whittaker E.T. 1923. On a new method ofgraduation. PIDC. Edin- 
bolough Math.Assoc. ,78: 81-89. 

78 Change in Oceanographic Tirne Series 


